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 Rhodanines are recognized as privileged heterocycles in medicinal chemistry. The main 
achievements include the development of drug-like molecules with numerous biological 
activities as well as approved drugs. The Furan nucleus is considered one of the promising 
heterocyclic cores in medicinal chemistry that showed numerous ranges of activity. The 
combination of several heterocycles in a one molecule commonly provides much more interest 
in the enhanced activity profile of its analogs than their parent separate constituents. Such 
conjugates are promising objects for modern medicinal chemistry. In this review paper recent 
advances in the synthesis and biological activities rhodanine-furan conjugates which its 
application in the different field of drug discovery. 
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1. Introduction  
 

        Today, the main task of medicinal chemistry is the creation of effective and low-toxic medicinal products. Their search 
is carried out among various classes of compounds, in particular 4-thiazolidone derivatives. Among these compounds, many 
highly active agents with a wide spectrum of biological activity were found. Lead compounds with antimicrobial, 
antituberculosis, antiviral, antidiabetic, anti-inflammatory, antitumor, anticonvulsant and other activities have been 
identified. In this regard, the 4-thiazolidone ring is considered a privileged structure in medicinal chemistry.1-3 
 
       Due to their unique physicochemical, chemical and biological properties, furan derivatives have found application in 
various fields of chemistry and technology, and in particular, in pharmacy.4-7 First of all, it should be noted the wide 
spectrum of biological activity of natural and synthetic derivatives of furan, as well as its condensed analogs (benzo[b]furan, 
naphthofurans, anthrafurans, etc.). All this determines the significant interest of scientists in the use of this heterocycle as 
an important "building block" in the creation of medicinal products.4-7 
 
      The combination of furan and rhodanine heterocycles in one molecule leads to the appearance of valuable 
pharmacological properties, which can lead to the creation of innovative medicines. The purpose of previously published 
reviews was to demonstrate the latest advances in the chemistry and biology of rhodanine derivatives with substituents of 
various natures.1-3, 8-21 In contrast it this review aimed to provide an overview on literature data related to the synthesis and 
biological activity of conjugates, which include two heterocyclic systems - furan and rhodanine. This review is focused on 
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recent scientific reports on the biological activity of furanrhodanine hybrids, published mostly in the last two decades.The 
advantages of such strategies were reported in the article.22   
 

2. Results and Discussion  
 

2.1 Methods of construction of the rhodanine (2-thioxothiazolidin-4-one) ring and 5-furan-2-ylmethylene-2-
thioxothiazolidin-4-one derivatives  

To date, there are three methods for constructing of a rhodanine cycle (Scheme 1). The first two methods are based on the 
use of primary amines, hydrazine derivatives and other compounds containing a primary amino group 1. This type of 
compounds, when interacting with carbon disulfide 2, forms carbamine salts 3. The resulting compounds, when interacting 
with chloroacetic acid and their derivatives, cyclize into the target compounds 1-3, 23 Alternative method for converting 
aminogroup into rhodanine cycle 5 includs the reaction of aminocompounds with acid 4.1-3 Rhodanine derivatives 5 are also 
formed by the raction of isothiocyanates 6 with mercaptoacetic acid 7.1-3 
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Scheme 1. Methods for constructing of a rhodanine cycle. 

      In the first case, other halogen-containing acids and mercapto acids can be used. This makes it possible to obtain (3-R-
4-oxo-2-sulfanylidene-1,3-thiazolidin-5-yl)acetic acid 8, (2Z)-(3-R-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene)acetic 
acid 9 (Scheme 2). Good cyclizing reagents are also maleic a, fumaric b or acetylenedicarboxylic c acid and their 
derivatives. The use of these acids makes it possible to obtain the corresponding rhodanines.1-3 

 

Scheme 2. Synthetic pathway to (3-R-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-yl/ ylidene)acetic acid. 

       The main attention in the design of furan-rhodanine conjugates was given to the synthesis and study of the biological 
activity of 5-furfurylidene rhodanines. The methylene group in rhodanine derivatives 10 is highly active and, upon 
interaction with furfural and its substituted derivatives 11 in the presence of basic catalysis, easily forms the target (5E)-3-
R1-5-[(5-R-furan-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-ones 12 (Scheme 3).1-3, 23-26 
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Scheme 3. Synthesis of (5E)-3-R1-5-[(5-R-furan-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-ones. 

The 1-benzofuran-2-carbaldehyde 13 and 1-benzofuran-3-carbaldehyde 14 interact in a similar way (Scheme 4).27,28 

 

Scheme 4. Synthesis of (5Z)-5-[(1-benzofuran-2-yl)methylidene]-3-R1-2-sulfanylidene-1,3-thiazolidin-4-one 15 and (5Z)-
5-[(1-benzofuran-3-yl)methylidene]-3-R1-2-sulfanylidene-1,3-thiazolidin-4-one 16. 

The geometric placement of substituents at the 5-th position of the rhodanine ring of the above compounds has not been 
studied separately. However, by analogy with other 5-arylidenerhodanines, it can be argued that this is the Z-configuration1-

3. 

2.2 Biological activity of 5-furfurylidenerhodanines 

      Derivatives of (5Z)-5-[(furan-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 17 (Fig. 1) are characterized by 
a wide spectrum of biological activity. Zvarec et al. reported that their simplest representative has antibacterial activity 
against gram-positive bacteria Staphylococcus aureus ATCC 31890, Staphylococcus epidermidis with a MIC value of 16–
32 mg/ml. With respect to Bacillus subtilis ATCC 6633, this effect was not observed.28  

S

N

O

S
O

17  

Fig.1. Structure of (5Z)-5-[(furan-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 17. 
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      In the work of Mendgen et al.29 the inhibitory activity of compounds 17 and 18 (Fig. 2) four different enzymatic targets 
was determined: the NS2B-NS3 protease of Dengue virus (serine protease), thrombin from bovine plasma (Thr), bacterial 
transferase (E. coli MurA), and a metalloprotease (E .coli MetAP). Considering the two serine proteases (NS2B-NS3 and 
thrombin) in the panel, the SAR of the aromatic FMMHs appears quite ′′flat”. The substituent at the α-carbon has only a 
minor influence on the activity. For the other two enzymes, the SAR landscape appears considerably more rugged, with the 
α-substituent having a pronounced influence on the activity. In the case of the bacterial transferase E. coli MurA, 
considerable activities and selectivitiescan be observed for derivatives of all types of heterocycles. 

S

N

O

S
O

S
N

O

S

O

17 18  

Fig. 2. Structure of (5Z)-5-[(furan-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 17 and (5Z)-5-[(2E)-3-(furan-
2-yl)prop-2-en-1-ylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 18. 

      The synthesis of hybrids of 4-aminoquinoline and rhodanine was reported by Chauhan et al.30 This work describes 
compounds of general formula 19 (Fig. 3). These compounds were tested for in vitro antimalarial activity against 
chloroquine-resistant (K1) and chloroquine-sensitive (3D7) strains of Plasmodium falciparum. Their cytotoxicity against 
the VERO cell line was also investigated. For the corresponding 5-furfurylidene derivative 20 (Fig. 3), the concentration 
inhibiting parasite growth by 50% was IC50 = 35.0 µM in the case of chloroquine-sensitive strains 3D7 and 151.4 µM in 
the case of chloroquine-resistant strains, which was slightly higher. Anti-tuberculosis activity has also been investigated for 
this compound. However, the anti-tuberculosis effect was significantly lower than in the case of Isoniazid and rifampicin. 
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Fig. 3. Structure of (5Z)-3-{4-[(7-chloroquinolin-4-yl)amino]alkyl}-5-(2-furylmethylene)-2-thioxo-1,3-thiazolidin-4-one 
19 and (5Z)-3-{4-[(7-chloroquinolin-4-yl)amino]butyl}-5-(2-furylmethylene)-2-thioxo-1,3-thiazolidin-4-one 20. 

      The interaction of furan-2-carbaldehyde 21 with (4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)alkancarboxylic acid 22 
yielded a series of furfurylidene derivatives 23 (Scheme 5). They have antimicrobial31 and antidiabetic32, 33 properties. 

  

Scheme 5. Synthesis of 3-{(5Z)-5-[(furan-2-yl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl} alkancarboxylic 
acid. 
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      Similar products 25 were obtained using furan-2-carbaldehyde 21 and 2-sulfanylidene-3-[2-(1H-tetrazol-5-yl)ethyl]-
1,3-thiazolidin-4-one with tetrazole bioisosteric carboxylic group 24 (Scheme 6).31 The resulting compound 25 showed 
antimicrobial properties.  
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Scheme 6. The reaction of 2-sulfanylidene-3-[2-(1H-tetrazol-5-yl)ethyl]-1,3-thiazolidin-4-one 24 with furan-2-
carbaldehyde 21. 

      Kumar et al. reported that acid 26 (Fig. 4) was investigated for their in vitro glucose uptake activity using rat-
hemidiaphragm, both in presence and absence of insulin.32 For it, the glucose uptake value was 9.04 ± 0.93 mg/g/45 min in 
the absence of insulin and 26.16 ± 1.18 mg/g/45 min in its presence. A comparative analysis of molecular similarity indices 
was also carried out for this compound and a number of similar ones.  
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Fig. 4. Structure of 2-[(5Z)-5-(2-furylmethylene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-3-phenylpropanoic acid 26. 

      Liang et al.31 designed inhibitors of the Pseudomonas aeruginosa heme oxygenase (pa-HemO) based on 3-(4-oxo-2-
thioxothiazolidin-3-yl)propanoic acid. 3-{(5Z)-5-[(furan-2-yl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-
yl}propanoic acid 27 (Fig. 5) was found to exhibit insignificant activity with Ligand Grid Free Energy LGFE = 22.7 and 
Ligand Efficiency LE = 1.26. For this compound, the KD value calculated from three independent experiments was 38 ± 
10mM.  

 

Fig. 5. Structure of 3-{(5Z)-5-[(furan-2-yl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl}propanoic acid 27. 

2.3 Biological activity of 5\4-arylfurfurylidenerhodanines 

Among the derivatives of 5-furfurylidenerhodanine, the most studied are compounds containing an aryl substituent in the 
5-th position of the 5\4-arylfuran cycle 28 (Fig. 6).  
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Fig. 6. Structure of (5Z)-3-R1-5-[(5-arylfuran-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 28. 

     Vance et al. reported that a series of covalent antimicrobial inhibitors 29 and 30 (Fig. 7) targeting glutamate-racemase 
was identified using virtual screening.34 Compounds from this series of inhibitors have antimicrobial activity compatible 
with β-lactam antibiotics, with significant activity against methicillin-resistant strains of S. aureus. These studies provide a 
platform for the development of antimicrobial agents with a novel mechanism of action against targets involved in bacterial 
cell wall biosynthesis. The results of these studies correlate with the data of work35 regarding the antimicrobial activity of 
5-isostructural arylfuryl isoxazoles.  
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Fig. 7. Structure of (5Z)-5-[(5-arylfuran-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 29 and (5Z)-5-[(4-
phenylfuran-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one 30. 

      Similarly, by the interaction of 5-arylfuran-2-carbaldehydes 31 with rhodanine acetic acid, both under classical 
conditions and upon microwave activation, derivatives of {(5Z)-4-oxo-5-[(5-arylfuran-2-yl)methylidene]-2-sulfanylidene-
1,3-thiazolidin-3-yl}alkancarboxylic acid 32 were obtained (Scheme 7). They are Anthrax Lethal Factor Protease 
inhibitors,36 signal-regulating kinase inhibitors,37 tyrosinephosphatase inhibitors and have antitumor38,39  and antibacterial40-

42 properties. Also, authors proposed the use of such compounds in the treatment of Alzheimer's disease.43 
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Scheme 7. The reaction of 5-arylfuran-2-carbaldehydes 31 with (4-oxo-2-sulfanylidene-1,3-thiazolidin-3-
yl)alkancarboxylic acid 22. 
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      In particular, in the already mentioned work of Liang et al.,31 the inhibitory ability of Pseudomonas aeruginosa heme 
oxygenase (pa-HemO) was also studied for compounds of general formula 33 (Fig. 8). It has been found that the introduction 
of an aryl substituent increases the activity. The best activity was observed for derivative 34 with a hydroxyl group in the 
aryl fragment (Fig. 8). 

 

Fig. 8. Structure of 3-{(5Z)-4-oxo-5-[(5-aryl-2-furyl)methylene]-2-thioxo-1,3-thiazolidin-3-yl}propanoic acids 33 and 3-
((5Z)-5-{[5-(3-hydroxyphenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)propanoic acid 34. 

     A combination of enzyme kinetics studies, mass spectrometry data, and surface plasmon resonance experiments made it 
possible to establish the mechanism of ligand-target interaction. One of its manifestations is the nucleophilic 1,4-addition 
of the mercapto group of glutamate-racemase cysteine at the double bond in the 5-th position of rhodanine 35-37 (Scheme 
8). 

 

Scheme 8. The interaction of the mercapto group of glutamate-racemase cysteine and 5-arylfurfurylidenerhodanines.  

      In the studies of Rajamaki et al.,44 among 5-arylfurfurylidenerhodanines, a new class of HIV-1 IN inhibitors was 
identified that can affect the formation of the IN viral DNA complex with the ligand. The most active were compounds 38 
and 39 (Fig. 9), which are considered as prototypes for further optimization. 
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Fig. 9. Structure of 2-hydroxy-4-{5-[(Z)-(4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-2-furyl}benzoic acid 38 and 
3,4-dihydroxy-5-{5-[(Z)-(4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-2-furyl}benzoic acid 39. 
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      On this topic, a new class of 2-thioxothiazolidin-4-ones has also been reported as potent inhibitors of lymphoid specific 
tyrosine phosphatase (Lyp).45 This fact was established using high-throughput screenings. Chemical modification by 
incorporating known phosphotyrosine mimics (pTyr) led to the discovery of salicylate-based 40 (Fig. 10) inhibitors with 
submicromolar action . 

 

Fig. 10. Structure of 2-hydroxy-4-(5-{(Z)-[3-(2-alcoxy-2-oxoethyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene]methyl}-2-
furyl)benzoic acid 40. 

      A series of compounds that effectively inhibit anthrax lethal factor (LF) metallo-protease with micromolar and 
submicromolar activity is described by Johnson et al.46 The best activity was shown by compound 41 (Fig. 11) with an IC50 
value of 0.19 mM.  

 

Fig. 11. Structure of [(5Z)-5-({5-[2-chloro-5-(trifluoromethyl)phenyl]-2-furyl}methylene)-4-oxo-2-thioxo-1,3-thiazolidin-
3-yl]acetic acid 41. 

      Volynets et al.37 reported on a new class of ASK1 inhibitors, namely 5-(5-aryl-furan-2-ylmethylene)-2-
thioxothiazolidin-4-one-3-alkylcarboxylic acids, which was identified using a virtual screening and biochemical tests. 
Increased activity of apoptosis signal regulating kinase 1 (ASK1) is associated with a number of diseases, and ASK1 
inhibitors may become important compounds for pharmaceutical use. It was found that the most active compounds 4-((5Z)-
5-{[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo1,3-thiazolidin-3-yl)butanoic acid 42 and 6-((5Z)-5-{[5-(4-
bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)hexanoic acid 43 (Fig. 12) inhibit ASK1 from IC50 
0.2 mM.  

 

Fig. 12. Structure of 4-((5Z)-5-{[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo1,3-thiazolidin-3-yl)butanoic acid 
42 and 6-((5Z)-5-{[5-(4-bromophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)hexanoic acid 43. 

 

Fig. 13. Structure of {(5Z)-4-oxo-5-[(5-phenylfuran-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-3-yl}acetic acid 
44. 



Y. Matiichuk et al.  / Current Chemistry Letters 13 (2024) 295

{(5Z)-4-oxo-5-[(5-phenylfuran-2-yl)methylidene]-2-sulfanylidene-1,3-thiazolidin-3-yl}acetic acid 4443 (Fig. 13) was 
considered as a promising tool for imaging neurofibrillary tangles (NFTs) in the diagnosis of Alzheimer's disease. However, 
it has been found to exhibit significantly lower activity than other 5-heterylidene rhodanines.  

      In the work of Jian Che et al.40 two series of arylfuran derivatives 45 and 46 (Fig. 14) containing a rhodanine fragment 
were synthesized and their antibacterial activity was studied. Most of these compounds have shown high inhibitory activity 
against various Gram-positive bacteria, including multidrug-resistant strains with minimum inhibitory concentration (MIC) 
values ranging from 2–16 µg/ml. In particular, the compound with R = 2,5-Cl2 turned out to be the most potent inhibitor of 
the synthesized compounds against multidrug-resistant strains, with an MIC value of 2 or 4 µg/ml. None of the tested 
compounds showed activity against the gram-negative bacteria Escherichia coli 1356 at 64 mg/ml. The study of the 
cytotoxicity of these compounds showed that they show a low level of toxicity against HeLa cells.40 
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Fig. 14. Structure of {(5Z)-4-oxo-5-[(5-aryl-2-furyl)methylene]-2-thioxo-1,3-thiazolidin-3-yl} alkancarboxylic acids 45, 
46. 

The series (S,Z)-4-methyl-2-(4-oxo-5-((5-arylfuran-2-yl)methylene)-2-thioxothiazolidin-3-yl)pentanoic acid 47a-h (Fig. 
15) was synthesized using the Knowevagel reaction.42 For them, in vitro antibacterial activity was studied. This test showed 
that all synthesized compounds have good antibacterial activity against Gram-positive bacteria (including multidrug-
resistant clinical isolates) with minimum inhibitory concentrations (MICs) in the range of 2-4 µg/mL. Especially compounds 
47c, 47d, 47e and 47f were the most potent, with MIC values of 2 μg/ml against four Gram-positive bacterial strains. 
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Fig. 15. Structure of (S,Z)-4-methyl-2-(4-oxo-5-((5-arylfuran-2-yl)methylene)-2-thioxothiazolidin-3-yl)pentanoic acids 
47a-h. 
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     The antitumor properties of 2-((5Z)-5-{[5-(4-chlorophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)-N-
R-acetamide 48 were studied by Chandrappa et al.38, 39 They were synthesized by the condensation of various amines, both 
aliphatic and aromatic or heterocyclic in nature, with ((5Z)-5-{[5-(4-chlorophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-
thiazolidin-3-yl)acetic acid 49 (Scheme 9). The authors of these works argue that these compounds may be candidates for 
antitumor therapy with the ability to inhibit tumor angiogenesis and tumor cell proliferation. 

 

Scheme 9. Synthesis of 2-((5Z)-5-{[5-(4-chlorophenyl)-2-furyl]methylene}-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)-N-R-
acetamide 48. 

      In work47 was described the design and synthesis of a series of (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-
N-phenylacetamide derivatives (Fig. 16) and evaluation of their microtubule-modulating and anticancer activities in vitro. 
Proliferation assays identified the potent of the antiproliferative compounds, with 50% inhibitory concentrations ranging 
from 7.0 to 20.3 µM with A549, PC-3, and HepG2 human cancer cell lines. 

 

Fig. 16. Structure of 2-[(5Z)-5-(2-furylmethylene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-N-phenylacetamide 50. 

     It should be noted that structurally related 2-indolinone derivatives demonstrated a similar profile of anticancer activity.48  

      Using phqarmacological screening Suree et al., it was possible to identify compounds 51 (Fig. 17) that inhibit the 
enzymatic activity of the S.aureus SrtA sortase.49 Compounds that inhibit SrtA may function as potent anti-infective agents, 
as this enzyme is responsible for cell wall virulence factors. 

 

Fig. 17. Structure of (5Z)-3-R1-5-[(5-aryl-2-furyl)methylene]-2-thioxo-1,3-thiazolidin-4-ones 51. 

 

Scheme 10. Synthesis of 4-(5-{(Z)-[4-oxo-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl}-2-furyl)benzoic 
acid 54. 
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      In study50 potential fusion intermediates inhibitors based on the rhodanine structure were synthetized. The obtained 
derivatives were tested for cytotoxicity and for antiviral activity in human cells infected with HHV6. Among the synthetized 
derivatives, compound 54 (Scheme 10) showed a significative inhibitory effect on viral replication that lasted over 7 days, 
probably attributable to the particular combination of hydrophilic and hydrophobic substituents to the rhodanine moiety. 

      A series of 5-(5-{(Z)-[4-oxo-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl}-2-furyl)benzoic/nicotinic 
acids 55 (Fig. 18) was investigated for anti-HIV-1 activity and cytotoxicity on MT-2 cells.51 All of them were found to have 
high anti-HIV-1 activity, and some of them showed inhibitory activity against HIV-1IIIB and 94UG103 replication in the 
<100 nM range, suggesting that these compounds may serve for the development of new HIV fusion inhibitors with small 
molecules.  
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Fig. 18. Structure of 5-(5-{(Z)-[4-oxo-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl}-2-
furyl)benzoic/nicotinic acids 55. 

      The work of Jiang et al.52 reported the synthesis of (5Z)-5-[(5-aryl-2-furyl)methylene]-2-thioxo-3-[3-
(trifluoromethyl)phenyl]-1,3-thiazolidin-4-ones 56 (Fig. 19). The presented compounds effectively inhibited HIV infection 
against both laboratory-adapted and primary HIV-1 strains and blocked HIV-1-mediated cell-cell fusion and gp41 six-helix 
bundle formation.  

 

Fig. 19. Structure of (5Z)-5-[(5-aryl-2-furyl)methylene]-2-thioxo-3-[3-(trifluoromethyl)phenyl]-1,3-thiazolidin-4-ones 56. 

      Villain-Guillot et al.53 studied the relationship between the structure and activity of a series of phenylfuranylrhodanines 
as antibacterial inhibitors of RNA polymerase. The molecules were evaluated for their ability to repress transcription and 
influence the growth of live bacteria in suspension or biofilm. Also, this paper presents the propensity of these compounds 
to interact with albumin, which is a critical parameter for the discovery of antibacterial drugs. The most active of these 
compounds of general formula 57 (Fig. 20) inhibited the transcription of Escherichia coli RNA polymerase at concentrations 
of 1-10 M and have a promising effect against various gram-positive pathogens, including Staphylococcus epidermidis 
biofilms, which are the main cause of nosocomial infection. 
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Fig. 20. Structure of 4-{5-[(Z)-(3-allyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-2-furyl}-2-R-benzoic acid 57. 

       Esterification of the carboxylic group in these compounds led to a complete loss of biological activity.54 A similar effect 
was observed in the case of compounds where the strategy of bioisosteric transformation of the carboxyl group was used 
(compounds  58 and 59 (Fig. 21)).53 
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Fig. 21. Structure of 4-{5-[(Z)-(3-allyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-2-furyl}phenyl hydrogen sulfate 
57 and 4-{5-[(Z)-(3-allyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-2-furyl}-N-hydroxybenzamide 58. 

       In their work on this topic, Song et al. synthesized a small library of compounds of this class.55 Also, the same authors 
investigated the antitumor activity of these compounds against breast cancer cells MCF-7, colon cancer HT-29 and Ramos 
Human Caucasian Burkitt’s Lymphoma cells. Compounds 59 and 60 (Fig. 22) were found to show low IC50 values for 
MCF-7 cells.  
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Fig. 22. Structure of 4-[5-((Z)-{3-[2-(3,4-dichlorophenyl)ethyl]-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene}methyl)-2-
furyl]-2-hydroxybenzoic acid 59 and (5Z)-3-(4-R-benzyl)-5-({5-[2-chloro-5-(trifluoromethyl)phenyl]-2-

furyl}methylene)-2-thioxo-1,3-thiazolidin-4-one 60. 

       Regulation of NF-jB activation by inhibition of IKKb has been identified as a promising target for the treatment of 
inflammatory and autoimmune diseases such.55 In order to develop new IKKb inhibitors, a high throughput screen of about 
8000 library compounds was carried out. During the research, compounds 61 and 62 (Fig. 23) were identified, which have 
a blocking effect on NF-jB activation and TNFa production in the cell, as well as inhibitory activity against IKKb. Among 
these compounds there are also derivatives of 5-furfurylidene rhodanine. 

  

Fig. 23. Structure of 3/4-{5-[(Z)-(3-{4-[4-(diethylamino)butoxy]phenyl}-4-oxo-2-thioxo-1,3-thiazolidin-5-
ylidene)methyl]-2-furyl}benzamide 61 and 3/4-{5-[(Z)-(3-{4-[4-(diethylamino)butoxy]phenyl}-4-oxo-2-thioxo-1,3-

thiazolidin-5-ylidene)methyl]-2-furyl}benzamide 62. 
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       N-ribosylation and N-mannosylation compounds have a great role in compounds activity as anticancer. The reaction of 
2-thioxo-4-thiazolidinone (rhodanine) derivatives, as aglycon part, was done with ribofuranose and mannopyranose sugars 
(glycone part) followed by deacetylation without cleavage of the rhodanine under acidic medium. All final the new 
deprotected nucleoside 67 (Scheme 11) was screened against leukemia 1210, and was found to be considerably less potent 
(IC50% 6.3 μM) than doxorubicin (IC50% 0.02 μM). Thiophene bioisoster  has better activity (IC50% 1.6 μM).5 
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Scheme 11. Synthesis of 5-((Z)-2-furylidene)-3-(β-D-ribofuranosyl)-2-thioxo-4-thiazolidinone 67. 

      Summarizing the above, in addition to the wide spectrum of biological activity of rhodanine-furan conjugates, it should 
be noted that many bioisosteric structures are known for both the rhodanine and furan cycles, which expands the prospects 
for using this class of conjugates in drug design.57,58 As a rule, good pharmacokinetic parameters are predicted for this class 
of compounds.59 

3. Conclusions  
 
      Rhodanine and furan are an important class of organic compounds for drug development; they constitute an essential 
class of lead compounds to develop new pharmaсevtical substances for treatment various disease with such a diverse range 
of biological activities, they have attracted much attention from researchers focusing on synthesizing different to developing 
novel and more potent drugs. Chemically, rhodanine can be easily synthesized from the commercially available furan 
precursor. It allows to quickly create a variety of combinatorial libraries of this type of compounds. This information in our 
review will guide medical scientists to purposefully influence the design of new organic compounds for the treatment of 
various diseases.  
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