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 The classic ARIMA models use the information criteria for lag selection since 1990s. The 
information criteria are based on the summation of two expressions: a function of Residual Sum 
of Squares (RSS) and a penalty for decrease of degrees of freedom. However, the information 
criteria have some disadvantages since these two expressions do not have the same scale, so the 
information criteria are mainly based on the first expression (because of its bigger scale). In this 
paper, we propose a hybrid ARIMA model, which uses the Data Envelopment Analysis (DEA) 
model to select the best lags of AR and MA process called DEA-ARIMA. DEA is a linear 
programming technique, which computes a comparative ratio of multiple outputs to multiple 
inputs for each Decision Making Unit (DMU), which is reported as the relative efficiency score. 
We identify inputs as the number of AR and MA terms and outputs of the model are inverse of 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). In fact, in our 
proposed model, inputs consider as resources, so we are looking for some models with fewer 
resources and high efficiency. The DEA unlike the information criteria may have more than one 
solution and all of them are efficient so to compare this two models selection the mean of best 
DMUs is calculated. Experimental results demonstrate DEA-ARIMA will not trap in over 
fitting problem in contrast to classic ARIMA models because of considering a set of efficient 
ARIMA models.         
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1. Introduction 

In univariate time series models attempt to predict economic and financial variables is based on its 
past values including random error terms. The ARIMA model is one of the most popular models for 
time series forecasting. This model has been originated from the autoregressive model (AR) proposed 
by Yule, 1927, the moving average model (MA) invented by Walker, 1931 and the combinations of 
the AR and MA. The ARMA model can be used when the time series is stationary, but the ARIMA 
model does not have that limitation. 
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In recent years, hybrid forecasting models have been proposed applying an ARIMA model as one 
element of their model such as ARIMA and artificial neural networks (ANN) (Asadi et al., 2012), 
ARIMA and probabilistic neural network (PNN), ARIMA and Particle swarm optimization 
(PSO)(Wang & Zhao (2009), ARIMA and Genetic Algorithm (GA) (Salcedo-Sanz et al., 2002). We 
believe one of the most major weaknesses of ARIMA model is that it uses information criteria to 
select the best lags of AR and MA process. Information criteria are based on the summation of two 
expressions: The first expression is a function of Residual Sum of Squares (RSS) and the other 
expression considers the loss of decrease of degree of freedom for entering additional lags of AR and 
MA. However, it seems, by adding these two expressions, which have different scales, it does not  
make an appropriate criterion to select the best ARIMA model. 
 
In this paper, we propose a hybrid ARIMA model, which uses the Data Environment Analysis (DEA) 
to select the best lags of AR and MA process. DEA is a linear programming technique, which 
computes a comparative ratio of multiple outputs to multiple inputs for each Decision Making Unit 
(DMU), which is reported as the relative efficiency score. The efficiency score is usually expressed as 
a number between 0% and 100%. A DMU with a score less than 100% is deemed inefficient relative 
to others (Avkiran, 2006). In this case, DMUs are different ARIMA models with the number of AR 
and MA lags as inputs and inverse of Mean Squared Error (MSE) and Root Mean Squared Error 
(RMSE) as outputs. 
 
2. Related Work 
 
ARIMA, if well-defined, can eliminate the auto correlation and partial correlation of residual. Thus, 
many researchers use this model as a part of their prediction proposed model. Khashei et al. (2012) 
use a hybrid model of ARIMA and PNN in order to yield more accurate results than traditional 
ARIMA models. Many researchers have implemented to identify the best order of ARIMA model. 
Valenzuela et al. (2008) propose the use of fuzzy rules to elicit the order of the ARIMA model, 
without the intervention of a human expert. In this area, the main tool that used for selection of order 
the ARIMA model is GA, which can be used for feature selection in other models. Salcedo-Sanz et 
al. (2002) present a GA for feature selection. They propose a genetic operator, which fixes the 
number of selected features. Minerva and Poli (2001) propose an automatic approach to the model 
selection problem, based upon evolutionary computation. They use genetic algorithm to choose both 
the orders and the predictors of the model. Many researchers such as Wang and Zhao (2009) and 
Asadi et al. (2011) present an ARIMA model, which uses PSO algorithm for model estimation.  
 
In selection of the best order of ARIMA model, the key performance measure is AIC or its various 
modifications/extensions, including BIC procedures. Spanos (2010) argues that these model selection 
procedures invariably give rise to unreliable inferences, primarily because their choice within a pre-
specified family of models. This paper replaces trading goodness of fit against parsimony with 
statistical adequacy as the sole criterion for when a fitted model accounts for the regularities in the 
data. AIC not only applies on ARIMA model but also applies to the other forecasting models. Zhao 
(2008) proposes an ensemble neural network algorithm based on the AIC. At first, the AIC-based 
ensemble neural network searches the optimum weight configuration of each component network 
first, then it uses the AIC as an automating tool to find the best combination weights of the ensemble 
neural network. 
 
3. Methodology 
 
3.1 ARIMA model 
 
In the traditional time series models, the future values of a variable are a linear function of its past 
values including random error terms. This model can be expressed as follows 
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where ty represents the measurement at time t in the time series; )q,...,2,1j(;u jt  represents the effects 

of random factors that are independently and identically distributed (i.i.d.) with a mean of zero and a 
constant variance of 2

t . Model (1) called ARMA(p,q) that if ty did not stationary, with determined to 
make stationary series, we achieve the ARIMA(p,d,q) model. The model (1) can be rewritten as 
follows: 
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where L is lag operator; i
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  are the polynomials in L of degrees p and 

q respectively. )L1(  is also the first differential of time series, therefore d means the d times 
difference to make stationary series. Parameters estimation of ARIMA model can be implemented by 
Box and Jenkins (1976) approach that has three stages: identification, estimation and diagnostic 
checking. Identification can be held by minimizing the information criteria. Information criteria are 
composed by two terms: a function of residual sum of square and a penalty for the loss of degree of 
freedom. The most information criteria that is recommended (Shibata, 1976), is Akaike’s information 
criterion (AIC) that is given by following 
 

k2)ln(2AIC   , (3)

where  and k are the maximum likelihood estimator (MLE) and the number of unknown parameters 
of model 1, respectively. In the special case of least squares (LS) estimation with normally distributed 
errors, AIC can be expressed as 
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where ),...,2,1(;ˆ Ttt  are the estimated residuals from the fitted model (Burnham & Anderson, 2004). 
However, for small samples, AIC often leads to over fitting. Therefore, attempts to deal with this 
problem gave rise to some modifications of the AIC, including Schwartz Bayesian Information 
Criterion (SBIC) and Hannan-Quinn Information Criterion (HQIC) as follows. 
 

)Tln(k)ˆlog(TSBIC 2   , (6)

2 ln( ) 2 ln(ln( )).HQIC k T    (7)

3.2.Data envelopment analysis 
 
DEA is a methodology for evaluating the relative efficiencies of decision-making units (DMUs) 
within a relatively homogenous set (e.g. Sun & Lu, 2005). In fact, DEA provides a comprehensive 
analysis of relative efficiencies for inputs ( m,...,2,1i  ) and outputs ( t,...,2,1r  ) situations by 
evaluating each DMU and measuring its performance relative to an envelopment surface composed of 
other DMUs ( n,...,2,1j  ). 
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In the basic DEA model that introduced by Charnes, Cooper and Rhodes (CCR) (1978), the objective 
is to maximize the efficiency value of a test DMU ( 0j ) subject to maximum efficiencies of all the 
DMUs are constrained to 1. In this model, decision variables are associated weights of input and 
output measures. CCR mode is shown as follows. 
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where 

0j
Z is the efficiency score of )t,...,2,1r(Y;DMU

00 rjj  and )m,...,2,1i(X
0ij  are the values of outputs 

and inputs for
0j

DMU respectively; 
0rju and

0ijv are the weight assigned to 
0j

DMU for outputs and inputs 

respectively. This non-linear programming is the equivalent to the linear programming problem 
represented by following optimization model 
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The transformation is completed by constraining the efficiency ratio denominator from Eq. (8) to a 

value of 1, represented by the constraint 1Xv
m

1i ijij 00
 

. The result of the model Eq. (9) is an optimal 

simple efficiency *
j0

Z that is at most equal to 1. If 1Z*
j0
 , it means 

0j
DMU lie on the optimal frontier and 

then no other DMU is more efficient than 
0j

DMU for its selected weights determined by Eq. (9). If  

1Z*
j0
 , there is at least one other DMU that is more efficient than 

0j
DMU for the optimal set of 

weights. This process must perform n times for each DMU. However, this model has 1n 
constrained, which is hard to solve. Therefore, we use the dual of the model (9) that represented by 
model (10) as follows, 
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where E and )n,...,2,1j(j   are secondary variables of equality constraint and inequalities constraints 

of model (9), respectively. The CCR model has an assumption of constant returns to scale (CRS) for 
the inputs and outputs. In CRS conception, the output changes proportionally to input. In CRS model, 
if a DMU determines as an efficient unit, it is a scale efficient DMU. However, with variable returns 
to scale (VRS), a change in the input leads to a disproportional change in the output. To take into 
consideration variable returns to scale, a model introduced by Banker, Charnes and Cooper (BCC) 
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(1984) is utilized. The BCC model aids in determining the technical efficiency of a set of DMUs. 
This model has an additional convexity constraint is given by: 

 


n

1j j 1  (11)

The use of the CCR and BCC models together helps determine the overall technical and scale 
efficiencies of the DMU and whether the data exhibits varying returns to scale (Sarkis, 2000). 

 
3.3 Proposed models 
 
The classic ARIMA model selects the best lags of AR and MA process by minimizing the 
information criteria. As we said, when the data is small, AIC can be used. In Eq. 4, we mention AIC 
is based on the summation of two expressions: The first expression is a function of Residual Sum of 
Squares ( )ˆlog(T 2 ) and the second expression (2k) considers the loss of decrease of degree of 
freedom for entering additional lags of AR and MA. But we think the summation of these two 
expressions, which have different scales, cannot be an appropriate criterion to select the best ARIMA 
model. 
 
Therefore, we propose a hybrid ARIMA model, which uses the DEA model to select the best lags of 
AR and MA process. Our model consists of two stages: 
 
In the first stage, we use AR and MA term from 1 to 5. Thus, we can constitute the reference set 

)}5(MA,...),2(MA),1(MA),5(AR,...),2(AR),1(AR{W  which any of them can (be a potential ARIMA 

model) participate in ARIMA model. So we have 102  different models. For each of these models, we 
calculate the Akaike’s information criteria, Root Mean Square Error (RMSE) and Mean Absolute 
Percent Error (MAPE). 
 
In the second stage, we use DEA approach to identify the best model. The inputs of the DEA are the 
number of AR and MA terms. For example, if ARIMA model is constructed by AR(3), AR(5) and 
MA(4) then the input vector is [2 1]. The first element indicates that the number of AR terms is equal 
to 2 and the second element indicates that the number of MA term is equal to 1. To determine the 
output of DEA, we use two performance measure of each model.  These two different criteria are: 
RMSE and MAPE that is given by Eq. 12 and Eq. 13 respectively: 
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where iy is ith observation of response data and iŷ is the forecasted value of iy .N indicates the number 
of observations. In order to use RMSE and MAPE in DEA output, we inverse these performance 
indicators to obtain the efficiency of the model. Thus, the output of DEA is given by: 

1024,...,2,1j
RMSE

1
output

j
j,1   (14)

1024,...,2,1j
MAPE

1
output

j
j,2   (15)

where j indicates the jth DMU in iteration.In each iterations the outputs are scaled between 0 and 1 by 
Eq. 16 to Eq. 18 
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2,1i)output,...,output,outputmin(Min 1024,i2,i1,iOutputs  (16) 

2,1i)output,...,output,outputmax(Max 1024,i2,i1,iOutputs  (17) 
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
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where j indicates the jth DMU in iteration and i indicates the ith outputs. In the first iteration, DEA 
determines some of the potential ARIMA models as efficient (efficiency is equal to 1) and some of 
them as inefficient. Therefore, after each iteration we remove DMUs that their efficiency is less than 
one. When the number of efficient DMUs is equal in two successive iterations, the process will be 
stopped. At the final iteration, we maybe have more than one DMU that their efficiencies are equal to 
one. We show that the average of these solutions has the higher performance than conventional 
method. This method is shown on Fig. 1. 

 
Fig. 1. The proposed model 

The conventional method is based on the model that has minimum Akaike’s information criteria. This 
method is shown on Fig. 2. 

 
Fig. 2. The conventional method based on AIC, SBIC and HQIC 

 

start

For each subset  of the reference set
W={AR(1), AR(2), ... , AR(5), MA(1), MA(2), … , MA(5)}

Estimate ARIMA model

end

AIC,SBIC and HQIC

Find Model that has minimum 
AIC,SBIC and HQIC
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4. Data Sources 
 
For evaluation of our proposed model, we use two dataset: the exchange rate of US Dollar to Euro 
(USD2EUR) obtained from http://www.oanda.com and Brent Oil Price (BP) taken from 
http://www1.investis.com. We divide the data to two sections for training and testing. Each dataset 
covers 31 daily observations for training (81%) and 7 daily observations for testing (19%) that are 
given by table 1 and Fig.3: 
 
Table 1  
The date for training and testing of two dataset 

dataset Train Test 
USD2EUR 28-Apr-12– 28-May-12 29-May-12– 04-Jun-12 

BP 09-Apr-12– 21-May-12 22-May-12– 30-May-12 
 

 

(a) 
 

(b) 

Fig. 3. (a) The pattern of Brent oil price and (b) USD2EUR exchange rate 
 
5. Empirical Results 
 
5.1 Unit Root Test 
 
In general, since many economic time series have non-stationary characteristics, the variables must be 
tested for stationary process. Therefore, in order to avoid the incorrect conclusions, the Augmented 
Dickey-Fuller (ADF) test proposed by Dickey and Fuller (1981), whose null hypothesis is that there 
is a unit root, is adopted. Table 1 shows results of unit root tests for four variables. The results 
indicate that the series are non-stationary when the variables are defined in levels. By first-
differencing the series, in all cases, the null hypothesis of the non-stationary process is rejected at the 
1% significance level. 

 
Table 2  
Augmented Dickey-Fuller test results 

Variables Intercept Intercept and Trend 
(log)EUR2USD  -1.265645 -2.747497 
(log)EUR2USD  -16.49908*** -16.53787*** 

(log)BP  -2.474680 -2.152321 
(log)BP  -21.84100*** -22.02063*** 

Notes: (1)  means 1stdifference. (2) *, ** and *** refer to the rejection of the null hypothesis of the presence of a unit root at 10%, 5% and 1% levels, 
respectively. 
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In ARIMA model we use first difference of log(p) as the dependent variable, where p is the main 
series and after the estimation, we transform forecasted data to main series (p). 
 
5.2 The performance of proposed model 
 
In this section, we present the computational results of two dataset preformed to assess the behavior 
of the proposed model for lag selection problems. The maximum of AR and MA Term is 5 in this 
paper. With this configuration, we have 102 models to compare. The two performance measures are 
inverse of RMSE and MAPE.  
 
At the first, we perform our proposed model and classic ARIMA to USD2EUR dataset. In this case, 
the number of best DMUs in each iteration is presented in table 3. As you see, we have 8 efficient 
models in the 3rd iteration. 

 
Table 3 
The number of best DMUs in each iteration (USD2EUR) 
Iteration 1 2 3 
Number of Best DMUs 11 8 8 

 
Now we estimate 8 ARIMA models (best DMUs) which are obtained after 4 iterations and 3 ARIMA 
models by minimizing AIC, SBIC and HQIC. As estimating 3 ARIMA models by minimizing AIC, 
SBIC and HQIC lead to the same model (AR(2) AR(4) AR(5)MA(3)MA(4)), we report this models 
as classic ARIMA.AR and MA lags of the best DMUs and classic ARIMA in train and test data are 
represented in table 4. As you see, the classic ARIMA has the minimum RMSE and MAPE in 
compare with each of the best DMUs in the train data, but it has the worth result in the test data 
which it is as result of over fitting problem in classic ARIMA. 
 
Table 4  
The performance of the DEA-ARIMA and classic ARIMA (USD2EUR) 

Model DMU AR and MA term 
Train Test (average) 

RMSE MAPE RMSE MAPE 

ARIMA 
(DEA) 

1 MA(4) 0.0018 0.1845 0.0032 0.3249 
2 MA(1) MA(4) 0.0018 0.1778 0.0029 0.2717 
3 AR(5) MA(1) MA(2) MA(3) MA(4) MA(5) 0.0009 0.0933 0.0140 1.3177 
4 AR(4) 0.0020 0.1896 0.0028 0.2959 
5 AR(3) AR(4) AR(5) 0.0019 0.1800 0.0029 0.3001 
6 AR(2) AR(4) AR(5) MA(3) MA(4) 0.0005 0.0493 0.0103 0.8528 
7 AR(2) AR(3) AR(4) AR(5) 0.0019 0.1862 0.0031 0.3343 
8 AR(1) AR(2) AR(3) AR(4) AR(5) MA(4) MA(5 0.0005 0.0500 0.0107 0.8736 

Classic ARIMA AR(2) AR(4) AR(5) MA(3) MA(4) 0.0005 0.0493 0.0103 0.8528 
 
According to previous section, we present the result of DEA-ARIMA and classic ARIMA for Berent 
oil price. 
  
Table 5  
The number of best DMUs in each iteration (Brent oil price) 
Iteration 1 2 3 
Number of Best DMUs 10 8 8 
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Table 6  
The best DMUs obtained by the proposed model (Brent oil price) 

Model DMU AR and MA term 
Train Test (average) 

RMSE MAPE RMSE MAPE 

ARIM
A 

(DEA) 

1 MA(1) MA(2) MA(3) MA(5) 0.9362 0.5863 1.0729 0.7678 
2 AR(2) 1.3231 0.9122 1.1527 0.7637 
3 AR(2) AR(5) 1.3156 0.8794 1.3384 0.7911 
4 AR(2) AR(3) 1.3114 0.8919 1.2169 0.7941 
5 AR(2) AR(3) AR(5) 1.3089 0.8712 1.3668 0.8526 
6 AR(2) AR(3) AR(4) AR(5) MA(3) MA(4) MA(5) 0.4105 0.2766 3.5200 2.2316 
7 AR(1) AR(2) AR(3) AR(5) MA(3) MA(5) 0.4693 0.3313 2.9156 1.7902 
8 AR(1) AR(2) AR(3) AR(4) AR(5) MA(3) MA(5) 0.4687 0.3269 2.7816 1.7419 

Classic ARIMA AR(2) AR(3) AR(5) MA(3) MA(4) MA(5) 0.4138 0.2868 2.4961 1.7104 

 
Table 7 summarizes the improvement results of our proposed model. As you see, in the both of 
datasets, the classic ARIMA has a good performance in the train data, but DEA-ARIMA has an 
excellent performance in the test data. 
  
Table 7  
The performance of the proposed model and classic ARIMA 

Data Model 
Train Test 

RMSE MAPE RMSE MAPE 

USD2EUR 
Classic ARIMA 0.0005 0.0493 0.0103 0.8528 
DEA- ARIMA (average of the best DMUs) 0.0012 0.1233 0.0045 0.3828 

BP 
Classic ARIMA 0.4138 0.2868 2.4961 1.7104 
DEA- ARIMA (average of the best DMUs) 0.8181 0.5231 0.9281 0.6937 

 
Fig. 4 compares the results of real values of both variables with their estimated values when applying 
the Classic-ARIMA and DEA-ARIMA methods. 

(a) (b) 

Fig. 4. Forecasted and Test data for (a) Brent oil and (b) USD2EUR 
 
6. Conclusion and future works 
 
In this paper, we propose a new effective approach for lags selection in ARIMA models using by 
DEA approach. DEA obtains DMUs with high efficiency and lower resources. The number of AR 
and MA terms is as input set and inverse of RMSE and MAPE are the output set. Increasing of inputs 
can role as loss of decrease of degree of freedom. Our results demonstrate DEA-ARIMA, because of 
considering a set of efficient ARIMA models, will not trap in overfitting problem in contrast to 
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classic ARIMA. In addition, this research also provides a new direction in the model selection area 
and the new application of DEA technique. 
 
Our future works include: 1) Apply DAE approach to other forecasting methods like Neural Network. 
2) Use other criteria like the importance variable in input. 3) Use other criteria like the hit rate 
(identify the direction of movement) as output. 4) Use efficient ensemble method to obtain a 
weighted predictor from the best DMUs. 
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