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 The ranking of decision-making units (DMUs) is one of the main issues in data envelopment 
analysis (DEA). Hence, many different ranking models have been proposed. However, each of 
these ranking models may produce different ranking results for similar problems. Therefore, it is 
wise to try different ranking models and aggregate the results of each ranking model that provides 
more reliable results in solving the ranking problems. In this paper, a novel ranking method 
(Aggregating the results of aggressive and benevolent models) based on the CRITIC method is 
proposed. To prove the applicability of the proposed ranking method, it is examined in three 
numerical examples, six nursing homes, fourteen international passenger airlines and seven 
biomass materials for processing into fuel briquettes. First, benevolent and aggressive models 
were used to calculate the efficiency rating for each DMU.  As a result, the decision matrix was 
generated. In the decision matrix, the results of benevolent and aggressive models were viewed 
as criteria and DMUs were viewed as alternatives. Then, the weights of each criterion were 
generated by the CRITIC method. Finally, each DMU was ranked. In a comparative analysis, the 
proposed method can lead to achieving a more reliable decision than the method which is based 
on a stand-alone method. 
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1. Introduction 

Thailand is one of the agricultural countries in Southeast Asia having a large amount of agricultural residues left over, at 
around 80 million tons per year, such as coconut shells, sugarcane bagasse, cassava rhizomes, coconut husks, sawdust, rice 
husks, coffee husks and soda weed (Promdee et al., 2017).  These biodegradable wastes can be processed into a massive 
amount of energy and raw materials. Moreover, biomass energy is an environmentally friendly energy resource, and it can 
be processed directly into fuel briquettes for cooking. Thus, the idea of using the agricultural wastes for processing into fuel 
briquettes is one of most attractive way to solve the country's energy shortage. However, the decision-making process for 
selecting suitable biomass materials from agricultural wastes for processing into fuel briquettes is a complicated problem, 
because of the multiple conflicting criteria/properties in the decision-making process, which is hard to implement because 
there are multiple properties to consider simultaneously. This is a multiple attribute decision-making problem (MADM 
problem) in which each material must be measured and ranked for the most effective resource utilization.  Data Envelopment 
Analysis (DEA) is a mathematical programming model (non-parametric approach) for measuring a group of relative 
efficiency scores of Decision Making Units (DMUs) with multiple inputs and outputs (Hosseinzadeh Lotfi et al., 2013; 
Omid & Zegordi, 2015; Wichapa & Khokhajaikiat, 2019). The DEA approach was described by Farrel (1957), but a 
mathematical model for measuring relative efficiency was originally developed by Charnes, Cooper and Rhodes (1979) and 
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other forms of DEA models have been improved by other researchers (Banker, Charnes, & Cooper, 1984; Cooper, Seiford, 
& Tone, 2007). The main objective of DEA is to generate the optimal weights for each DMU to maximize the ratio of the 
sum of weighted outputs to the sum of weighted inputs, in order to evaluate the efficiency scores of each DMU for 
identifying the DMUs as being efficient or inefficient (Lu & Liu, 2016; J. Wu, Chu, Sun, Zhu, & Liang, 2016). Over the 
past four decades, DEA has been widely applied in various fields such as manufacturing, banking, hospitals and education 
(Kuah, Wong, & Behrouzi, 2010; Lesik et al., 2020; Liu, Lu, & Lu, 2016; Mardani, Zavadskas, Streimikiene, Jusoh, & 
Khoshnoudi, 2017), which has proven that DEA is a valuable and capable method for evaluating performance in various 
fields. However, one of the main drawbacks of DEA is that efficient DMUs cannot be ranked, because the efficiencies of 
each efficient DMU have the same value (Efficiency score =1), so other ranking methods should be considered in solving 
such problems.  To overcome the inability of DEA in ranking a set of efficient DMUs, many researchers (Andersen & 
Petersen, 1993; Cook, Roll, & Kazakov, 1990; Li & Reeves, 1999; Sueyoshi, 1999) have proposed various ranking methods. 
However, one of the most popular methodologies is the cross-efficiency evaluation method, first proposed by Sexton et al. 
(1986), which is an extension of DEA based on the cross efficiency concept. In an application of the cross-efficiency 
evaluation method, the efficiency scores of each DMU are evaluated through self-assessment and peer assessment, a set of 
weights for each DMU in the traditional DEA model determined, resulting in n weight sets. Then, each DMU is calculated 
using the n weight sets to obtain n efficiency values. The cross-efficiency score of each DMU is the average of the n 
efficiency values. Finally, all DMUs can be ranked by the average of cross-efficiency scores. However, there still exist 
some drawbacks in many cases, for example the drawback of this method is that the weights are not unique, which cannot 
clearly provide the results to help decision makers to improve their performance (Si & Ma, 2019; Wu, Sun, Zha, & Liang, 
2011). To solve the above problems, Sexton et al. (1986) recommended using a secondary-goal model in the Cross-
efficiency evaluation method. Inspired by this idea, Doyle and Green (1994) have proposed a secondary-goal model, 
aggressive (minimal) and benevolent (maximal) models, to deal with multiple DEA solutions. Based on the secondary-goal 
model, many researchers (Liang, Wu, Cook, & Zhu, 2008b; Wang & Chin, 2010b) offered secondary-goal models. There 
are often suggestions that we would like to rank all DMUs using aggressive (minimal) and benevolent (maximal) models. 
A question arises: which one is more appropriate? It is possible that the rankings of DMUs obtained by aggressive and 
benevolent models may not be the same. Each of the ranking models has different views which we would like not to ignore. 
Hence, it is wise to try different ranking models and aggregate the results of the aggressive and benevolent models for 
ranking all DMUs.  

CRiteria Importance Through Intercriteria Correlation (CRITIC method), which was originally developed by Diakoulaki 
et al. (1995), has been widely accepted as an effective weighting method for determining the objective weights of each 
criterion in the decision matrix of multi-criteria decision making problems (MCDM problems). It can be used to aggregate 
the results of many models for ranking all DMUs, as well as Shannon’s entropy. There are many applications of the CRITIC 
method for determining objective weights for criteria in decision making processes, as shown in the literature (Bellver, 
Cervelló, & García, 2011; Diakoulaki et al., 1995; Keshavarz Ghorabaee, Amiri, Zavadskas, & Antucheviciene, 2018; 
Vujicic, Papic, & Blagojević, 2017), which has proven that the CRITIC method is a valuable and capable method for 
determining the objective weights of criteria in the decision matrix of MADM problems. These are the major reasons why 
the aggressive and benevolent models based on the CRITIC method are selected as a suitable method for ranking all DMUs 
in this paper.   To this end, this paper provides a hybrid approach (Aggressive and benevolent models) which is based on 
the CRITIC method for ranking all DMUs. The proposed method provides more reliable results in solving the ranking 
problem because aggregating the cross-efficiency results of the aggressive and benevolent models provides a more realistic 
ranking compared with using any of the ranking models individually. The calculation steps of this research are as follows. 
In the first step DMUs are categorized by aggressive and benevolent criteria and in the following the CRITIC method is 
employed to calculate the weight of each criterion. Finally, the ranking is obtained by multiplying the criteria weight and 
the cross-efficiency values. Billions of tons  of  agricultural residue are generated each year in the developing and developed 
countries. This  volume  of  biodegradable  wastes  can  be converted to an enormous amount of energy and raw materials.  
Agricultural  biomass waste  converted  to energy  can  substantially displace  fossil  fuel,  reduce emissions  of  greenhouse  
gases  and  provide renewable energy to  people  in developing  countries, which  still  lack  access  to  electricity.  As  raw 
materials, biomass  wastes  have  attractive  potentials for  large-scale  industries  and  community-level enterprises.  
Thailand, as a developing country depends heavily  on  wood  fuel  as  a  source  of  energy, contributing about 72% of the 
primary energy supply  followed  by  crude  oil  and  hydroelectricity  in  that order . The associated harmful environmental, 
health  and social  effects with the use of  traditional biomass like  firewood  and  fossil  fuel  has  enhanced  the growing  
interest  in  the  search  for  alternate  cleaner source of energy globally. 

The rest of this research is organized as follows. Literature review, Methodology and Application examples are presented 
in Sections 2, 3 and 4 respectively. Finally, Section 5 is the Conclusion.  
  
2. Literature review  

DEA has been studied for over forty years. Even though it is old, applications of many forms of DEA models to various 
problems are becoming more attractive. DEA is a classic model for evaluating the efficiency score of DMUs with multiple 
input and output variables, originating from Farrel (1957). However, it is formally accepted by all researchers that Charnes, 
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Cooper, and Rhodes’s mathematical model (Charnes et al., 1979) is the most significant historic origin of DEA. Later, other 
forms of DEA models were developed by other researchers (Banker et al., 1984; Cooper et al., 2007). The CCR model by 
Charnes et al. (1979) together with the BCC model by Banker et al. (1984) are the most popular models of evaluating 
efficiency score among a group of DMUs. The right choice of a CCR or BCC is often, if not always, a hard decision. Hence, 
one DEA model that is often suggested for problem solving is the CCR model, which has been widely used in many fields 
(Lovell & Pastor, 1999; Niu, Zhang, Zhang, Zhang, & Yang, 2020; C.-K. Wei, Chen, Li, & Tsai, 2011), which proves that 
the CCR model is a valuable and capable method for evaluating performance of DMUs in various fields. It is well known 
that the main drawback of the DEA is its inability to rank multiple efficient DMUs. To solve the ranking problem, Sexton 
et al. (1986) proposed the cross efficiency evaluation to overcome the shortcomings of self-evaluation in the CCR-DEA 
model; it provides a full ranking for all DMUs. Because of this main advantage, the cross-efficiency evaluation method has 
been widely applied in various fields (Dotoli, Epicoco, Falagario, & Sciancalepore, 2016; Yang & Wei, 2019). However, 
the cross-efficiency evaluation method still has some disadvantages requiring further improvement. For example, the 
drawback of this method is that the weights are not unique, which cannot clearly provide the results to help decision makers 
to improve their performance (Si & Ma, 2019; J. Wu et al., 2011). Inspired by the idea of Sexton et al. (1986), two well-
known models based on benevolent and aggressive models have been developed by Doyle & Green (1994). A neutral DEA 
model has been proposed by Wang & Chin (2010a) for overcoming the difficulty of the choice between the aggressive and 
benevolent models, and also providing a full ranking for all the DMUs. A game cross-efficiency model has been presented 
by Liang et al. (2008a) to get a reasonable cross-efficiency value. Besides the ranking methods, another way to solve the 
ranking problem is to integrate the results of multiple ranking methods for evaluating all the DMUs. For example, ranking 
methods based on Shannon entropy have been widely used for solving the ranking problems of all DMUs as shown in the 
literature (Hosseinzadeh, Eshlaghy, & Shafiee, 2012; Lu & Liu, 2016; Shirouyehzad, Lotfi, & Reza, 2013; Song & Liu, 
2018). Likewise, the ranking methods based on the Grey Relational Analysis (GRA) have been proposed by many 
researchers (Kumar & Singh, 2020; Tosun, 2006). In recent years, various ranking methods based on the CRITIC method 
have been widely applied in various fields (Abdel-Basset & Mohamed, 2020; H.-W. Wu, Zhen, & Zhang, 2020). In addition, 
there are the ranking methods combined with the MADM methods, instead of the average scores of cross-efficiency 
evaluation. For instance, Wu et al. (2013) presented a combined DEA cross-efficiency evaluation and TOPSIS and used it 
to rank all the DMUs. Rakhshan et al. (2017) proposed a new ranking method based on TOPSIS and DEA to rank efficient 
DMUs. The CRITIC method, proposed by Diakoulaki et al. (1995), is one of the weighting methods which determine 
weights for each criterion in the decision matrix of MADM problems. It uses correlation analysis of all pairs of criteria to 
find out the objective weights of criteria. In the CRITIC method, the decision matrix is generated and the standard deviation 
of each criterion and the correlation coefficients of all pairs of criteria are employed to determine the weights of each 
criterion (Rostamzadeh, Ghorabaee, Govindan, Esmaeili, & Nobar, 2018). In recent years, the CRITIC method has been 
used extensively for determining the objective weights of criteria together with MADM methods as shown in the literature. 
Rostamzadeh et al. (2018) developed a conceptual framework for sustainable supply chain risk management using the 
CRITIC method and fuzzy TOPSIS. Tuş and Aytaç Adalı (2019) proposed a combined CRITIC-WASPAS method for 
solving the software selection problem. Wei et al. (2020) proposed a combined GRA-CRITIC method for location planning 
of electric vehicle charging stations. Zhao et al. (2020) proposed an improved Prospect theory and the Copula-CRITIC 
method to measure the construction schedule robustness. The association of weights in MADM problems is a crucial stage 
of the whole decision-making process. In many situations, decision makers may not be able to clearly determine the 
subjective preferences for varieties of criteria. In addition, the CRITIC method has been accepted as an effective tool to 
determine weights for criteria in decision-making problems, as shown in the above literature. These are therefore the 
important reasons for choosing the CRITIC method for determining the weights of each quantitative criterion in this paper.   

3. Methodology  

When measuring and ranking all DMUs, the evaluation process should have an approach that provides more reliable results 
in solving the ranking problems, and the approach must be able to solve the problem effectively. Thus, this section presents 
a novel aggregated method for ranking all DMUs. Details of the proposed ranking method are demonstrated in Fig. 1.   
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Fig. 1. Diagram for the proposed ranking method  

3.1 Calculate the results of benevolent and aggressive models  

Let there be a set of n DMUs, where DMU𝑗 (𝑗 = 1, 2, 3, . . . , n) uses m different inputs to produces s different outputs which 
can be denoted as 𝑥ij = (1, 2, 3, . . . , m) and 𝑦rj = (1, 2, 3, . . . , s) respectively. rdμ  and idω are weight of outputs and weight 
of inputs respectively.  For any evaluated DMU𝑑 (1 ≤ 𝑑 ≤ n), the efficiency score 𝐸𝑑𝑑 can be calculated by the CCR model 
as follows:   

1
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For each DMUd (d = 1, 2, 3, . . . , n), a group of optimal weights can be obtained by solving 
the CCR model in Equation (1). In the CCR model, each DMU is self-evaluated and termed efficient if and only if the 
optimal objective function is equal to 1. The cross-efficiency of each DMUj using the weights of DMUd, namely Edj, can be 
defined as follows: 
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The cross-efficiency matrix (CEM) can be generated using Equation (2).  
 
Then the average cross-efficiency score (ACE score) of each DMUj is defined as follows: 
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The optimal weights of each DMUj obtained from the CCR model in Eq. (1) are usually not unique. Consequently, Edj 
defined in Eq. (2) is generated arbitrarily. To overcome this drawback, the well-known aggressive and benevolent models 
were proposed by Doyle and Green (1994) to identify the optimal weights of each DMUj. The benevolent and aggressive 
models are  
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subject to the same constraints as in Model (4) 

Model/Eq. (4) represents the benevolent strategy for cross efficiency evaluation, which aims to maximize the cross 
efficiency of the integrated unit consisting of the other DMUs while maintaining the self-evaluation efficiency of a particular 
DMU under evaluation, whereas Model/Eq. (5) is known as the aggressive strategy which minimizes the cross efficiency 
of the integrated unit. The two models optimize the input and output weights in two different views. As a result, there is no 
guarantee that both the models can lead to the same ranking orders and are incapable of providing the decision makers with 
a definite decision conclusion. Thus, the idea of aggregating the results of the well-known DEA models for ranking DMUs 
is an interesting solution approach for solving the ranking problem.   

3.2 Evaluate the weights of each criterion using the CRITIC method   

There are three calculation steps to evaluate the weights of each criterion using the CRITIC method. Details of each 
calculation step are as follows. 

3.2.1 Generate the decision matrix  

The decision matrix will be generated using the results of benevolent and aggressive models in Section 3.1. Details are 
shown in Table 1.  

Table 1 
The decision matrix (X) of each method 

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
1 x11 x12 
2 x21 x22 
3 x31 x32 

… … … 
n xn1 xn2 

As in Table 1, consider a decision matrix (X), ij n m
X x

×
 =   , where xij is the efficiency score of alternative i with respect 

to criterion j, n and m are the numbers of alternatives and the number of criteria respectively. 

3.2.2 Normalize the decision matrix  

The normalized decision matrix will be generated using Eq. (6)  
min

max min
ij j

ij
j j

x x
x x

χ
−

=
−

   (6) 

where max max( , 1, 2,3,..., )j ijx x j n= = and min min( , 1, 2,3,..., )j ijx x j n= = .  

3.2.3 Calculate the weights of each criterion 

 While calculating the weights of each criterion j, the standard deviation of each criterion j ( jσ ) and correlation between the 
criterion i and criterion j (rij) can be computed using Excel 2010. In this regard, the weight of the criterion j (wj) is obtained 
as:  

1

j
j m

j
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=
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(7) 

where Cj is the quantity of information contained in criterion j determined as: 

1
(1 )

n

j j ij
i

C rσ
=
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3.3 Calculate the weights of DMUs and rank all DMUs 

The weight of each DMUi is obtained by multiplying the CRITIC weight value by the corresponding decision matrix using 
Eq. (9).  
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m

i j ij
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w x i i nθ
=

= ⋅ ∀ =    (9) 

where iθ  is the integrated weight of each DMUi. After obtaining the results of iθ  using Equation (9), it can be concluded 
that a higher value means that the DMUs ranking is higher. 
 
4. Numerical examples  
 
This section uses the proposed ranking method to evaluate three numerical examples. The first is six nursing homes (Sexton 
et al., 1986), the second fourteen international passenger airlines (Tofallis, 1997a), and the third is a case study on seven 
biomass fuel briquettes generated from agricultural waste. Details of calculation steps of the proposed methodology are 
shown in Sections 4.1, 4.2 and 4.3 respectively.  

 
4.1. Efficiency evaluation of six nursing homes  

As shown in Table 2, the six nursing homes, proposed by Sexton et al. (Sexton et al., 1986),  has two inputs (x1 and x2) and 
two outputs (y1 and y2). 
 

StHr (x1): staff hours per day, including nurses, physicians, etc. 
Supp (x2): supplies per day, measured in thousands of dollars. 
MCPD (y1): total Medicare-plus Medicaid-reimbursed patient days. 
PPPD (y2): total privately paid patient days.  

Table 2 
Data set of six nursing homes  

DMUs 
Inputs Outputs 

StHr (x1) Supp (x2) MCPD (y1) PPPD (y2) 
A 1.50 0.20 1.40 0.35 
B 4.00 0.70 1.40 2.10 
C 3.20 1.20 4.20 1.05 
D 5.20 2.00 2.80 4.20 
E 3.50 1.20 1.90 2.5 
F 3.20 0.70 1.40 1.5 

 
Step 1:  Calculate the results of benevolent and aggressive models for six nursing homes.   

Consider a DEA efficiency evaluation problem with six nursing homes, each DMU with two inputs and two outputs as in 
Table 2. The benevolent ((Eq. (4)) and aggressive ((Eq. (5)) models were coded using LINGO software (as shown in 
Appendix 1). As a result, we can obtain the decision matrix of six nursing homes listed in Table 3.  

Table 3 
Decision matrix of six nursing homes  

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
A 1.0000 0.7639 
B 0.9773 0.7004 
C 0.8580 0.6428 
D 1.0000 0.7184 
E 0.9758 0.6956 
F 0.8570 0.6081 

max
jx  1.0000 0.7639 

min
jx  0.8570 0.6081 

 
 

Step 2:  Evaluate the criteria weights for six nursing homes using the CRITIC method.    

Consider the decision matrix of six nursing homes in Table 3, DMUs are viewed as alternatives, and the results of benevolent 
and aggressive models are viewed as criteria. After that, the decision matrix of six nursing homes was normalized using Eq. 
(6). Then, jσ  was calculated using the function “=STDEVA (xxx:xxx)” in Excel 2010. As a result, we can obtain the 
normalized decision matrix listed in Table 4.  
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Table 4 
Normalized decision matrix of six nursing homes  

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
A (1) 1.0000 1.0000 
B (2) 0.8416 0.5925 
C (3) 0.0068 0.2230 
D (4) 1.0000 0.7079 
E (5) 0.8311 0.5617 
F (6) 0.0000 0.0000 

jσ  0.4780 0.3553 
 
After obtaining the normalized decision matrix, the next step is to calculate the correlation between criterion i and criterion 
j (rij) using the function “=CORREL(xx:xx,xx:xx)” in Excel 2010. As a result, we can obtain the correlation matrix listed 
in Table 5. 
 
Table 5 
Correlation matrix (rij matrix) for six nursing homes  

  Benevolent Aggressive 
Benevolent 1.0000 0.9220 
Aggressive 0.9220 1.0000 

 
After obtaining the correlation matrix, the weight of the criterion j (wj) was obtained using Eq. (7) and Eq. (8). Cj was 
computed using Eq. (8), For example,   

2

1 1 1
1
(1 ) 0.4780((1 1) (1 0.9220)) 0.4780(0.0000 0.0780) 0.0373i

i
C rσ

=
= − = − + − = + = . Likewise, the value C2 was 

obtained from the same calculation as the C1 value. Finally, w1 and w2 are shown in Table 6. 

Table 6 
Criteria weights for six nursing homes using the CRITIC method 

  Benevolent Aggressive 
Benevolent 0.0000 0.0780 
Aggressive 0.0780 0.0000 

1
(1 )

n
ij

i
r

=
−  0.0780 0.0780 

jσ  0.4780 0.3553 
Cj 0.0373 0.0277 
wj 0.5737 0.4263 

 

Step 3: Calculate the weights of DMUs and then rank all DMUs  

After obtaining the wj of all criteria, iθ  can be obtained using Equation (9). Based on values of each iθ , the ranking of each 
DMUi is as shown in Table 7. Finally, the correlation of each method (rs) was tested using Spearman’s rank correlation. 
Details of rs values are shown in Table 8. 

Table 7 
The ranking of DMUs for six nursing homes 

 DMUs CCR Rank Benevolent Rank Aggressive Rank Proposed 
method Rank 

A (1) 1.0000 1 1.0000 1 0.7639 1 0.8993 1 
B (2) 1.0000 1 0.9773 3 0.7004 3 0.8593 3 
C (3) 1.0000 1 0.8580 5 0.6428 5 0.7662 5 
D (4) 1.0000 1 1.0000 1 0.7184 2 0.8799 2 
E (5) 0.9775 5 0.9758 4 0.6956 4 0.8564 4 
F (6) 0.8675 6 0.8570 6 0.6081 6 0.7509 6 

 
Table 8  
The correlation test for six nursing homes  

  CCR Benevolent Aggressive Proposed Method 
CCR 1.000 0.686 0.676 0.676 

Benevolent 0.686 1.000 0.986 0.986 
Aggressive 0.676 0.986 1.000 1.000 
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Proposed method 0.676 0.986 1.000 1.000 

As seen in Table 7, the CCR model using Eq. (1) identifies DMU1 through DMU4 as efficient DMUs, while it cannot 
discriminate among efficient DMUs. To solve this problem, we use the proposed method to evaluate these six DMUs. 
Finally, the efficiency rating and ranking were obtained as in Table 7. The proposed method assesses that DMU1> DMU4 > DMU2 > DMU5 DMU3 > DMU6. The aggressive model and proposed method agree that DMU1 is the best DMU and 
DMU6 is the worst DMU. Whereas, benevolent model cannot agree that DMU1 is the best DMU because it cannot 
discriminate among DMU1 and DMU4 (DMU1 and DMU4 are same cross-efficiency value). As seen in Table 8, after the 
Spearman correlation test, the Spearman’s rank correlation coefficients for proposed method and CCR efficiency value, 
benevolent efficiency value and aggressive efficiency value are calculated as rs = 0.676, 0.986 and 1.000  respectively. This 
is a guarantee that the proposed method is more reliable. 

4.2 Efficiency evaluation of fourteen international passenger airlines  
 
As shown in Table 9, the data set of fourteen international passenger airlines, proposed by Tofallis (Tofallis, 1997b), has 
three inputs (x1, x2 and x3) and two outputs (y1 and y2).  
 
x1: aircraft capacity in ton kilometers.  
x2: operating cost. 
x3: non-flight assets such as reservation systems, facilities and current assets.  
y1: passenger kilometers. 
y2: non-passenger revenue. 
 
 Table 9 
Data set of fourteen international passenger airlines 

DMUs 
Inputs Outputs 

x1 x2 x3 y1 y2 
1 5723 3239 2003 26677 697 
2 5895 4225 4557 3081 539 
3 24099 9560 6267 124055 1266 
4 13565 7499 3213 64734 1563 
5 5183 1880 783 23604 513 
6 19080 8032 3272 95011 572 
7 4603 3457 2360 22112 969 
8 12097 6779 6474 52363 2001 
9 6587 3341 3581 26504 1297 
10 5654 1878 1916 19277 972 
11 12559 8098 3310 41925 3398 
12 5728 2481 2254 27754 982 
13 4715 1792 2485 31332 543 
14 22793 9874 4145 122528 1404 

 
Step 1:  Calculate the results of benevolent and aggressive models for fourteen international passenger airlines.    

Consider the data set of fourteen international passenger airlines, benevolent and aggressive models using LINGO software 
(Details are shown in Appendix 2). As a result, we can obtain the decision matrix of fourteen international passenger airlines 
listed in Table 10.  

Table 10 
Decision matrix of fourteen international passenger airlines 

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
1 0.7543 0.5990 
2 0.1894 0.1652 
3 0.7678 0.6226 
4 0.8222 0.6734 
5 0.8912 0.7983 
6 0.7554 0.6385 
7 0.8214 0.6478 
8 0.7242 0.5855 
9 0.7590 0.6309 

10 0.7803 0.6813 
11 0.9193 0.7742 
12 0.8850 0.7314 
13 0.9190 0.7503 
14 0.8659 0.7316 
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max
jx  0.9193 0.7983 

min
jx  0.1894 0.1652 

Step 2:  Evaluate the criteria weights for fourteen international passenger airlines using the CRITIC method.   

Considering the decision matrix of fourteen international passenger airlines in Table 10, the calculation steps are the same 
as Step 2 of Section 4.1. As a result, the normalized decision matrix was generated as shown in Table 11. Finally, the 
weights of each criterion were determined using the CRITIC method as listed in Table 12. 

Table 11 
Normalized decision matrix of fourteen international passenger airlines  

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
1 0.7740 0.6851 
2 0.0000 0.0000 
3 0.7924 0.7225 
4 0.8669 0.8026 
5 0.9614 1.0000 
6 0.7754 0.7475 
7 0.8659 0.7623 
8 0.7326 0.6638 
9 0.7804 0.7355 

10 0.8095 0.8152 
11 1.0000 0.9619 
12 0.9530 0.8943 
13 0.9995 0.9242 
14 0.9269 0.8946 

jσ  0.2481 0.2419 

 
Table 12 
Criteria weights for fourteen international passenger airlines using the CRITIC method 

  Benevolent Aggressive 
Benevolent 0.0000 0.0126 
Aggressive 0.0126 0.0000 

1
(1 )

n
ij

i
r

=
−  

0.0126 0.0126 

jσ  0.2481 0.2419 
Cj 0.0031 0.0030 
wj 0.5063 0.4937 

 

Step 3: Calculate the weights of DMUs and then rank all DMUs for fourteen international passenger airlines 

After obtaining the wj of all criteria, iθ  can be obtained using the same Step 3 of Section 4.1. The results are shown in 
Table 13. Finally, rs was tested using Spearman’s rank correlation as listed in Table 14. 

Table 13 
The ranking of DMUs for fourteen international passenger airlines 

  CCR Rank Benevolent Rank Aggressive Rank 
 

Proposed 
method 

Rank 

1 0.8684 12 0.7543 12 0.5990 12 0.6776 12 
2 0.3379 14 0.1894 14 0.1652 14 0.1775 14 
3 0.9475 11 0.7678 9 0.6226 11 0.6961 10 
4 0.9581 9 0.8222 6 0.6734 7 0.7487 6 
5 1.0000 1 0.8912 3 0.7983 1 0.8453 2 
6 0.9766 8 0.7554 11 0.6385 9 0.6977 9 
7 1.0000 1 0.8214 7 0.6478 8 0.7357 7 
8 0.8588 13 0.7242 13 0.5855 13 0.6557 13 
9 0.9477 10 0.7590 10 0.6309 10 0.6958 11 
10 1.0000 1 0.7803 8 0.6813 6 0.7314 8 
11 1.0000 1 0.9193 1 0.7742 2 0.8477 1 
12 1.0000 1 0.8850 4 0.7314 5 0.8092 4 
13 1.0000 1 0.9190 2 0.7503 3 0.8357 3 
14 1.0000 1 0.8659 5 0.7316 4 0.7996 5 
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As seen in Table 13, the CCR model using Eq. (1) identifies DMU5, DMU7 and DMU10 through DMU14 as efficient DMUs, 
which it cannot discriminate amongst. To solve this problem, we use the proposed method to evaluate all DMUs. Finally, 
the efficiency rating and ranking were obtained as in Table 13. The proposed method and benevolent model agree that 
DMU11 is the best DMU. Whereas, the aggressive model indicates that DMU5 is the best DMU. All of the methods agree 
that DMU2 is the worst DMU. As seen in Table 8, after the Spearman correlation test, the Spearman’s rank correlation 
coefficients for the proposed method and the CCR efficiency value, benevolent efficiency value and aggressive efficiency 
value are calculated as rs = 0.880, 0.982 and 0.974  respectively. This is a guarantee that the proposed method is highly 
reliable. 
 
Table 14  
The correlation test for fourteen international passenger airlines  

 CCR Benevolent Aggressive Proposed method 
CCR 1.000 0.857 0.908 0.880 

Benevolent 0.857 1.000 0.952 0.982 
Aggressive 0.908 0.952 1.000 0.974 

Proposed method 0.880 0.982 0.974 1.000 
 

4.3 Application to seven biomass fuel briquettes generated from agricultural waste  

Thailand is one of the agricultural countries in Southeast Asia having a large amount of agricultural waste which could be 
used for fuel briquettes. Therefore, the idea of using the agricultural wastes for manufacturing into fuel briquettes is a very 
attractive issue. The moisture content (analyzed following the ASTM D3173), ash content (analyzed following the ASTM 
D3174), heating value (analyzed following the ASTM D5865) and fixed carbon (analyzed following the ASTM D3172) are 
important properties of fuel briquettes for cooking. These properties can be viewed as inputs and outputs in DEA, and each 
material type of fuel briquettes can be viewed as a DMU. Selecting the suitable agricultural wastes for manufacturing into 
fuel briquettes is a complicated problem because of the multiple conflicting criteria/properties in the decision-making 
process, which is hard to implement. Therefore, the proposed ranking method based on DEA was used to select the suitable 
materials for the most effective resource utilization. As shown in Table 15, the seven biomass fuel briquettes have two 
inputs (x1 and x2) and two outputs (y1 and y2). 
 

x1 : moisture content (%). 
x2 : ash content (%). 
y1 : heating value (kcal/kg). 
y2 : fixed carbon (%). 
DMU1: Bagasse. 

DMU2: Incense reed. 
DMU3: Water hyacinth. 
DMU4: Rice husk. 
DMU5: Coconut shell. 
DMU6: Sawdust. 
DMU7: Sensitive plant. 

Table 15 
Data set of seven biomass fuel briquettes 

DMUs 
Inputs Outputs 

x1 x2 y1 y2 
1 6.4 8.81 4,462 17.66 
2 6.15 24.61 3,251 14.50 
3 6.74 25.67 3,146 14.75 
4 7.5 21.01 3,886 17.3 
5 6.9 3.4 6,761 72.7 
6 4.45 1.45 4,876 27.4 
7 10.2 3.87 4,376 24.77 

 

Step 1:  Calculate the results of benevolent and aggressive models for seven biomass fuel briquettes.  

Considering the data set of seven biomass fuel briquettes, the benevolent and aggressive models were coded using LINGO 
software (Details are shown in Appendix 3). As a result, we can obtain the decision matrix of seven biomass fuel briquettes 
listed in Table 16.   

Table 16 
Decision matrix of seven biomass fuel briquettes 

Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
1 0.6372 0.4935 
2 0.4852 0.3580 
3 0.4293 0.3170 
4 0.4756 0.3549 
5 0.9476 0.8892 
6 1.0000 0.9834 
7 0.3978 0.3749 
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Alternatives/DMUs 
Criteria 

Benevolent (C1) Aggressive (C2) 
max
jx  1.0000 0.9834 

min
jx  0.3978 0.3170 

Step 2:  Evaluate the criteria weights for seven biomass fuel briquettes using the CRITIC method.   

Based on the same calculation procedure as the Step 2 of the Section 4.1 and Section 4.2, w1 and w2 were obtained as shown 
in Table 17. 

Table 17 
Criteria weights for seven biomass fuel briquettes using the CRITIC method  

  Benevolent Aggressive 
Benevolent 0.0000 0.0141 
Aggressive 0.0141 0.0000 

1
(1 )

n
ij

i
r

=
−  0.0141 0.0141 

jσ  0.4161 0.4178 

Cj 0.0059 0.0059 
wj 0.4990 0.5010 

 

Step 3: Calculate the weights of DMUs and then rank all DMUs for the seven biomass fuel briquettes 

After obtaining the wj of all criteria, iθ values were obtained using Eq. (9). Based on the values of each iθ , the ranking of 
each DMUi was shown in Table 18. Finally, the correlation of each method (rs) was tested using Spearman’s rank 
correlation. Details of rs values are shown in Table 19. 

As seen in Table 18, the CCR model using Equation (1) identifies DMU5 through DMU6 as efficient DMUs, which it cannot 
discriminate between. To solve this problem, we use the proposed method to evaluate these DMUs. Finally, the efficiency 
rating and ranking were obtained. The proposed method assesses that DMU6> DMU5 > DMU1 > DMU2> DMU4 > DMU7 
> DMU3. The benevolent, aggressive and proposed models agree that DMU6 is the best DMU. Whereas, CCR model cannot 
agree that DMU6 is the best DMU because it cannot discriminate among DMU5 and DMU6 (DMU5 and DMU6 are same 
cross-efficiency value). 
 
Table 18 
The ranking of DMUs for seven biomass fuel briquettes 

 DMUs CCR Rank Benevolent Rank Aggressive Rank Proposed method  Rank 
1 0.6463 3 0.6372 3 0.4935 3 0.5652 3 
2 0.4900 4 0.4852 4 0.3580 5 0.4215 4 
3 0.4327 6 0.4293 6 0.3170 7 0.3730 7 
4 0.4803 5 0.4756 5 0.3549 6 0.4151 5 
5 1.0000 1 0.9476 2 0.8892 2 0.9184 2 
6 1.0000 1 1.0000 1 0.9834 1 0.9917 1 
7 0.3980 7 0.3978 7 0.3749 4 0.3864 6 

 
Table 19  
The correlation test for seven biomass fuel briquettes 

  CCR Benevolent Aggressive Proposed method 
CCR 1.000 0.991 0.775 0.955 

Benevolent 0.991 1.000 0.786 0.964 
Aggressive 0.775 0.786 1.000 0.893 

Proposed method 0.955 0.964 0.893 1.000 

As seen in Table 19, after the Spearman correlation test, the Spearman’s rank correlation coefficients for the proposed 
method and CCR efficiency value, benevolent efficiency value and aggressive efficiency value are calculated as rs = 0.955, 
0.964 and 0.893  respectively. In a comparative analysis, it is believed that the proposed ranking method should be more 
valuable and applicable than stand-alone ranking methods. 
 

5. Conclusions  

This paper presents a novel aggregated method to solve the ranking problems, under multiple inputs, multiple outputs and 
multiple DMUs. The proposed method was tested with three numerical examples (The six nursing homes, fourteen 
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international passenger airlines and seven biomass fuel briquettes). We first utilized benevolent and aggressive models to 
evaluate the efficiency rating of DMUs. The results of each model were used to generate a decision matrix. In the decision 
matrix, the results of benevolent and aggressive models were viewed as criteria and DMUs were viewed as alternatives. 
Secondly, the weights of each criterion were generated by the CRITIC method. Finally, each DMU was evaluated and 
ranked. The proposed method is useful and applicable to rank DMUs, which differ from other stand-alone ranking models. 
We believe that the proposed ranking method can be used to tackle other ranking problems in real-world situations. 

For future research, the limitations of this paper lie in that only three numerical examples were studied. Application of the 
proposed ranking method should be tested with more cases of ranking problems in real-world situations to enhance the 
validity of the research output further.  
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