
* Corresponding author.
E-mail address: hitarth_buch_020@gtu.edu.in (H. Buch)

© 2021 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.dsl.2020.12.001

Decision Science Letters 10 (2021) 93–110

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

Ions motion optimization algorithm for multiobjective optimization problems

Hitarth Bucha,b* and Indrajit Trivedic

aResearch Scholar, Gujarat Technological University, Ahmedabad
bDepartment of Electrical Engineering, Government Engineering College, Rajkot, Gujarat, India
cDepartment of Power Electronics, Vishwakarma Government Engineering College, Chandkheda, Gujarat, India
C H R O N I C L E A B S T R A C T

Article history:
Received October 28, 2020
Received in revised format:
October 29, 2020
Accepted November 17 2020
Available online
November 17, 2020

 This paper offers a novel multiobjective approach – Multiobjective Ions Motion Optimization
(MOIMO) algorithm stimulated by the movements of ions in nature. The main inspiration behind
this approach is the force of attraction and repulsion between anions and cations. A storage and
leader selection strategy is combined with the single objective Ions Motion Optimization (IMO)
approach to estimate the Pareto optimum front for multiobjective optimization. The proposed
method is applied to 18 different benchmark test functions to confirm its efficiency in finding
optimal solutions. The outcomes are compared with three novel and well-accepted techniques in
the literature using five performance parameters quantitatively and obtained Pareto fronts
qualitatively. The comparison proves that MOIMO can approximate Pareto optimal solutions
with good convergence and coverage with minimum computational time.

.by the authors; licensee Growing Science, Canada 1220©

Keywords:
Multiobjective optimization
Ions Motion Algorithm
Archive

1. Introduction

The optimization process looks for finding the minimum or maximum value for single or multiple objectives. Multiobjective
optimization refers to optimizing numerous objectives which are often conflicting in nature. Such problems are found in
engineering, mathematics, economics, agriculture, politics, information technology, etc. Also, sometimes, the truly
optimum solution may not be available at all. In such cases, compromise and estimates are frequently required.
Multiobjective optimization is much more complicated than single-objective optimization because of the existence of
multiple optimum solutions. At large, all solutions are conflicting, and hence, a group of non-dominated solutions is required
to be found out to approximate the true pareto front. Heuristic algorithms are derivative-free solution approaches as they do
not use gradient descent to determine the global optimal. Metaheuristic approaches treat the problem as a black box for
given inputs and outputs. Problem variables are inputs while objectives are outputs. Many competent metaheuristic
approaches were proposed in the past to solve the multiobjective optimization problem. A heuristic approach starts problem
optimization by creating an arbitrary group of initial solutions. Every candidate solution is evaluated, objective values are
observed, and based on the outputs, the candidate solutions are modified/changed/combined/evolved. This process is
continued until the end criteria are met.

There are various difficulties associated while solving the problem using heuristics. Even optimization problems have
diverse characteristics. Some of the challenges are constraints, uncertainty, multiple and many objectives, dynamicity. Over
a while, global optimum value changes in dynamic problems. Hence, the heuristic approach should be furnished with a
suitable operator to keep track of such changes so that the global optimum is not lost. Heuristic approaches should also be
fault-tolerant to deal with uncertainty effectively. Constraints divide the search space into viable and unviable solutions.
The heuristic approach should be able to discard the unsustainable solution and ultimately discover the best optimum

 94

solution. Researchers have also proposed surrogate models to reduce computational efforts for computationally expensive
functions. The idea of a Pareto dominance operator is introduced to compare more than one objective. The heuristic
approach should be able to find all the best Pareto solutions. The proper mechanism should be incorporated with heuristic
approaches to deal with multiobjective problems. Archive or storage is necessary to stock the non-dominated solutions
found through optimization. Quantity and quality of the best solutions are enhanced by updating the archive residents in
every iteration. Another desired characteristic of a multiobjective heuristic approach is to determine several solutions. In
other words, the Pareto solutions should binge uniformly across all the objectives.

There are many multiobjective algorithms reported in the literature. The popular algorithms are Multiobjective Particle
Swarm Optimization (MOPSO) (Coello 2011), Non-dominated Sorting Genetic Algorithm (NSGA) (Deb et al. 2000;
Srinivas and Deb 1994), Multiobjective Ant Colony Optimization (MOALO) (Dorigo and Di Caro 1999), Multi-objective
Grey Wolf Optimizer (MOGWO) (S. Mirjalili et al. 2016), Multiobjective Dragonfly Algorithm (MODA) (S. Mirjalili
2016), Multiobjective Multi-Verse Optimizer (MOMVO) (S. Mirjalili, Jangir, et al. 2017), Hybrid Multi-objective Cuckoo
Search (HMOCS) (Zhang et al. 2018), Multiobjective Teaching-Learning based Algorithm (Zou et al. 2013), Multiobjective
Artificial Bee Colony Algorithm (Akbari et al. 2012), Multiobjective Grasshopper Algorithm (S. Z. S. Mirjalili et al. 2018),
Multiobjective Moth Flame Optimization (MOMFO) (Vikas and Nanda 2016), Multiobjective Salp Swarm Optimization
(S. Mirjalili, Gandomi, et al. 2017) and Non-dominated Sorting Ions Motion Algorithm (Buch and Trivedi 2020). All these
algorithms have proved their efficiency in solving the multiobjective problem. Then a question may arise: Is any new
algorithm required still? According to the No Free Lunch (NFL) algorithm (Wolpert and Macready 1997), no algorithm can
solve problems of all kinds. Thus, this algorithm allows proposing new algorithms or enhancement of existing ones.

The Ions Motion Algorithm (IMO) (Javidy, Hatamlou, and Mirjalili 2015) has a great exploration with fast convergence
speed. The liquid and crystal phase smartly balance the exploration and exploitation stage. These features make the IMO
deal with a multiobjective optimization problem potentially. Even the computational difficulty is lesser than several
optimization procedures reported in the literature. Such commanding features inspired us to develop a multiobjective
version of the existing single objective IMO. In this paper, the proposed algorithm is compared with other well-regarded
recent optimization algorithms qualitatively and quantitatively. The remaining paper is arranged thus: Section 2 discusses
the multiobjective optimization problem and associated terminology. Section 3 introduces the single objective IMO. Section
4 proposes a novel multiobjective IMO. Findings based on various performance indicators are discussed in Section 5.
Section 6 concludes the work and suggests future work.

2. Introduction to Multiobjective Optimization Problem (MOOP)

In the single-objective optimization, there is a global optimum unique solution. The reason for this is the presence of only
one objective in single-objective optimization problems and the existence of the most excellent unique answer. Evaluation
of solutions is simple as there is only one goal and can be completed by the relational operators: ≥, >, ≤, <, or =. Such
problems permit optimization issues to suitably relate the aspirant solutions and ultimately determine the finest one. While
in MOOP, though, the answers should be equated with multiple criteria. Multiobjective minimization problem can be stated
as follows:

{ }1 2min () (), (),..., ()nF x f x f x f x=
   

 (1)

subject to
() 0 1, 2,3,....,ia x i m≥ = (2)

() 0 1, 2,3,....,ib x i p= = (3)

 1, 2,3,...,ib i ibL x U i q≤ ≤ = (4)

Here, q presents a number of variables, 1 2(), (),..., ()nf x f x f x

  
 introduces some objective functions, m and p show

some inequality and equality constraints. ibL and ibU give lower and upper limits of the variable. Such kind of problems
foil us from equating results utilizing the relational operators as there are multiple criteria to evaluate solutions. In a single
objective optimization problem, a better solution can be found using a relational operator, but with various objectives, some
additional operator(s) is(are) required. The primary operator to equate two solutions bearing in mind multiple objectives is
called Pareto optimal dominance and is described as (Carlos A Coello Coello 2009):

The definition I: Pareto Dominance

Let us assume two vectors 1 2 1 2(, ,...,) and (, ,...,)k ka a a a b b b b= =
 

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

95

Vector a dominates b if and only if:

{ } { }1, 2,..., : () () 1,2,..., : () ()i i i ii k f a f b i k f a f b   ∀ ∈ ≤ ∧ ∃ ∈   
   

 (5)

By exmining Eq. (5), it may be concluded that one solution is superior to another solution if it has equal, and nonetheless,
one improved value in the objectives. Under such a situation, one solution dominates another solution; otherwise, the two
solutions are called Pareto optimal or non-dominated solutions. The answers to the multiobjective problem are Pareto
optimal solutions. Hence, the Pareto optimality is defined as follows.

Definition II: Pareto optimality (Pareto efficiency) (Ngatchou, Zarei, and El-Sharkawi 2005)

Assuming , a A a∈ is Pareto optimal solution if and only if:

{ } b A b a∈
  


(6)

Pareto optimality or Pareto efficiency is a state of distribution of solutions from which it is not possible to achieve
improvement in any one single objective or preference criterion without deterioration in a specific objective or choice
criterion. Such a solution set is known as the Pareto optimal set. The prognosis of the Pareto optimal solutions in the
objective search space is called Pareto optimal front.

The definition III: Pareto optimal set (Mirjalili et al., 2017)

The Pareto optimal set comprises a set of Pareto optimal solutions. Mathematically,

{ }: , PS a b A b a= ∈
   


(7)

 The definition IV: Pareto optimal front (Mirjalili et al., 2017)

This set consists of objective values for the solutions in the Pareto solutions set. Mathematically, it can be presented as:

{ } { }1,2,3,..., , : ()ii n PF f a a PS∀ ∈ = ∈
 

(8)

A quick and easy comparison of solutions of multiobjective optimization can be made with the above four equations. The
group of variables, constraints and objectives create a search landscape. Considering the difficulties associated with the
representation of search space for the problems with more than one objective, the researchers consider two search spaces:
goal and parameter space. Likewise, in single-objective optimization, the range of variables regulates the limits of the search
space in each dimension while restraints divulge them.

The overall outlines of all population-based multiobjective algorithms nearly match. They begin the optimization procedure
with multiple candidate solutions. Such solutions are equated utilizing the Pareto dominance operator. In every phase of
optimization, the repository/storage stores non-dominated solutions and the algorithm attempts to enhance them in the
subsequent iteration(s). Different search approaches distinguish one algorithm from another to augment the non-dominated
solutions.

3. Single-objective Ions Motion Algorithm (IMO)

This section first introduces the single-objective IMO algorithm. The next section presents the multiobjective form of single-
objective IMO.

3.1. Ions Motion Algorithm

In 1834, Michael Faraday coined the Greek term ‘ion’. Typically, the charged particles are known as ions and can be
separated into two categories: cations – ions with positive charge and anions – ions with a negative charge. Fig. 1 presents
a conceptual model of force between cations and anions. The primary stimulus of the Ions Motion Algorithm is a force of
attraction and repulsion between unlike and like charges, respectively. Javidy et al. (2015) proposed the population-based
IMO approach stimulated by these characteristics of ions in nature.

In the IMO algorithm, anions and cations form the candidate solutions for a given optimization problem. The force of
attraction/repulsion moves the ions (i.e., candidate solutions) around the search space. The ions are assessed keeping in

 96

mind the fitness value of the objective function. Anions tend to move towards the best cations while cations tend to move
towards the best anions. This movement depends upon the force of attraction/repulsion between them. Such an approach
guarantees improvement over iterations but does not guarantee the required exploration and exploitation of search space.
Liquid and crystal are two different phases assumed to ensure necessary exploitation and exploration of search space.

Fig. 1. Conceptual model of the force of attraction and repulsion

3.1.1. Liquid Phase

The liquid phase provides more freedom to the movement of ions, and hence, in the liquid stage, the ions can pass quickly.
Also, the force of attraction is much more than the force of repulsion. Thus, the force of repulsion can be neglected to
explore the search space. The distance between two ions is the only key factor considered to compute the force of attraction.
So the resulting mathematical model can be proposed as:

,
, 0.1

1

1 i j
i j

Pd
Pf

e
−=

+

(9)

,
, 0.1

1

1 i j
i j

Qd
Qf

e
−=

+

(10)

Where P and Q present parameters related to anions and cations, respectively. , ,i j i j jPd P Qbest= − and

, ,i j i j jQd Q Pbest= − . i and j present ion index and dimension, respectively. ,i jP d is the distance between ith

anion from the best cation in jth dimension, ,i jQd calculates the distance between ith the cation from the best anion in

jth dimension. As presented in Eq. (9) and Eq. (10), force is inversely proportional to distances among ions. Larger the
distance, lesser is the force of attraction. In other words, the force of attraction becomes less when the distance grows higher
from the best ion with the opposite charge.

According to Eq. (9) and Eq. (10), the value of force varies between 0.5 to 1. ,i jPf and ,i jQf are the resultant attraction
forces of anions and cations, respectively. After force calculation, the position of positive and negative ions is updated as
per the following equations:

(), , , ,i j i j i j j i jP P Pf Qbest P= + − (11)

(), , , ,i j i j i j j i jQ Q Qf Pbest Q= + − (12)

,i jPf and ,i jQf are the resulting attraction forces between opposite ions while jQbest and jPbest present the best

cations and anions, respectively. The attraction force between ions guarantees exploration. Referring to Eqs. (9-12), the

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

97

conclusion can be drawn that in the liquid phase, there is no involvement of the random component. Fig. 2 presents an
abstract model of the movement of ions in the liquid stage. With an increasing number of iterations, more and more ions
start interacting, converging towards the best ion with an opposite charge, and hence, exploration gradually decreases. This
phenomenon is precisely like a conversion from liquid to crystal state observed in nature. The search agents, i.e., ions, also
enter crystal state, finally converging towards the best solution in search space.

Fig. 2. Ions movement towards the best ions in the liquid phase

3.1.2. Crystal Phase

In this stage, the ions congregate to the optimal solution. Convergence has already taken place. Since the search space has
an unknown form, occasionally convergence gets trapped into local minima. A separate mechanism is proposed at the
crystal stage to avoid trapping of solutions in local minima. The cations and anions in the crystal phase are organized to
maximize their force of attraction. When an outside force is applied to the same charges in the crystal phase, the resultant
repulsion force cracks the crystal apart. Mathematically, the mechanism to overcome local optimum trapping can be
demonstrated as below:

if (QbestFit ≥ QworstFit/2 and PbestFit ≥ PworstFit/2)
 if rand () ˃ 0.5

 ()1 1i iP P Qbestϕ= + × −
 else

 ()1i iP P Qbestϕ= + ×
 end if

 if rand () ˃ 0.5
 ()2 1i iQ Q Pbestϕ= + × − (13)

 else
 ()2i iQ Q Pbestϕ= + ×
 end if
 if rand () ˂ 0.5

 Re-initialize Pi and Qi
 end if

end if
Where, 1ϕ and 2ϕ are random numbers between []1,1− and ()rand is a random number between []0,1 . Q bestF it

and Q w orstF it present fitness of the best and worst cations. PbestFit and PworstFit are the fitness of best and
worst anions. The best fitness of anions and cations should be better than or equal to the average competence of the worst
anions and cations. If this situation is met, ions are arbitrarily navigated in search space to circumvent stagnation adjacent
to local minima. Again, ions enter the liquid state until termination criteria are met.

It should be noticed here that in Eq. (13), four, instead of two, conditions are proposed to achieve different behavior of the
proposed algorithm. These four conditions are presented below:

 98

1. Both first if-else statements are met:
()1 1i iP P Qbestϕ= + × −

()2 1i iQ Q Pbestϕ= + × −

2. Only the first if-else statement is met:
()1 1i iP P Qbestϕ= + × −

()2i iQ Q Pbestϕ= + ×

3. Only the second if-else statement is met:

()1i iP P Qbestϕ= + ×

()2 1i iQ Q Pbestϕ= + × −

4. Both conditions are not met:

()1i iP P Qbestϕ= + ×

()2i iQ Q Pbestϕ= + ×

In contrast, merging the first two if-else statements will result in only two conceivable combinations:

5. Collective if-else sentences are fulfilled:
()1 1i iP P Qbestϕ= + × −

()2 1i iQ Q Pbestϕ= + × −

6. Combined if-else sentences are not fulfilled:

()1i iP P Qbestϕ= + ×

()2i iQ Q Pbestϕ= + ×

Thus, splitting two conditions into four provide different behavior for the IMO which helps avoid local optimal entrapment.
Fig. 3 presents the standard steps of the Ions Motion Algorithm. The IMO starts with a random group of solutions. The
arbitrary collection of solutions during initialization is generated using ()i i ir ub lb lb− + where r is a random number

with uniform distribution in the interval ()0,1 . iub and ilb represent upper and lower bound respectively of i th variable.

At this phase, ions are equally separated into a set of anions and cations, respectively. The fitness of each anion and cation
is calculated, and according to fitness, the best and worst anions/cations are selected and saved. The attraction forces and
positions are updated using Eqs. (9-12). During each iteration, if the condition of the crystal phase is met, the ions go into
the crystal phase. Till the satisfaction of termination criteria, ions keep going between solid and liquid phases. In the end,
the best ion is reported as the best approximation of the global solution.

4. Multiobjective Ions Motion Algorithm (MOIMO)

The single objective IMO algorithm can drive ions towards the best ion and update it throughout the iterations. But, this
approach cannot solve multiobjective problems mainly owing to the following two reasons:

• IMO cannot store multiple best solutions as it preserves a unique solution as the optimum solution.
• IMO updates the ion position concerning the unique best solution attained up to now during each iteration, but

MOOPs have no single best solution.

The first limitation is handled by incorporating the IMO algorithm with the storage of ions. This storage preserves the best
non-dominated solutions attained so far throughout optimization and is very close to the archive (storage) mechanism
employed in MOPSO (Coello & Lechuga 2002) and Pareto Archived Evolution Strategy (PAES) (Knowles and Corne
1999). The storage has the maximum storage capacity to stock the limited quantity of solutions. Throughout optimization,
every ion is compared with every storage element using Pareto dominance operators. Such a comparison may provide us
following different cases:

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

99

Fig. 3. The standard procedure of the IMO algorithm

1. If the new solution dominates archive residents, then they should be swapped.
2. If the new solution leads a group of solutions in the storage, they all should be deleted from the storage, and a new

solution should be added in the storage.
3. If the storage is full and the new solution is non-dominated in comparison with the storage elements, then the most

straightforward means is to remove any solution randomly and swap it with the new non-dominated solution.
However, as the apriori method should be able to determine uniformly dispersed Pareto front, the best candidate
to be eliminated from the storage is the one in the densest area. Such a technique will improve the distribution of
repository residents throughout the iterations.

The number of neighboring solutions with a specified maximum distance is counted and assumed to find the non-dominated
solution(s) with a populated neighborhood. This distance is calculated by 𝑑 = ௠௔௫ି௠௜௡௥௘௣௢௦௜௧௢௥௬ ௦௜௭௘ where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are
two vectors for storing maximum and minimum objective values, respectively. The storage with one solution in each
segment is an ideal case. Based on the number of neighboring repository residents, each solution is assigned a rank.
After assigning a rank to every storage element depending upon the number of neighboring solutions, a roulette wheel
mechanism is employed to choose one of them. Higher the rank of a solution, higher the likelihood of eliminating it
from the storage.

The second component is a leader selection strategy that assists in choosing the best ions as there are multiple best solutions
in a multiobjective search space. Again, the ion can be selected arbitrarily from the storage. However, a more suitable
method is to choose an answer from the least populated region. A similar mechanism is applied using the roulette wheel
selection and the same ranking process. The main difference between archive maintenance and leader selection is that in
archive maintenance, the solution is likely to be chosen from the crowded neighborhood while in contrast, for leader
selection strategy, the solution is expected to be selected from a less crowded area. Fig. 4 presents a schematic representation
of an archive-based plan for a multiobjective optimization approach.

In a nutshell, the MOIMO approach first generates the population of ions concerning the upper and lower bounds of
variables. This approach then computes the objective values of each ion and determines the non-dominated ones. If the

 100

storage has a vacancy, then the non-dominated solutions are added into it. If the storage is completely occupied, the archive
maintenance is run to remove the solution with a crowded neighborhood. In this case, the solutions are ranked and chosen
through a roulette wheel. After eliminating the required number of solutions from the storage, the new solutions are added
to the storage. After updating the storage, an ion is selected from the non-dominated solutions having the least crowded
neighborhood. The next step is to update the positions. All the above steps are repeated (except initialization), till the
termination criteria are met.

Fig. 4. Schematic representation of archive-based multiobjective optimization algorithm

The following vital observations can be made regarding the MOIMO algorithm:

1. The non-dominated solutions attained are deposited in storage, so they never get lost even if the whole population
worsens during an iteration.

2. The solutions with the dense neighborhood are rejected whenever storage maintenance is called. This results in
refining the diversity of non-dominated solutions across all objectives.

3. The best anion and cation are selected from the list of repository members having the smallest number of
neighboring solutions which concentrates the search to the less dense regions of the Pareto front and thus enhances
the diversification.

4. MOIMO inherits the search mechanism from basic IMO.
The computational complexity of MOIMO is O(PQ2), where P and Q are numbers of objectives and solutions, respectively.
Thus, computational complexity is comparable to PAES (Knowles and Corne 1999) and MOPSO (C A Coello Coello and
Lechuga 2002). With the procedure mentioned above, MOIMO can find Pareto optimal solutions, store them in the
repository and enhance their dispersal. The next section discusses the performance of MOIMO on the standard benchmark
functions.

5. Findings on Test Functions

5.1. Experimental Setup

Various benchmark test functions having diverse characteristics are employed to scrutinize the performance of
multiobjective optimization algorithms as different test functions can challenge an algorithm from different standpoints.
The benchmark functions used are (Mirjalili et al., 2016):

• Unconstrained multiobjective test functions (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, SCH1, SCH2)
• Constrained multiobjective test functions (BEL, BNH, CONSTR, CF1, OSY)
• Engineering design multiobjective problems (3 Bar Truss, Brushless DC Wheel Motor, Pressure Vessel, Satellite

Pipe, Welded Beam, Car Crash Design Problem)

The performance of MOIMO is compared with other well-regarded algorithms in literature like MOMVO (S. Mirjalili,
Jangir, et al. 2017), MODA (S. Mirjalili 2016), and MOALO (S. Mirjalili, Jangir, and Saremi 2017). The results are
evaluated quantitatively and qualitatively. For qualitative comparison, the best Pareto optimal front over ten independent
runs is chosen. However, the qualitative comparison does not indicate how much an algorithm is better than the other one.

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

101

And hence, different quantitative performance indicators are employed. The first metric is the Generational Distance (GD)
(Van Veldhuizen 1999). GD is calculated between the true Pareto front and obtained the Pareto front. It calculates the
average distance between the obtained Pareto front and the true Pareto front and can be mathematically presented as:

()()1

k
ip

d
GD

k
==



(14)

where,

()
1

22

. .
1

n
o t

i i p i p
i

d PF PF
=

 = − 
 


(15)

Here k is the number of Pareto solutions, n is the number of objective functions, .
o

i pPF indicate the
thp obtained Pareto

solution for the ith objective, and .
t

i pPF indicate the nearest point on the true Pareto front from .
o

i pPF .

Fig. 5. Schematic representation of (a) Generational Distance (GD) (b) Inverse Generational Distance (IGD) and (c)
spread

Another indicator used is Inverse Generational Distance (IGD) (Coello and Cortés 2005). It calculates the distance between
each element of the obtained front from the true Pareto front keeping true Pareto front as a reference. It is mathematically
defined as:

2

1

Q

i
i

d
IGD

Q
==


(16)

where Q presents the number of solutions in the true Pareto front and id is the Euclidean distance between each of the
solutions in true Pareto front and the nearest member from the set of non-dominated solutions found by the algorithm. The
IGD measures both the diversity and the convergence of an obtained non-dominated solution set. The smaller value of IGD
presents closeness between true and obtained Pareto front.

Spread (Deb, 2001) and spacing (S) (Schott, 1995) help measure coverage. Coverage helps identify the distribution of
obtained solutions over true Pareto front. Mathematically, the spread is defined as:

1 2

1
(1)

n kex
j pj p

n ex
jj

d d d

d k d
= =

=

+ −
Δ =

+ −

 


(17)

Here, pd is the Euclidian distance between two consecutive points on the obtained Pareto front and
ex
jd is the Euclidian

distance between the obtained Pareto front and true Pareto front. d is the average of pd . Spread verifies the condition for
the obtained Pareto front to cover the true Pareto front. Smaller the value of spread, better the spread, i.e., the uniform
distribution of obtained solutions. Another indicator, i.e., the spacing is defined as:

 102

()2

2

1
1

k

p
p

S D D
k =

= −
− 

(18)

Here, pD is the absolute difference between two consecutive solutions in the obtained Pareto front. It is defined as:

()
0 0

.. 1

n

p i pi p
i

D PF PF−= −

(19)

where, D is the average of all pD. Spacing specifies the spread of the obtained Pareto front. The higher value of S
indicates the better coverage of the obtained Pareto solutions. Fig. 5. schematically represents the generational distance,
inverse generational distance and spread. Each algorithm is run for 10 independent times for 200 iterations each. The
archive size and the number of search agents are set to 100 for constrained and unconstrained functions while they are set
to 200 for real-world benchmark functions. For a fair comparison, the population size is set to 100 for constrained and
unconstrained benchmark functions. For real-world engineering design problems, the population size is set to 200. The
results are tabulated in the next subsections and the best values are highlighted in bold.
5.2. Results on Unconstrained Test Functions

The first set of test problems contain unconstrained standard benchmark functions. Seven different benchmark functions,
i.e., ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, SCHN1 and SCHN2 are employed to check the performance of the MOIMO. Fig.
6. and Table 1 to Table 4 present qualitative and quantitative performance assessment for the unconstrained test functions.
As shown in Fig. 6. , for all the unconstrained test functions, MOIMO provides better coverage as compared to the rest of
the algorithms. In one of the most challenging test functions, i.e., ZDT3, MOIMO provides uniform coverage in all the
algorithms.

Fig. 6. Best Pareto front for unconstrained benchmark functions

While analyzing the results quantitatively, it is seen that, for most performance indicators, the MOIMO provides
significantly better results than the rest of the algorithms. MOIMO is compared for the average value of each performance
indicator and standard deviation obtained over 10 independent runs. These results display the superiority of MOIMO
showing higher accuracy and better robustness. Thus, MOIMO has the potential to outclass the rest of the algorithms in
achieving Pareto optimal front with non-convex non-uniform regions.

 Table 1
Results of the multiobjective algorithm (using GD) on the unconstrained test functions

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

103

 MOMVO MOALO MODA MOIMO

ZDT1

Avg. GD 0.0065457 0.00010694 9.4009e-05 0.00015758

SD of GD 0.013886 2.207e-05 3.6339e-05 7.1257e-05

ZDT2

Avg. GD 0.017519 8.2369e-05 0.0018219 9.6513e-05

SD of GD 0.038833 3.3481e-05 0.0038699 8.5783e-06

ZDT3

Avg. GD 0.00045131 0.00059499 0.00051111 0.00031746

SD of GD 4.0207e-05 0.00016385 0.0003006 6.1964e-06

ZDT4

Avg. GD 0.0004134 0.0075542 0.0029169 0.00031644

SD of GD 0.00012338 0.006953 0.0041258 8.5969e-05

ZDT6

Avg. GD 0.016918 0.073206 0.08976 8.7355e-05

SD of GD 0.011282 0.087903 0.14623 4.2786e-06

SCH1

SD of GD 1.913e-05 3.2288e-05 0.00012406 1.0351e-05

Avg. GD 0.00024794 0.00024983 0.00033026 0.00023967

SCH2

SD of GD 2.5767e-05 2.301e-05 0.00015192 0.0025352

Avg. GD 1.786e-06 2.6257e-06 0.00015659 0.00073378

Table 2
Results of the multiobjective algorithm (using IGD) on the unconstrained test functions

 MOMVO MOALO MODA MOIMO
ZDT1
Avg. IGD 0.0065457 0.00010694 0.0018231 0.00054853
SD of IGD 0.013886 2.207e-05 0.00055216 9.422e-05
ZDT2
Avg. IGD 0.0014645 0.0019369 0.0021012 0.00064484
SD of IGD 0.00013103 0.00061345 0.0015287 8.5653e-05
ZDT3
Avg. IGD 0.00045131 0.00059499 0.00051111 0.00068141
SD of IGD 4.0207e-05 0.00016385 0.0003006 0.0001457
ZDT4
Avg. IGD 0.0022795 0.0030114 0.0028121 0.00053503
SD of IGD 0.0032244 0.00089163 0.0017037 5.5694e-05
ZDT6
Avg. IGD 0.00054492 0.0017166 0.0086791 0.00057224
SD of IGD 0.00010866 0.0010588 0.016899 4.4493e-05
SCH1
SD of IGD 0.002219 0.003891 0.0018651 0.0010189
Avg. IGD 0.0011036 0.0030438 0.00030546 0.0002428
SCH2
SD of IGD 0.00054056 0.00080233 0.0007836 0.00025411
Avg. IGD 7.0394e-05 0.00015486 0.00012158 3.2892e-05

Table 3
Results of the multiobjective algorithm (using spread) on the unconstrained test functions

 MOMVO MOALO MODA MOIMO
ZDT1
Avg. Spread 1.4095 1.4769 1.4839 0.89417
SD of Spread 0.038734 0.038021 0.1671 0.1075
ZDT2
Avg. Spread 1.4492 1.4704 1.4719 0.85165
SD of Spread 0.049026 0.026366 0.083441 0.035557
ZDT3
Avg. Spread 1.1088 1.363 1.3287 1.0253
SD of Spread 0.055513 0.043786 0.17185 0.076027
ZDT4
Avg. Spread 0.88654 1.2407 1.3232 0.84776
SD of Spread 0.058543 0.074618 0.10319 0.056613
ZDT6
Avg. Spread 1.075 1.3359 1.3769 0.90682
SD of Spread 0.07035 0.091983 0.17152 0.038463
SCH1
SD of Spread 1.2704 1.5001 1.4519 0.87412
Avg. Spread 0.065065 0.059148 0.046144 0.044177
SCH2
SD of Spread 1.3494 1.6203 1.5984 1.001
Avg. Spread 0.070502 0.074842 0.0639 0.028742

Table 4
Results of the multiobjective algorithm (using spacing) on the unconstrained test functions

 104
 MOMVO MOALO MODA MOIMO
ZDT1
Avg. Spacing 0.088253 0.012002 0.013515 0.057615
SD of Spacing 0.12858 0.0086463 0.0059354 0.0083665
ZDT2
Avg. Spacing 0.18524 0.016203 0.035237 0.055014
SD of Spacing 0.38283 0.0042029 0.046016 0.014261
ZDT3
Avg. Spacing 0.12386 0.03244 0.049203 0.13544
SD of Spacing 0.030695 0.015926 0.03728 0.027096
ZDT4
Avg. Spacing 0.044365 0.044564 0.040731 0.052348
SD of Spacing 0.0044424 0.046192 0.039918 0.010145
ZDT6
Avg. Spacing 0.19458 0.15945 0.23784 0.071907
SD of Spacing 0.096783 0.10851 0.22936 0.0080407
SCH1
Avg. of Spacing 0.19661 0.082656 0.19319 0.46286
SD of Spacing 0.096635 0.041882 0.068511 0.067796
SCH2
Avg. of Spacing 1.472 0.071143 0.29546 2.0499
SD of Spacing 0.41896 0.094253 0.39373 0.87483

5.3. Results on Constrained Test Functions

The next group of test function comprises five constrained benchmark functions. We must include the constraint handling
method with MOIMO to make it capable of solving such problems. Identifying an appropriate constraint handling method
is out of the scope. In this work, a death penalty function (Carlos, 2000) is used to punish search agents that violate any of
the constraints at any stage. For equating algorithms, four metrics are applied in this research: GD, IGD, metric of spread
and metric of space. Table 5 to Table 8 present quantitative results. These performance pointers permit us to enumerate and
equate algorithms regarding diversification and intensification. Fig. 3 presents the shape of the best Pareto front achieved
by the four algorithms on constrained benchmark functions. Reviewing these figures, MODA presents poor performance,
notwithstanding its good coverage in a few cases. However, MOIMO and MOMVO both offer a better convergence close
to all true Pareto fronts.

Fig. 3. Best pareto front for constrained benchmark functions

Table 5
Results of the multiobjective algorithm (using GD) on the constrained test functions

 MOMVO MOALO MODA MOIMO
BEL
Avg. GD 7.4819e-05 0.00022544 0.0001356 0.00023102
SD of GD 4.8942e-05 0.00026187 0.0001369 0.00026533
BNH
Avg. GD 0.0022643 0.00094086 0.00061468 0.00039748
SD of GD 0.00032499 0.00030889 0.0003078 3.5912e-05
CF1
Avg. GD 0.005943 0.002448 0.002289 0.0020175
SD of GD 0.0010235 0.0001741 0.0002851 7.7036e-05
CONSTR
Avg. GD 0.00033082 0.00087881 0.0012952 0.00072863
SD of GD 4.0943e-05 0.00062172 0.00058203 0.00013165
OSY
Avg. GD 0.0078333 0.027875 0.04946 0.011565
SD of GD 0.00093499 0.018849 0.012052 0.0023181

Table 6

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

105

Results of the multiobjective algorithm (using IGD) on the constrained test functions
 MOMVO MOALO MODA MOIMO
BEL
Avg. IGD 0.0011629 0.0012543 0.0018785 0.00039751
SD of IGD 0.0001322 0.00030576 0.00082551 2.812e-05
BNH
Avg. IGD 0.0022643 0.0030569 0.0032425 0.0010153
SD of IGD 0.00032499 0.00073384 0.0011784 0.00010699
CF1
Avg. IGD 0.005943 0.0084038 0.0069698 0.0026365
SD of IGD 0.0010235 0.00089992 0.001894 0.00061807
CONSTR
Avg. IGD 0.00087387 0.0010705 0.0011423 0.00081589
SD of IGD 0.00014332 0.00014314 0.00040386 0.00026318
OSY
Avg. IGD 0.010584 0.0095221 0.011433 0.0070975
SD of IGD 0.0044182 0.0016712 0.0029412 0.0016022

Table 7
Results of the multiobjective algorithm (using spread) on the constrained test functions

 MOMVO MOALO MODA MOIMO
BEL
Avg. Spread 1.5036 1.4448 1.5583 0.92292
SD of Spread 0.023962 0.058427 0.095943 0.063347
BNH
Avg. Spread 1.4088 1.5122 1.4977 0.84389
SD of Spread 0.074574 0.014647 0.08599 0.062455
CF1
Avg. Spread 1.3621 1.517 1.4734 0.78473
SD of Spread 0.022836 0.040547 0.14169 0.065962
CONSTR
Avg. Spread 1.1651 1.2998 1.1346 0.9405
SD of Spread 0.048443 0.071313 0.06642 0.064704
OSY
Avg. Spread 0.93818 1.2396 1.2547 0.92908
SD of Spread 0.037576 0.10688 0.027483 0.034359

Table 8
Results of the multiobjective algorithm (using spacing) on the constrained test functions

 MOMVO MOALO MODA MOIMO
BEL
Avg. Spacing 0.0039105 0.0051075 0.010523 0.012261
SD of Spacing 0.0033895 0.0043164 0.021808 0.016845
BNH
Avg. Spacing 8.482 3.9153 4.2928 19.4547
SD of Spacing 5.4558 2.3859 2.8649 2.3896
CF1
Avg. Spacing 0.014848 0.0037717 0.0035515 0.0046881
SD of Spacing 0.024059 0.0026615 0.0021676 0.0018632
CONSTR
Avg. Spacing 0.78491 0.46369 0.76356 0.95727
SD of Spacing 0.2387 0.21466 0.30439 0.46124
OSY
Avg. Spacing 22.9733 5.2117 9.9368 31.2487
SD of Spacing 5.8054 3.2005 5.6156 5.9582

5.4. Engineering Benchmark Design Problems

The final set of benchmark functions is the most stimulating one comprising six real-world engineering design problems.
These problems have varied constrained characteristics. Table 9 to Table 12 present a quantitative comparison of all the
four algorithms for different performance indicators. The results in these tables are in line with those in the preceding
sections, in which the MOIMO approach generally presented superior convergence and coverage. Because of the difficulty
of these benchmark problems, the better results exceedingly sustenance the dominance of the MOIMO approach and its
applicability.

Fig. 4 presents the best Pareto optimal fronts for real-world engineering design problems. It may be seen in this figure that
MOIMO has better qualitative characteristics amongst all algorithms despite multimodal search space and the existence of
various limitations.
Table 9

 106

Outcomes of the multiobjective algorithm (GD) on the engineering design functions
 MOMVO MOALO MODA MOIMO
Design of 3-Bar Truss
Avg. GD 0.00081641 0.0014405 0.0011318 0.00062503
SD of GD 0.00055249 0.0010217 0.00050327 0.0004354
Brushless DC Machine Design Problem
Avg. GD 0.0013737 0.0018788 0.0043479 0.0027073
SD of GD 0.0013662 0.0005236 0.0011936 0.00062814
Pressure Vessel Design
Avg. GD 0.00154 0.0088965 0.0036704 0.0011863
SD of GD 0.00016098 0.004002 0.00096662 0.0001821
Satellite Pipe Design
Avg. GD 0.00060649 0.0010924 0.0032735 0.00063076
SD of GD 0.00030408 0.00054764 0.0028936 0.00016805
Welded Beam Design Problem
Avg. GD 0.0049408 0.0083299 0.0018358 0.0030226
SD of GD 0.0039537 0.0062062 0.00097582 0.00098187
Car Crash Design Problem
Avg. GD 0.0041605 0.076208 0.074507 0.059254
SD of GD 0.0015295 0.033869 0.0065088 0.018628

Fig. 4. Best Pareto front for real-world engineering benchmark functions

Table 10
Outcomes of the multiobjective algorithm (IGD) on the engineering design functions

 MOMVO MOALO MODA MOIMO
3 Bar Truss Design Problem
Avg. IGD 0.00081641 0.0014405 0.0011318 0.00062503
SD of IGD 0.00055249 0.0010217 0.00050327 0.0004354
Brushless DC Machine Design Problem
Avg. IGD 0.0013737 0.0018788 0.0043479 0.0027073
SD of IGD 0.0013662 0.0005236 0.0011936 0.00062814
Pressure Vessel Design
Avg. IGD 0.00047789 0.0014181 0.00074622 0.00037128
SD of IGD 3.914e-05 0.00043574 0.00016207 6.4527e-05
Satellite Pipe Design
Avg. IGD 0.00048671 0.00072714 0.00083374 0.00067951
SD of IGD 0.00015372 0.00014836 0.00015485 0.00046841
Welded Beam Design Problem
Avg. IGD 0.0055088 0.010773 0.014105 0.0044458
SD of IGD 0.003133 0.0039621 0.0062055 0.0030843
Car Crash Design Problem
Avg. IGD 0.0041605 0.0080252 0.005071 0.0021731
SD of IGD 0.0015295 0.0059468 0.0014011 0.00064515

Table 11

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

107

Outcomes of the multiobjective algorithm (Spread) on the engineering design functions
 MOMVO MOALO MODA MOIMO
3 Bar Truss Design Problem
Avg. Spread 1.2768 1.3753 1.4348 0.99958
SD of Spread 0.063482 0.06986 0.081976 0.037465
Brushless DC Machine Design Problem
Avg. Spread 1.0505 1.1656 0.89866 0.88668
SD of Spread 0.069106 0.096319 0.087243 0.065443
Pressure Vessel Design
Avg. Spread 0.99371 1.3947 0.73348 0.7553
SD of Spread 0.032797 0.057863 0.063679 0.05195
Satellite Pipe Design
Avg. Spread 1.0261 1.2965 1.4348 0.90803
SD of Spread 0.055868 0.10855 0.068078 0.034882
Welded Beam Design Problem
Avg. Spread 1.0644 1.322 1.2264 0.78972
SD of Spread 0.10156 0.047291 0.22633 0.019262
Car Crash Design Problem
Avg. Spread 1.0185 1.2545 1.1225 0.79357
SD of Spread 0.073509 0.090501 0.13589 0.093567

Table 12
Outcomes of the multiobjective algorithm (Spacing) on the engineering design functions

 MOMVO MOALO MODA MOIMO
3 Bar Truss Design Problem
Avg. Spacing 161.0758 48.0183 134.1771 409.7276
SD of Spacing 40.4036 24.9562 62.3906 104.2308
Brushless DC Machine Design Problem
Avg. Spacing 1.5504 0.58266 1.0003 1.545
SD of Spacing 0.3786 0.19288 0.74956 0.36674
Pressure Vessel Design
Avg. Spacing 8346712.3552 2309040.2674 8599005.8531 9895393.2942
SD of Spacing 2829417.1318 385083.5572 2754131.991 1831215.4646
Satellite Pipe Design
Avg. Spacing 209.9238 109.1347 87.9714 270.4866
SD of Spacing 71.5969 64.8868 57.9485 75.78
Welded Beam Design Problem
Avg. Spacing 5.7868 2.7399 2.0075 6.5448
SD of Spacing 1.6432 1.4783 2.1302 2.7005
Car Crash Design Problem
Avg. Spacing 2.9978 1.4769 4.0722 5.5785
SD of Spacing 0.61387 0.92514 0.40501 1.0367

Fig. 5 presents the overall performance comparison of all the algorithms in terms of best values of performance indicators
and its (their) standard deviation over 10 independent runs. MOIMO obtains the best value of average GD and IGD for 8
and 13 times, respectively. GD and IGD are indicators of proximity to the true Pareto front. For 17 instances, MOIMO
obtains the best value of spread presenting better coverage and convergence in all algorithms. MoS reflects the coverage of
solutions. For 14 cases, MOIMO gets the best values of MoS. Except for MoS, for all three performance indicators, MOIMO
presents minimum standard deviation proving the consistency of results. Thus, we can conclude that MOIMO provides the
best results across all the algorithms for the majority of performance indicators.

Fig. 5. Overall performance comparison of all the algorithms for benchmark test functions

To sum up, the outcomes demonstrate that MOIMO is highly capable and modest compared to the existing well-regarded
approaches. High coverage and convergence can be two key reasons behind it. Higher convergence is the result of leader

 108

selection strategy wherein candidate solutions update their position considering the best non-dominated solution. High
coverage is the result of storage maintenance and leader selection strategy. Since the leader is selected from the least
populated region and solutions are removed from the dense area, the MOIMO has better coverage and diversity in all
objectives. Despite all these merits, the present version of MOIMO can be applied to maximum four objectives. With an
increasing number of objectives, MOIMO becomes less effective. This is because, for problems with more than four
objectives, the archive gets full very quickly on account of a considerable number of non-dominated solutions. Besides, this
approach is appropriate only for an objective function with a continuous variable and requires necessary changes for
application on problems with discrete variables. The findings evidenced that MOIMO can be very useful for optimizing
multiobjective problems. The MOIMO approach presented better coverage (diversification) and convergence
(intensification). The superior intensification of MOIMO is owing to the updating solutions about the best non-dominated
solutions attained up to now. The solutions move towards the best solutions. Also, the high convergence initiates from the
adaptive mechanism, which quickens the travels of ions to the best non-dominated solutions obtained up to now in the
storage. The storage maintenance and leader selection strategy result in higher coverage. It is worth stating here that as the
updating mechanism of the ions in MOIMO is like IMO, MOIMO receives good exploration, local solutions evasion, fast
convergence, and exploitation from this algorithm. Apart from convergence and coverage, algorithms are compared in terms
of computational time in Table 13. For five different instances, MOIMO takes minimum simulation time, while for 12
examples, it stands second closely following the MOMVO. Thus, in terms of computational time, MOIMO presents
excellent performance.

Table 13
Comparison of algorithms in terms of computational time

Sr. No. Benchmark test function Algorithms
MOMVO MOALO MODA MOIMO

1 ZDT1 12.6218 15.350 63.934 16.993
2 ZDT2 1.889 2.5875 10.381 2.3625
3 ZDT3 0.9187 3.0265 15.073 1.545
4 ZDT4 0.6656 1.8812 5.6312 1.2562
5 ZDT6 1.215 2.484 11.435 2.0421
6 SCH1 2.5593 3.0031 4.7359 1.9218
7 SCH2 3.843 3.9687 7.6031 2.8219
8 BEL 2.1125 2.9188 11.9688 2.3688
9 BNH 4.3250 5.7266 16.5813 4.6016
10 CF1 4.9531 7.7188 21.8906 5.3438
11 CONSTR 4.4063 7.0156 17.1875 3.4531
12 OSY 2.375 5.0313 38.875 1.7813
13 3-bar truss design 11.875 12.5938 47.7188 11.9375
14 Brushless DC motor design 15.7656 28.1094 108.2813 7.8125
15 Car crash design 8.9219 13.3750 67.9531 10.2031
16 Pressure vessel design 11.0469 23.8125 86.4531 14.4844
17 Satellite pipe design 20.2344 28.7656 180.4063 15.1563
18 Welded beam design 6.5 14.7344 121.8438 6.8281

6. Conclusion

This effort projected a physics-inspired multiobjective approach is imitating the interaction of ions. A storage and leader
selection strategy were then combined into a single objective IMO approach to solving multiobjective problems. A group
of unconstrained, constrained and engineering benchmark functions were employed to assess the performance of the
MOIMO. The outcomes of MOIMO are compared with those of MODA, MOMVO and MOALO. It was evident that the
MOIMO algorithm is very competent and modest in determining an exact estimation of Pareto optimal front with uniform
dispersal across all objectives with minimum simulation time.

Furthermore, the high convergence of MOIMO results in precisely estimated solutions and the uniform distribution is owing
to the excellent exploration. Also, leader selection and storage preservation endorse the spreading of solutions. Examination
of various constraint handling methods to solve MOOP using MOIMO can be an excellent future work. Also, the proposed
approach can be applied to solving real-world problems.

Acknowledgment
The authors would like to thank Professor Seyedali Mirjalili and Shri Pradeep Jangir for their valuable support.

H. Buch and I. Trivedi / Decision Science Letters 10 (2021)

109

References

 Akbari, R., Hedayatzadeh, R., Ziarati, K., & Hassanizadeh, B. (2012). A multi-objective artificial bee colony algorithm.

Swarm and Evolutionary Computation, 2, 39-52.
Buch, H., & Trivedi, I. (2020). A new non-dominated sorting ions motion algorithm: Development and applications.

Decision Science Letters, 9(1), 59-76.
Coello, C. A. C. (2011). An introduction to multi-objective particle swarm optimizers. In Soft computing in industrial

applications (pp. 3-12). Springer, Berlin, Heidelberg.
Coello, C. A. C., & Cortés, N. C. (2005). Solving multiobjective optimization problems using an artificial immune system.

Genetic Programming and Evolvable Machines, 6(2), 163-190.
Coello, C. C., & Lechuga, M. S. (2002, May). MOPSO: A proposal for multiple objective particle swarm optimization. In

Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1051-1056).
IEEE.

Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in
Industry, 41(2), 113-127.

Coello, C. A. C. (2009). Evolutionary multi-objective optimization: some current research trends and topics that remain to
be explored. Frontiers of Computer Science in China, 3(1), 18-30.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and T Meyarivan. 2000. “A Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization: NSGA-II.” In Parallel Problem Solving from Nature PPSN VI, eds. Marc
Schoenauer et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 849–58.

Dorigo, M., & Di Caro, G. (1999, July). Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 congress
on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470-1477). IEEE.

Javidy, B., Hatamlou, A., & Mirjalili, S. (2015). Ions motion algorithm for solving optimization problems. Applied Soft
Computing, 32, 72-79.

Knowles, J., & Corne, D. (1999, July). The pareto archived evolution strategy: A new baseline algorithm for pareto
multiobjective optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406) (Vol. 1, pp. 98-105). IEEE.

Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete,
and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.

Mirjalili, S., Jangir, P., Mirjalili, S. Z., Saremi, S., & Trivedi, I. N. (2017). Optimization of problems with multiple objectives
using the multi-verse optimization algorithm. Knowledge-Based Systems, 134, 50-71.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A
bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.

Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm
for solving engineering problems. Applied Intelligence, 46(1), 79-95.

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global
optimization. Neural Computing and Applications, 27(2), 495-513.

Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm
for multi-criterion optimization. Expert Systems with Applications, 47, 106-119.

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper optimization algorithm for multi-
objective optimization problems. Applied Intelligence, 48(4), 805-820.

Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005, November). Pareto multi objective optimization. In Proceedings of the
13th International Conference on, Intelligent Systems Application to Power Systems (pp. 84-91). IEEE.

Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization (No. AFIT/CI/CIA-
95-039). Air Force Inst of Tech Wright-Patterson AFB OH.

Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms.
Evolutionary computation, 2(3), 221-248.

Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations.
IRE Transactions on Education.

Nanda, S. J. (2016, September). Multi-objective moth flame optimization. In 2016 International conference on Advances
in computing, communications and informatics (ICACCI) (pp. 2470-2476). IEEE.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary
computation, 1(1), 67-82.

Zhang, M., Wang, H., Cui, Z., & Chen, J. (2018). Hybrid multi-objective cuckoo search with dynamical local search.
Memetic Computing, 10(2), 199-208.

Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2013). Multi-objective optimization using teaching-learning-based
optimization algorithm. Engineering Applications of Artificial Intelligence, 26(4), 1291-1300.

 110

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

