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 This paper offers a novel multiobjective approach – Multiobjective Ions Motion Optimization 
(MOIMO) algorithm stimulated by the movements of ions in nature. The main inspiration behind 
this approach is the force of attraction and repulsion between anions and cations. A storage and 
leader selection strategy is combined with the single objective Ions Motion Optimization (IMO) 
approach to estimate the Pareto optimum front for multiobjective optimization. The proposed 
method is applied to 18 different benchmark test functions to confirm its efficiency in finding 
optimal solutions. The outcomes are compared with three novel and well-accepted techniques in 
the literature using five performance parameters quantitatively and obtained Pareto fronts 
qualitatively. The comparison proves that MOIMO can approximate Pareto optimal solutions 
with good convergence and coverage with minimum computational time. 
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1. Introduction 

The optimization process looks for finding the minimum or maximum value for single or multiple objectives. Multiobjective 
optimization refers to optimizing numerous objectives which are often conflicting in nature. Such problems are found in 
engineering, mathematics, economics, agriculture, politics, information technology, etc. Also, sometimes, the truly 
optimum solution may not be available at all. In such cases, compromise and estimates are frequently required. 
Multiobjective optimization is much more complicated than single-objective optimization because of the existence of 
multiple optimum solutions. At large, all solutions are conflicting, and hence, a group of non-dominated solutions is required 
to be found out to approximate the true pareto front. Heuristic algorithms are derivative-free solution approaches as they do 
not use gradient descent to determine the global optimal. Metaheuristic approaches treat the problem as a black box for 
given inputs and outputs. Problem variables are inputs while objectives are outputs. Many competent metaheuristic 
approaches were proposed in the past to solve the multiobjective optimization problem. A heuristic approach starts problem 
optimization by creating an arbitrary group of initial solutions. Every candidate solution is evaluated, objective values are 
observed, and based on the outputs, the candidate solutions are modified/changed/combined/evolved. This process is 
continued until the end criteria are met.  

There are various difficulties associated while solving the problem using heuristics. Even optimization problems have 
diverse characteristics. Some of the challenges are constraints, uncertainty, multiple and many objectives, dynamicity. Over 
a while, global optimum value changes in dynamic problems. Hence, the heuristic approach should be furnished with a 
suitable operator to keep track of such changes so that the global optimum is not lost. Heuristic approaches should also be 
fault-tolerant to deal with uncertainty effectively. Constraints divide the search space into viable and unviable solutions. 
The heuristic approach should be able to discard the unsustainable solution and ultimately discover the best optimum 
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solution. Researchers have also proposed surrogate models to reduce computational efforts for computationally expensive 
functions. The idea of a Pareto dominance operator is introduced to compare more than one objective. The heuristic 
approach should be able to find all the best Pareto solutions. The proper mechanism should be incorporated with heuristic 
approaches to deal with multiobjective problems. Archive or storage is necessary to stock the non-dominated solutions 
found through optimization. Quantity and quality of the best solutions are enhanced by updating the archive residents in 
every iteration. Another desired characteristic of a multiobjective heuristic approach is to determine several solutions. In 
other words, the Pareto solutions should binge uniformly across all the objectives.  

There are many multiobjective algorithms reported in the literature. The popular algorithms are Multiobjective Particle 
Swarm Optimization (MOPSO) (Coello 2011), Non-dominated Sorting Genetic Algorithm (NSGA) (Deb et al. 2000; 
Srinivas and Deb 1994), Multiobjective Ant Colony Optimization (MOALO) (Dorigo and Di Caro 1999), Multi-objective 
Grey Wolf Optimizer (MOGWO) (S. Mirjalili et al. 2016), Multiobjective Dragonfly Algorithm (MODA) (S. Mirjalili 
2016), Multiobjective Multi-Verse Optimizer (MOMVO) (S. Mirjalili, Jangir, et al. 2017), Hybrid Multi-objective Cuckoo 
Search (HMOCS) (Zhang et al. 2018), Multiobjective Teaching-Learning based Algorithm (Zou et al. 2013), Multiobjective 
Artificial Bee Colony Algorithm (Akbari et al. 2012), Multiobjective Grasshopper Algorithm (S. Z. S. Mirjalili et al. 2018), 
Multiobjective Moth Flame Optimization (MOMFO) (Vikas and Nanda 2016), Multiobjective Salp Swarm Optimization 
(S. Mirjalili, Gandomi, et al. 2017) and Non-dominated Sorting Ions Motion Algorithm (Buch and Trivedi 2020). All these 
algorithms have proved their efficiency in solving the multiobjective problem. Then a question may arise: Is any new 
algorithm required still? According to the No Free Lunch (NFL) algorithm (Wolpert and Macready 1997), no algorithm can 
solve problems of all kinds. Thus, this algorithm allows proposing new algorithms or enhancement of existing ones.  

The Ions Motion Algorithm (IMO) (Javidy, Hatamlou, and Mirjalili 2015) has a great exploration with fast convergence 
speed. The liquid and crystal phase smartly balance the exploration and exploitation stage. These features make the IMO 
deal with a multiobjective optimization problem potentially. Even the computational difficulty is lesser than several 
optimization procedures reported in the literature. Such commanding features inspired us to develop a multiobjective 
version of the existing single objective IMO. In this paper, the proposed algorithm is compared with other well-regarded 
recent optimization algorithms qualitatively and quantitatively. The remaining paper is arranged thus: Section 2 discusses 
the multiobjective optimization problem and associated terminology. Section 3 introduces the single objective IMO. Section 
4 proposes a novel multiobjective IMO. Findings based on various performance indicators are discussed in Section 5. 
Section 6 concludes the work and suggests future work.  

2. Introduction to Multiobjective Optimization Problem (MOOP) 
 
In the single-objective optimization, there is a global optimum unique solution. The reason for this is the presence of only 
one objective in single-objective optimization problems and the existence of the most excellent unique answer. Evaluation 
of solutions is simple as there is only one goal and can be completed by the relational operators: ≥, >, ≤, <, or =. Such 
problems permit optimization issues to suitably relate the aspirant solutions and ultimately determine the finest one. While 
in MOOP, though, the answers should be equated with multiple criteria. Multiobjective minimization problem can be stated 
as follows: 
 

{ }1 2min ( ) ( ), ( ),..., ( )nF x f x f x f x=
   

 (1) 

subject to  
( ) 0     1, 2,3,....,ia x i m≥ =  (2) 

( ) 0    1, 2,3,....,ib x i p= =  (3) 

   1, 2,3,...,ib i ibL x U i q≤ ≤ =  (4) 

 
Here, q  presents a number of variables, 1 2( ), ( ),..., ( )nf x f x f x

  
 introduces some objective functions, m  and p  show 

some inequality and equality constraints. ibL and ibU  give lower and upper limits of the variable. Such kind of problems 
foil us from equating results utilizing the relational operators as there are multiple criteria to evaluate solutions. In a single 
objective optimization problem, a better solution can be found using a relational operator, but with various objectives, some 
additional operator(s) is(are) required. The primary operator to equate two solutions bearing in mind multiple objectives is 
called Pareto optimal dominance and is described as (Carlos A Coello Coello 2009):  

The definition I: Pareto Dominance 

Let us assume two vectors 1 2 1 2( , ,..., ) and ( , ,..., )k ka a a a b b b b= =
 
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Vector a  dominates b  if and only if:  

{ } { }1, 2,..., : ( ) ( ) 1,2,..., : ( ) ( )i i i ii k f a f b i k f a f b   ∀ ∈ ≤ ∧ ∃ ∈   
   

  (5) 

By exmining Eq. (5),  it may be concluded that one solution is superior to another solution if it has equal, and nonetheless, 
one improved value in the objectives. Under such a situation, one solution dominates another solution; otherwise, the two 
solutions are called Pareto optimal or non-dominated solutions. The answers to the multiobjective problem are Pareto 
optimal solutions. Hence, the Pareto optimality is defined as follows.  

Definition II: Pareto optimality (Pareto efficiency) (Ngatchou, Zarei, and El-Sharkawi 2005) 

Assuming ,  a A a∈  is Pareto optimal solution if and only if:  

{ } b A b a∈
  

  
(6) 

Pareto optimality or Pareto efficiency is a state of distribution of solutions from which it is not possible to achieve 
improvement in any one single objective or preference criterion without deterioration in a specific objective or choice 
criterion. Such a solution set is known as the Pareto optimal set. The prognosis of the Pareto optimal solutions in the 
objective search space is called Pareto optimal front.  

The definition III: Pareto optimal set (Mirjalili et al., 2017) 

The Pareto optimal set comprises a set of Pareto optimal solutions. Mathematically, 

{ }: ,  PS a b A b a= ∈
   

  
(7) 

 The definition IV: Pareto optimal front (Mirjalili et al., 2017) 

This set consists of objective values for the solutions in the Pareto solutions set. Mathematically, it can be presented as:  

{ } { }1,2,3,..., , : ( )ii n PF f a a PS∀ ∈ = ∈
 

 
(8) 

A quick and easy comparison of solutions of multiobjective optimization can be made with the above four equations. The 
group of variables, constraints and objectives create a search landscape. Considering the difficulties associated with the 
representation of search space for the problems with more than one objective, the researchers consider two search spaces: 
goal and parameter space. Likewise, in single-objective optimization, the range of variables regulates the limits of the search 
space in each dimension while restraints divulge them.  

The overall outlines of all population-based multiobjective algorithms nearly match. They begin the optimization procedure 
with multiple candidate solutions. Such solutions are equated utilizing the Pareto dominance operator. In every phase of 
optimization, the repository/storage stores non-dominated solutions and the algorithm attempts to enhance them in the 
subsequent iteration(s). Different search approaches distinguish one algorithm from another to augment the non-dominated 
solutions. 
  
3. Single-objective Ions Motion Algorithm (IMO) 
 

This section first introduces the single-objective IMO algorithm. The next section presents the multiobjective form of single-
objective IMO.  

3.1.  Ions Motion Algorithm  
 
In 1834, Michael Faraday coined the Greek term ‘ion’. Typically, the charged particles are known as ions and can be 
separated into two categories: cations – ions with positive charge and anions – ions with a negative charge. Fig.  1 presents 
a conceptual model of force between cations and anions. The primary stimulus of the Ions Motion Algorithm is a force of 
attraction and repulsion between unlike and like charges, respectively. Javidy et al. (2015) proposed the population-based 
IMO approach stimulated by these characteristics of ions in nature.  
 
In the IMO algorithm, anions and cations form the candidate solutions for a given optimization problem. The force of 
attraction/repulsion moves the ions (i.e., candidate solutions) around the search space. The ions are assessed keeping in 
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mind the fitness value of the objective function. Anions tend to move towards the best cations while cations tend to move 
towards the best anions. This movement depends upon the force of attraction/repulsion between them. Such an approach 
guarantees improvement over iterations but does not guarantee the required exploration and exploitation of search space. 
Liquid and crystal are two different phases assumed to ensure necessary exploitation and exploration of search space.  
 
 

 
 

Fig.  1. Conceptual model of the force of attraction and repulsion 

3.1.1. Liquid Phase 
 
The liquid phase provides more freedom to the movement of ions, and hence, in the liquid stage, the ions can pass quickly.  
Also, the force of attraction is much more than the force of repulsion. Thus, the force of repulsion can be neglected to 
explore the search space. The distance between two ions is the only key factor considered to compute the force of attraction. 
So the resulting mathematical model can be proposed as: 
 

,
, 0.1

1

1 i j
i j

Pd
Pf

e
−=

+
 

(9) 

,
, 0.1

1

1 i j
i j

Qd
Qf

e
−=

+
 

(10) 

Where P and Q present parameters related to anions and cations, respectively.  , ,i j i j jPd P Qbest= −  and 

, ,i j i j jQd Q Pbest= − . i  and j  present ion index and dimension, respectively.  ,i jP d is the distance between ith  

anion from the best cation in jth  dimension,  ,i jQd  calculates the distance between ith  the cation from the best anion in 

jth  dimension. As presented in Eq. (9) and Eq. (10), force is inversely proportional to distances among ions. Larger the 
distance, lesser is the force of attraction. In other words, the force of attraction becomes less when the distance grows higher 
from the best ion with the opposite charge.  
 
According to Eq. (9) and Eq. (10), the value of force varies between 0.5 to 1. ,i jPf  and ,i jQf  are the resultant attraction 
forces of anions and cations, respectively. After force calculation, the position of positive and negative ions is updated as 
per the following equations:  
 

( ), , , ,i j i j i j j i jP P Pf Qbest P= + −  (11) 

( ), , , ,i j i j i j j i jQ Q Qf Pbest Q= + −  (12) 

 
,i jPf  and ,i jQf are the resulting attraction forces between opposite ions while jQbest and jPbest present the best 

cations and anions, respectively. The attraction force between ions guarantees exploration. Referring to Eqs. (9-12), the 
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conclusion can be drawn that in the liquid phase, there is no involvement of the random component. Fig. 2 presents an 
abstract model of the movement of ions in the liquid stage. With an increasing number of iterations, more and more ions 
start interacting, converging towards the best ion with an opposite charge, and hence, exploration gradually decreases. This 
phenomenon is precisely like a conversion from liquid to crystal state observed in nature. The search agents, i.e., ions, also 
enter crystal state, finally converging towards the best solution in search space.  
 

 
 

Fig.  2. Ions movement towards the best ions in the liquid phase 

 

3.1.2. Crystal Phase  
 
In this stage, the ions congregate to the optimal solution. Convergence has already taken place. Since the search space has 
an unknown form, occasionally convergence gets trapped into local minima. A separate mechanism is proposed at the 
crystal stage to avoid trapping of solutions in local minima. The cations and anions in the crystal phase are organized to 
maximize their force of attraction. When an outside force is applied to the same charges in the crystal phase, the resultant 
repulsion force cracks the crystal apart. Mathematically, the mechanism to overcome local optimum trapping can be 
demonstrated as below: 
 
if (QbestFit  ≥ QworstFit/2 and PbestFit  ≥  PworstFit/2) 
  if rand () ˃ 0.5 

 ( )1 1i iP P Qbestϕ= + × −    
 else  

   ( )1i iP P Qbestϕ= + ×  
               end if 

  if rand () ˃ 0.5 
                             ( )2 1i iQ Q Pbestϕ= + × −                                   (13) 

                       else  
  ( )2i iQ Q Pbestϕ= + ×  
          end if  
                      if rand () ˂ 0.5 

                 Re-initialize Pi and Qi 
             end if 

end if  
Where, 1ϕ  and 2ϕ  are random numbers between [ ]1,1−  and ( )rand  is a random number between [ ]0,1 . Q bestF it  

and Q w orstF it  present fitness of the best and worst cations. PbestFit  and PworstFit  are the fitness of best and 
worst anions. The best fitness of anions and cations should be better than or equal to the average competence of the worst 
anions and cations. If this situation is met, ions are arbitrarily navigated in search space to circumvent stagnation adjacent 
to local minima. Again, ions enter the liquid state until termination criteria are met.  

It should be noticed here that in Eq. (13), four, instead of two, conditions are proposed to achieve different behavior of the 
proposed algorithm. These four conditions are presented below: 
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1. Both first if-else statements are met:  
( )1 1i iP P Qbestϕ= + × −  

( )2 1i iQ Q Pbestϕ= + × −  

2. Only the first if-else statement is met:  
( )1 1i iP P Qbestϕ= + × −  

( )2i iQ Q Pbestϕ= + ×  

 
3. Only the second if-else statement is met:  

( )1i iP P Qbestϕ= + ×  

( )2 1i iQ Q Pbestϕ= + × −  

 
4. Both conditions are not met:  

( )1i iP P Qbestϕ= + ×  

( )2i iQ Q Pbestϕ= + ×  

 
In contrast, merging the first two if-else statements will result in only two conceivable combinations:  

5. Collective if-else sentences are fulfilled: 
( )1 1i iP P Qbestϕ= + × −  

( )2 1i iQ Q Pbestϕ= + × −  

 
6. Combined if-else sentences are not fulfilled: 

( )1i iP P Qbestϕ= + ×  

( )2i iQ Q Pbestϕ= + ×  

 
Thus, splitting two conditions into four provide different behavior for the IMO which helps avoid local optimal entrapment. 
Fig. 3 presents the standard steps of the Ions Motion Algorithm. The IMO starts with a random group of solutions. The 
arbitrary collection of solutions during initialization is generated using ( )i i ir ub lb lb− +  where r  is a random number 

with uniform distribution in the interval ( )0,1 . iub  and ilb  represent upper and lower bound respectively of i th variable. 

At this phase, ions are equally separated into a set of anions and cations, respectively. The fitness of each anion and cation 
is calculated, and according to fitness, the best and worst anions/cations are selected and saved. The attraction forces and 
positions are updated using Eqs. (9-12). During each iteration, if the condition of the crystal phase is met, the ions go into 
the crystal phase. Till the satisfaction of termination criteria, ions keep going between solid and liquid phases. In the end, 
the best ion is reported as the best approximation of the global solution.  

4. Multiobjective Ions Motion Algorithm (MOIMO) 
 

The single objective IMO algorithm can drive ions towards the best ion and update it throughout the iterations. But, this 
approach cannot solve multiobjective problems mainly owing to the following two reasons:  

• IMO cannot store multiple best solutions as it preserves a unique solution as the optimum solution.  
• IMO updates the ion position concerning the unique best solution attained up to now during each iteration, but 

MOOPs have no single best solution.  
 

The first limitation is handled by incorporating the IMO algorithm with the storage of ions. This storage preserves the best 
non-dominated solutions attained so far throughout optimization and is very close to the archive (storage) mechanism 
employed in MOPSO ( Coello & Lechuga 2002) and Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 
1999). The storage has the maximum storage capacity to stock the limited quantity of solutions. Throughout optimization, 
every ion is compared with every storage element using Pareto dominance operators. Such a comparison may provide us 
following different cases:   
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Fig. 3. The standard procedure of the IMO algorithm 

1. If the new solution dominates archive residents, then they should be swapped.  
2. If the new solution leads a group of solutions in the storage, they all should be deleted from the storage, and a new 

solution should be added in the storage.  
3. If the storage is full and the new solution is non-dominated in comparison with the storage elements, then the most 

straightforward means is to remove any solution randomly and swap it with the new non-dominated solution. 
However, as the apriori method should be able to determine uniformly dispersed Pareto front, the best candidate 
to be eliminated from the storage is the one in the densest area. Such a technique will improve the distribution of 
repository residents throughout the iterations.  

The number of neighboring solutions with a specified maximum distance is counted and assumed to find the non-dominated 
solution(s) with a populated neighborhood. This distance is calculated by 𝑑 = ௠௔௫ି௠௜௡௥௘௣௢௦௜௧௢௥௬ ௦௜௭௘   where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are 
two vectors for storing maximum and minimum objective values, respectively. The storage with one solution in each 
segment is an ideal case. Based on the number of neighboring repository residents, each solution is assigned a rank. 
After assigning a rank to every storage element depending upon the number of neighboring solutions, a roulette wheel 
mechanism is employed to choose one of them. Higher the rank of a solution, higher the likelihood of eliminating it 
from the storage.  

The second component is a leader selection strategy that assists in choosing the best ions as there are multiple best solutions 
in a multiobjective search space. Again, the ion can be selected arbitrarily from the storage. However, a more suitable 
method is to choose an answer from the least populated region. A similar mechanism is applied using the roulette wheel 
selection and the same ranking process. The main difference between archive maintenance and leader selection is that in 
archive maintenance, the solution is likely to be chosen from the crowded neighborhood while in contrast, for leader 
selection strategy, the solution is expected to be selected from a less crowded area. Fig. 4 presents a schematic representation 
of an archive-based plan for a multiobjective optimization approach.  

In a nutshell, the MOIMO approach first generates the population of ions concerning the upper and lower bounds of 
variables. This approach then computes the objective values of each ion and determines the non-dominated ones. If the 
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storage has a vacancy, then the non-dominated solutions are added into it. If the storage is completely occupied, the archive 
maintenance is run to remove the solution with a crowded neighborhood. In this case, the solutions are ranked and chosen 
through a roulette wheel. After eliminating the required number of solutions from the storage, the new solutions are added 
to the storage. After updating the storage, an ion is selected from the non-dominated solutions having the least crowded 
neighborhood. The next step is to update the positions. All the above steps are repeated (except initialization), till the 
termination criteria are met.  

 

Fig. 4. Schematic representation of archive-based multiobjective optimization algorithm 

The following vital observations can be made regarding the MOIMO algorithm:  

1. The non-dominated solutions attained are deposited in storage, so they never get lost even if the whole population 
worsens during an iteration.  

2. The solutions with the dense neighborhood are rejected whenever storage maintenance is called. This results in 
refining the diversity of non-dominated solutions across all objectives.  

3. The best anion and cation are selected from the list of repository members having the smallest number of 
neighboring solutions which concentrates the search to the less dense regions of the Pareto front and thus enhances 
the diversification.  

4. MOIMO inherits the search mechanism from basic IMO.  
The computational complexity of MOIMO is O(PQ2), where P and Q are numbers of objectives and solutions, respectively. 
Thus, computational complexity is comparable to PAES (Knowles and Corne 1999)  and MOPSO (C A Coello Coello and 
Lechuga 2002). With the procedure mentioned above, MOIMO can find Pareto optimal solutions, store them in the 
repository and enhance their dispersal. The next section discusses the performance of MOIMO on the standard benchmark 
functions.  

5. Findings on Test Functions  
 

5.1.  Experimental Setup 
 

Various benchmark test functions having diverse characteristics are employed to scrutinize the performance of 
multiobjective optimization algorithms as different test functions can challenge an algorithm from different standpoints. 
The benchmark functions used are (Mirjalili et al., 2016):  

• Unconstrained multiobjective test functions (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, SCH1, SCH2)  
• Constrained multiobjective test functions (BEL, BNH, CONSTR, CF1, OSY) 
• Engineering design multiobjective problems (3 Bar Truss, Brushless DC Wheel Motor, Pressure Vessel, Satellite 

Pipe, Welded Beam, Car Crash Design Problem) 
 
The performance of MOIMO is compared with other well-regarded algorithms in literature like MOMVO (S. Mirjalili, 
Jangir, et al. 2017), MODA (S. Mirjalili 2016), and MOALO (S. Mirjalili, Jangir, and Saremi 2017). The results are 
evaluated quantitatively and qualitatively. For qualitative comparison, the best Pareto optimal front over ten independent 
runs is chosen. However, the qualitative comparison does not indicate how much an algorithm is better than the other one. 
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And hence, different quantitative performance indicators are employed. The first metric is the Generational Distance (GD) 
(Van Veldhuizen 1999). GD is calculated between the true Pareto front and obtained the Pareto front. It calculates the 
average distance between the obtained Pareto front and the true Pareto front and can be mathematically presented as:  
 

( )( )1

k
ip

d
GD

k
==


 

 
(14) 

 
where,  

( )
1

22

. .
1

n
o t

i i p i p
i

d PF PF
=

 = − 
 
  

 

(15) 

Here k is the number of Pareto solutions, n is the number of objective functions, .
o

i pPF indicate the 
thp  obtained Pareto 

solution for the ith objective, and .
t

i pPF  indicate the nearest point on the true Pareto front from .
o

i pPF .  

                                        

Fig. 5. Schematic representation of (a) Generational Distance (GD) (b) Inverse Generational Distance (IGD) and (c) 
spread 

Another indicator used is Inverse Generational Distance (IGD) (Coello and Cortés 2005). It calculates the distance between 
each element of the obtained front from the true Pareto front keeping true Pareto front as a reference. It is mathematically 
defined as: 

2

1

Q

i
i

d
IGD

Q
==


 

 

(16) 

where Q  presents the number of solutions in the true Pareto front and id   is the Euclidean distance between each of the 
solutions in true Pareto front and the nearest member from the set of non-dominated solutions found by the algorithm. The 
IGD measures both the diversity and the convergence of an obtained non-dominated solution set. The smaller value of IGD 
presents closeness between true and obtained Pareto front.   

Spread (Deb, 2001) and spacing (S) (Schott, 1995) help measure coverage. Coverage helps identify the distribution of 
obtained solutions over true Pareto front. Mathematically, the spread is defined as:  

1 2

1
( 1)

n kex
j pj p

n ex
jj

d d d

d k d
= =

=

+ −
Δ =

+ −

 


 
 

(17) 

Here, pd  is the Euclidian distance between two consecutive points on the obtained Pareto front and 
ex
jd is the Euclidian 

distance between the obtained Pareto front and true Pareto front. d is the average of pd . Spread verifies the condition for 
the obtained Pareto front to cover the true Pareto front. Smaller the value of spread, better the spread, i.e., the uniform 
distribution of obtained solutions. Another indicator, i.e., the spacing is defined as:  
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( )2

2

1
1

k

p
p

S D D
k =

= −
−   

 
(18) 

Here, pD is the absolute difference between two consecutive solutions in the obtained Pareto front. It is defined as:  

( )
0 0

.. 1

n

p i pi p
i

D PF PF−= −  

 

(19) 

where, D  is the average of all pD. Spacing specifies the spread of the obtained Pareto front. The higher value of S  
indicates the better coverage of the obtained Pareto solutions. Fig. 5.  schematically represents the generational distance, 
inverse generational distance and spread.  Each algorithm is run for 10 independent times for 200 iterations each. The 
archive size and the number of search agents are set to 100 for constrained and unconstrained functions while they are set 
to 200 for real-world benchmark functions. For a fair comparison, the population size is set to 100 for constrained and 
unconstrained benchmark functions. For real-world engineering design problems, the population size is set to 200. The 
results are tabulated in the next subsections and the best values are highlighted in bold.  
5.2.  Results on Unconstrained Test Functions  
 

The first set of test problems contain unconstrained standard benchmark functions. Seven different benchmark functions, 
i.e., ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, SCHN1 and SCHN2 are employed to check the performance of the MOIMO. Fig. 
6.  and Table 1 to Table 4  present qualitative and quantitative performance assessment for the unconstrained test functions. 
As shown in Fig. 6. , for all the unconstrained test functions, MOIMO provides better coverage as compared to the rest of 
the algorithms. In one of the most challenging test functions, i.e., ZDT3, MOIMO provides uniform coverage in all the 
algorithms.  

 

  

  
Fig. 6. Best Pareto front for unconstrained benchmark functions 

While analyzing the results quantitatively, it is seen that, for most performance indicators, the MOIMO provides 
significantly better results than the rest of the algorithms. MOIMO is compared for the average value of each performance 
indicator and standard deviation obtained over 10 independent runs. These results display the superiority of MOIMO 
showing higher accuracy and better robustness. Thus, MOIMO has the potential to outclass the rest of the algorithms in 
achieving Pareto optimal front with non-convex non-uniform regions. 

 
 
 Table 1  
Results of the multiobjective algorithm (using GD) on the unconstrained test functions 
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 MOMVO MOALO MODA MOIMO 

ZDT1 

Avg. GD 0.0065457 0.00010694 9.4009e-05 0.00015758 

SD of GD 0.013886 2.207e-05 3.6339e-05 7.1257e-05 

ZDT2 

Avg. GD 0.017519 8.2369e-05 0.0018219 9.6513e-05 

SD of GD 0.038833 3.3481e-05 0.0038699 8.5783e-06 

ZDT3 

Avg. GD 0.00045131 0.00059499 0.00051111 0.00031746 

SD of GD 4.0207e-05 0.00016385 0.0003006 6.1964e-06 

ZDT4 

Avg. GD 0.0004134 0.0075542 0.0029169 0.00031644 

SD of GD 0.00012338 0.006953 0.0041258 8.5969e-05 

ZDT6 

Avg. GD 0.016918 0.073206 0.08976 8.7355e-05 

SD of GD 0.011282 0.087903 0.14623 4.2786e-06 

SCH1 

SD of GD 1.913e-05 3.2288e-05 0.00012406 1.0351e-05 

Avg. GD 0.00024794 0.00024983 0.00033026 0.00023967 

SCH2 

SD of GD 2.5767e-05 2.301e-05 0.00015192 0.0025352 

Avg. GD 1.786e-06 2.6257e-06 0.00015659 0.00073378 

 

Table 2  
Results of the multiobjective algorithm (using IGD) on the unconstrained test functions 

 MOMVO MOALO MODA MOIMO 
ZDT1 
Avg. IGD 0.0065457 0.00010694 0.0018231 0.00054853 
SD of IGD 0.013886 2.207e-05 0.00055216 9.422e-05 
ZDT2 
Avg. IGD 0.0014645 0.0019369 0.0021012 0.00064484 
SD of IGD 0.00013103 0.00061345 0.0015287 8.5653e-05 
ZDT3 
Avg. IGD 0.00045131 0.00059499 0.00051111 0.00068141 
SD of IGD 4.0207e-05 0.00016385 0.0003006 0.0001457 
ZDT4 
Avg. IGD 0.0022795 0.0030114 0.0028121 0.00053503 
SD of IGD 0.0032244 0.00089163 0.0017037 5.5694e-05 
ZDT6 
Avg. IGD 0.00054492 0.0017166 0.0086791 0.00057224 
SD of IGD 0.00010866 0.0010588 0.016899 4.4493e-05 
SCH1 
SD of IGD 0.002219 0.003891 0.0018651 0.0010189 
Avg. IGD 0.0011036 0.0030438 0.00030546 0.0002428 
SCH2 
SD of IGD 0.00054056 0.00080233 0.0007836 0.00025411 
Avg. IGD 7.0394e-05 0.00015486 0.00012158 3.2892e-05 

 

Table 3  
Results of the multiobjective algorithm (using spread) on the unconstrained test functions 

 MOMVO MOALO MODA MOIMO 
ZDT1 
Avg. Spread 1.4095 1.4769 1.4839 0.89417 
SD of Spread 0.038734 0.038021 0.1671 0.1075 
ZDT2 
Avg. Spread 1.4492 1.4704 1.4719 0.85165 
SD of Spread 0.049026 0.026366 0.083441 0.035557 
ZDT3 
Avg. Spread 1.1088 1.363 1.3287 1.0253 
SD of Spread 0.055513 0.043786 0.17185 0.076027 
ZDT4 
Avg. Spread 0.88654 1.2407 1.3232 0.84776 
SD of Spread 0.058543 0.074618 0.10319 0.056613 
ZDT6 
Avg. Spread 1.075 1.3359 1.3769 0.90682 
SD of Spread 0.07035 0.091983 0.17152 0.038463 
SCH1 
SD of Spread 1.2704 1.5001 1.4519 0.87412 
Avg. Spread 0.065065 0.059148 0.046144 0.044177 
SCH2 
SD of Spread 1.3494 1.6203 1.5984 1.001 
Avg. Spread 0.070502 0.074842 0.0639 0.028742 

Table 4  
Results of the multiobjective algorithm (using spacing) on the unconstrained test functions 
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 MOMVO MOALO MODA MOIMO 
ZDT1 
Avg. Spacing 0.088253 0.012002 0.013515 0.057615 
SD of Spacing 0.12858 0.0086463 0.0059354 0.0083665 
ZDT2 
Avg. Spacing 0.18524 0.016203 0.035237 0.055014 
SD of Spacing 0.38283 0.0042029 0.046016 0.014261 
ZDT3 
Avg. Spacing 0.12386 0.03244 0.049203 0.13544 
SD of Spacing 0.030695 0.015926 0.03728 0.027096 
ZDT4 
Avg. Spacing 0.044365 0.044564 0.040731 0.052348 
SD of Spacing 0.0044424 0.046192 0.039918 0.010145 
ZDT6 
Avg. Spacing 0.19458 0.15945 0.23784 0.071907 
SD of Spacing 0.096783 0.10851 0.22936 0.0080407 
SCH1 
Avg. of Spacing 0.19661 0.082656 0.19319 0.46286 
SD of Spacing 0.096635 0.041882 0.068511 0.067796 
SCH2 
Avg. of Spacing 1.472 0.071143 0.29546 2.0499 
SD of Spacing 0.41896 0.094253 0.39373 0.87483 

 

5.3.  Results on Constrained Test Functions  
 

The next group of test function comprises five constrained benchmark functions. We must include the constraint handling 
method with MOIMO to make it capable of solving such problems. Identifying an appropriate constraint handling method 
is out of the scope. In this work, a death penalty function (Carlos, 2000)  is used to punish search agents that violate any of 
the constraints at any stage. For equating algorithms, four metrics are applied in this research: GD, IGD, metric of spread 
and metric of space. Table 5 to Table 8 present quantitative results. These performance pointers permit us to enumerate and 
equate algorithms regarding diversification and intensification. Fig.  3 presents the shape of the best Pareto front achieved 
by the four algorithms on constrained benchmark functions. Reviewing these figures, MODA presents poor performance, 
notwithstanding its good coverage in a few cases. However, MOIMO and MOMVO both offer a better convergence close 
to all true Pareto fronts.  

   

  

 

Fig.  3. Best pareto front for constrained benchmark functions 

Table 5  
Results of the multiobjective algorithm (using GD) on the constrained test functions 

 MOMVO MOALO MODA MOIMO 
BEL 
Avg. GD 7.4819e-05 0.00022544 0.0001356 0.00023102 
SD of GD 4.8942e-05 0.00026187 0.0001369 0.00026533 
BNH 
Avg. GD 0.0022643 0.00094086 0.00061468 0.00039748 
SD of GD 0.00032499 0.00030889 0.0003078 3.5912e-05 
CF1 
Avg. GD 0.005943 0.002448 0.002289 0.0020175 
SD of GD 0.0010235 0.0001741 0.0002851 7.7036e-05 
CONSTR 
Avg. GD 0.00033082 0.00087881 0.0012952 0.00072863 
SD of GD 4.0943e-05 0.00062172 0.00058203 0.00013165 
OSY 
Avg. GD 0.0078333 0.027875 0.04946 0.011565 
SD of GD 0.00093499 0.018849 0.012052 0.0023181 

 

Table 6  
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Results of the multiobjective algorithm (using IGD) on the constrained test functions 
 MOMVO MOALO MODA MOIMO 
BEL 
Avg. IGD 0.0011629 0.0012543 0.0018785 0.00039751 
SD of IGD 0.0001322 0.00030576 0.00082551 2.812e-05 
BNH 
Avg. IGD 0.0022643 0.0030569 0.0032425 0.0010153 
SD of IGD 0.00032499 0.00073384 0.0011784 0.00010699 
CF1 
Avg. IGD 0.005943 0.0084038 0.0069698 0.0026365 
SD of IGD 0.0010235 0.00089992 0.001894 0.00061807 
CONSTR 
Avg. IGD 0.00087387 0.0010705 0.0011423 0.00081589 
SD of IGD 0.00014332 0.00014314 0.00040386 0.00026318 
OSY 
Avg. IGD 0.010584 0.0095221 0.011433 0.0070975 
SD of IGD 0.0044182 0.0016712 0.0029412 0.0016022 

 

Table 7  
Results of the multiobjective algorithm (using spread) on the constrained test functions 

 MOMVO MOALO MODA MOIMO 
BEL 
Avg. Spread 1.5036 1.4448 1.5583 0.92292 
SD of Spread 0.023962 0.058427 0.095943 0.063347 
BNH 
Avg. Spread 1.4088 1.5122 1.4977 0.84389 
SD of Spread 0.074574 0.014647 0.08599 0.062455 
CF1 
Avg. Spread 1.3621 1.517 1.4734 0.78473 
SD of Spread 0.022836 0.040547 0.14169 0.065962 
CONSTR 
Avg. Spread 1.1651 1.2998 1.1346 0.9405 
SD of Spread 0.048443 0.071313 0.06642 0.064704 
OSY 
Avg. Spread 0.93818 1.2396 1.2547 0.92908 
SD of Spread 0.037576 0.10688 0.027483 0.034359 

 

Table 8  
Results of the multiobjective algorithm (using spacing) on the constrained test functions 

 MOMVO MOALO MODA MOIMO 
BEL 
Avg. Spacing 0.0039105 0.0051075 0.010523 0.012261 
SD of Spacing 0.0033895 0.0043164 0.021808 0.016845 
BNH 
Avg. Spacing 8.482 3.9153 4.2928 19.4547 
SD of Spacing 5.4558 2.3859 2.8649 2.3896 
CF1 
Avg. Spacing 0.014848 0.0037717 0.0035515 0.0046881 
SD of Spacing 0.024059 0.0026615 0.0021676 0.0018632 
CONSTR 
Avg. Spacing 0.78491 0.46369 0.76356 0.95727 
SD of Spacing 0.2387 0.21466 0.30439 0.46124 
OSY 
Avg. Spacing 22.9733 5.2117 9.9368 31.2487 
SD of Spacing 5.8054 3.2005 5.6156 5.9582 

 

5.4.  Engineering Benchmark Design Problems  
 
The final set of benchmark functions is the most stimulating one comprising six real-world engineering design problems. 
These problems have varied constrained characteristics. Table 9 to Table 12 present a quantitative comparison of all the 
four algorithms for different performance indicators. The results in these tables are in line with those in the preceding 
sections, in which the MOIMO approach generally presented superior convergence and coverage. Because of the difficulty 
of these benchmark problems, the better results exceedingly sustenance the dominance of the MOIMO approach and its 
applicability.  
 
Fig.  4 presents the best Pareto optimal fronts for real-world engineering design problems. It may be seen in this figure that 
MOIMO has better qualitative characteristics amongst all algorithms despite multimodal search space and the existence of 
various limitations. 
Table 9  
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Outcomes of the multiobjective algorithm (GD) on the engineering design functions 
 MOMVO MOALO MODA MOIMO 
Design of 3-Bar Truss  
Avg. GD 0.00081641 0.0014405 0.0011318 0.00062503 
SD of GD 0.00055249 0.0010217 0.00050327 0.0004354 
Brushless DC Machine Design Problem 
Avg. GD 0.0013737 0.0018788 0.0043479 0.0027073 
SD of GD 0.0013662 0.0005236 0.0011936 0.00062814 
Pressure Vessel Design 
Avg. GD 0.00154 0.0088965 0.0036704 0.0011863 
SD of GD 0.00016098 0.004002 0.00096662 0.0001821 
Satellite Pipe Design 
Avg. GD 0.00060649 0.0010924 0.0032735 0.00063076 
SD of GD 0.00030408 0.00054764 0.0028936 0.00016805 
Welded Beam Design Problem 
Avg. GD 0.0049408 0.0083299 0.0018358 0.0030226 
SD of GD 0.0039537 0.0062062 0.00097582 0.00098187 
Car Crash Design Problem 
Avg. GD 0.0041605 0.076208 0.074507 0.059254 
SD of GD 0.0015295 0.033869 0.0065088 0.018628 

 

  

  

  

Fig.  4. Best Pareto front for real-world engineering benchmark functions 

Table 10  
Outcomes of the multiobjective algorithm (IGD) on the engineering design functions 

 MOMVO MOALO MODA MOIMO 
3 Bar Truss Design Problem 
Avg. IGD 0.00081641 0.0014405 0.0011318 0.00062503 
SD of IGD 0.00055249 0.0010217 0.00050327 0.0004354 
Brushless DC Machine Design Problem 
Avg. IGD 0.0013737 0.0018788 0.0043479 0.0027073 
SD of IGD 0.0013662 0.0005236 0.0011936 0.00062814 
Pressure Vessel Design 
Avg. IGD 0.00047789 0.0014181 0.00074622 0.00037128 
SD of IGD 3.914e-05 0.00043574 0.00016207 6.4527e-05 
Satellite Pipe Design 
Avg. IGD 0.00048671 0.00072714 0.00083374 0.00067951 
SD of IGD 0.00015372 0.00014836 0.00015485 0.00046841 
Welded Beam Design Problem 
Avg. IGD 0.0055088 0.010773 0.014105 0.0044458 
SD of IGD 0.003133 0.0039621 0.0062055 0.0030843 
Car Crash Design Problem 
Avg. IGD 0.0041605 0.0080252 0.005071 0.0021731 
SD of IGD 0.0015295 0.0059468 0.0014011 0.00064515 

Table 11  
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Outcomes of the multiobjective algorithm (Spread) on the engineering design functions 
 MOMVO MOALO MODA MOIMO 
3 Bar Truss Design Problem 
Avg. Spread 1.2768 1.3753 1.4348 0.99958 
SD of Spread 0.063482 0.06986 0.081976 0.037465 
Brushless DC Machine Design Problem 
Avg. Spread 1.0505 1.1656 0.89866 0.88668 
SD of Spread 0.069106 0.096319 0.087243 0.065443 
Pressure Vessel Design 
Avg. Spread 0.99371 1.3947 0.73348 0.7553 
SD of Spread 0.032797 0.057863 0.063679 0.05195 
Satellite Pipe Design 
Avg. Spread 1.0261 1.2965 1.4348 0.90803 
SD of Spread 0.055868 0.10855 0.068078 0.034882 
Welded Beam Design Problem 
Avg. Spread 1.0644 1.322 1.2264 0.78972 
SD of Spread 0.10156 0.047291 0.22633 0.019262 
Car Crash Design Problem 
Avg. Spread 1.0185 1.2545 1.1225 0.79357 
SD of Spread 0.073509 0.090501 0.13589 0.093567 

 

Table 12  
Outcomes of the multiobjective algorithm (Spacing) on the engineering design functions 

 MOMVO MOALO MODA MOIMO 
3 Bar Truss Design Problem 
Avg. Spacing 161.0758 48.0183 134.1771 409.7276 
SD of Spacing 40.4036 24.9562 62.3906 104.2308 
Brushless DC Machine Design Problem 
Avg. Spacing 1.5504 0.58266 1.0003 1.545 
SD of Spacing 0.3786 0.19288 0.74956 0.36674 
Pressure Vessel Design 
Avg. Spacing 8346712.3552 2309040.2674 8599005.8531 9895393.2942 
SD of Spacing 2829417.1318 385083.5572 2754131.991 1831215.4646 
Satellite Pipe Design 
Avg. Spacing 209.9238 109.1347 87.9714 270.4866 
SD of Spacing 71.5969 64.8868 57.9485 75.78 
Welded Beam Design Problem 
Avg. Spacing 5.7868 2.7399 2.0075 6.5448 
SD of Spacing 1.6432 1.4783 2.1302 2.7005 
Car Crash Design Problem 
Avg. Spacing 2.9978 1.4769 4.0722 5.5785 
SD of Spacing 0.61387 0.92514 0.40501 1.0367 

 

Fig.  5 presents the overall performance comparison of all the algorithms in terms of best values of performance indicators 
and its (their) standard deviation over 10 independent runs. MOIMO obtains the best value of average GD and IGD for 8 
and 13 times, respectively. GD and IGD are indicators of proximity to the true Pareto front. For 17 instances, MOIMO 
obtains the best value of spread presenting better coverage and convergence in all algorithms. MoS reflects the coverage of 
solutions. For 14 cases, MOIMO gets the best values of MoS. Except for MoS, for all three performance indicators, MOIMO 
presents minimum standard deviation proving the consistency of results. Thus, we can conclude that MOIMO provides the 
best results across all the algorithms for the majority of performance indicators.  

 

Fig.  5. Overall performance comparison of all the algorithms for benchmark test functions 

To sum up, the outcomes demonstrate that MOIMO is highly capable and modest compared to the existing well-regarded 
approaches. High coverage and convergence can be two key reasons behind it. Higher convergence is the result of leader 
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selection strategy wherein candidate solutions update their position considering the best non-dominated solution. High 
coverage is the result of storage maintenance and leader selection strategy. Since the leader is selected from the least 
populated region and solutions are removed from the dense area, the MOIMO has better coverage and diversity in all 
objectives. Despite all these merits, the present version of MOIMO can be applied to maximum four objectives. With an 
increasing number of objectives, MOIMO becomes less effective. This is because, for problems with more than four 
objectives, the archive gets full very quickly on account of a considerable number of non-dominated solutions. Besides, this 
approach is appropriate only for an objective function with a continuous variable and requires necessary changes for 
application on problems with discrete variables. The findings evidenced that MOIMO can be very useful for optimizing 
multiobjective problems. The MOIMO approach presented better coverage (diversification) and convergence 
(intensification). The superior intensification of MOIMO is owing to the updating solutions about the best non-dominated 
solutions attained up to now. The solutions move towards the best solutions. Also, the high convergence initiates from the 
adaptive mechanism, which quickens the travels of ions to the best non-dominated solutions obtained up to now in the 
storage. The storage maintenance and leader selection strategy result in higher coverage. It is worth stating here that as the 
updating mechanism of the ions in MOIMO is like IMO, MOIMO receives good exploration, local solutions evasion, fast 
convergence, and exploitation from this algorithm. Apart from convergence and coverage, algorithms are compared in terms 
of computational time in Table 13. For five different instances, MOIMO takes minimum simulation time, while for 12 
examples, it stands second closely following the MOMVO. Thus, in terms of computational time, MOIMO presents 
excellent performance.  
 
Table 13  
Comparison of algorithms in terms of computational time 

Sr. No. Benchmark test function Algorithms 
MOMVO MOALO MODA MOIMO 

1 ZDT1 12.6218 15.350 63.934 16.993 
2 ZDT2 1.889 2.5875 10.381 2.3625 
3 ZDT3 0.9187 3.0265 15.073 1.545 
4 ZDT4 0.6656 1.8812 5.6312 1.2562 
5 ZDT6 1.215 2.484 11.435 2.0421 
6 SCH1 2.5593 3.0031 4.7359 1.9218 
7 SCH2 3.843 3.9687 7.6031 2.8219 
8 BEL 2.1125 2.9188 11.9688 2.3688 
9 BNH 4.3250 5.7266 16.5813 4.6016 
10 CF1 4.9531 7.7188 21.8906 5.3438 
11 CONSTR 4.4063 7.0156 17.1875 3.4531 
12 OSY 2.375 5.0313 38.875 1.7813 
13 3-bar truss design 11.875 12.5938 47.7188 11.9375 
14 Brushless DC motor design 15.7656 28.1094 108.2813 7.8125 
15 Car crash design 8.9219 13.3750 67.9531 10.2031 
16 Pressure vessel design 11.0469 23.8125 86.4531 14.4844 
17 Satellite pipe design 20.2344 28.7656 180.4063 15.1563 
18 Welded beam design 6.5 14.7344 121.8438 6.8281 

 
 
6. Conclusion  
 
This effort projected a physics-inspired multiobjective approach is imitating the interaction of ions. A storage and leader 
selection strategy were then combined into a single objective IMO approach to solving multiobjective problems. A group 
of unconstrained, constrained and engineering benchmark functions were employed to assess the performance of the 
MOIMO. The outcomes of MOIMO are compared with those of MODA, MOMVO and MOALO. It was evident that the 
MOIMO algorithm is very competent and modest in determining an exact estimation of Pareto optimal front with uniform 
dispersal across all objectives with minimum simulation time.  
 
Furthermore, the high convergence of MOIMO results in precisely estimated solutions and the uniform distribution is owing 
to the excellent exploration. Also, leader selection and storage preservation endorse the spreading of solutions. Examination 
of various constraint handling methods to solve MOOP using MOIMO can be an excellent future work. Also, the proposed 
approach can be applied to solving real-world problems.  
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