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 The intention of this paper is to propose some similarity measures between Fermatean fuzzy sets 
(FFSs). Firstly, we propose some score based similarity measures for finding similarity measures 
of FFSs and also propose score based cosine similarity measures between FFSs. Furthermore, 
we introduce three newly scored functions for effective uses of Fermatean fuzzy sets and discuss 
some relevant properties of cosine similarity measure. Fermatean fuzzy sets introduced by 
Senapati and Yager can manipulate uncertain information more easily in the process of multi-
criteria decision making (MCDM) and group decision making. Here, we investigate score based 
similarity measures of Fermatean fuzzy sets and scout the uses of FFSs in pattern recognition. 
Based on different types of similarity measures a pattern recognition problem viz. personnel 
appointment is presented to describe the use of FFSs and its similarity measure as well as scores. 
The counterfeit results show that the proposed method is more malleable than the existing 
method(s). Finally, concluding remarks and the scope of future research of the proposed 
approach are given. 
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1. Introduction 

 

The theory of fuzzy set was established by Zadeh (Zadeh, 1965) in 1965 and it dealt with imprecision, vagueness in real 
life situations. In the year 1970, Bellman and Zadeh (1970) presented the notion of decision making problems entailing 
uncertainty. The concept of intuitionistic fuzzy sets (IFSs) was introduced by Atanassov ( Atanassov, 1986) in1986 by 
presenting the objective world from three aspects of support, opposition and neutrality, respectively and thus have been 
widely considered and applied by many researchers ( Fei et al., 2018; Zhang et al. 2018).  Also, many researchers have 
given additional attention to interval valued fuzzy sets (IVFSs) (Turksen, 1986; Gorzalczany, 1987) interval valued 
intuitionistic fuzzy sets (IVIFSs) (Atanassov & Gargov, 1987; Atanassov, 2012), which are all the generalization of the 
fuzzy set proposed by Zadeh (Zadeh, 1965) and applied them in diverse decision making problems. However, the fuzzy set 
takes only a membership function and the degree of non-membership function which is just a complement of the degree of 
membership function. There may be a situation where the sum of the membership function and non-membership function 
is greater than one. Thus orthopair fuzzy sets have been introduced in which the membership grades of an element 
are pairs of values in the unit interval, ( ), ( )x xα β , one of which indicates support of membership in the fuzzy set and 
other indicates support against membership in the fuzzy set. For example, Atanassov’s classical intuitionistic fuzzy sets 
(Atanassov,1983; Atanassov, 1986; Atanassov et al., 2013) and Atanassov’s second kind of intuitionistic fuzzy sets ( 
Atanassov, 2016). Yager (Yager, 2013; Yager, 2014) introduced another orthopair of fuzzy sets, known as Pythagorean 
fuzzy set (PFS), where the square sum of the support of membership and support against membership value is equal to or 
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less than one. Also, many researchers have paid more attention to interval valued Pythagorean fuzzy sets (IVPFSs) (Garg, 
2017; Garg, 2018), which is the generalization of the Pythagorean fuzzy sets (PFSs) set proposed by Yager and applied 
them in several decision making problems. PFSs and IVPFSs have attracted the attention of many researchers within a very 
short period of time.  There are several methods in the field of PFS to solve real-life multi-criteria, decision-making 
problems (Ye, 2009; Zhang et al., 2014; Zhang, 2016; Gou et al., 2016; Geng et al., 2017; Jing et al., 2017; Li et al., 2018). 
Several researchers have also proposed real-life applications under a Pythagorean fuzzy environment.  For more details one 
may mention the works of Li et al. (Li et al., 2018), Zhou et al. (Zhou et al., 2018), Bolturk (Boltruk, 2018), Qin (Qin, 
2018), Wan et al. (Wan et al., 2018), Lin et al. (Lin et al., 2018) and Chen (Chen, 2018). But, if orthopair fuzzy sets as <0.9, 
0.6>, where 0.9 is the support of the membership of certain criteria of a parameter and 0.6 is the support against membership 
then it does not follow the condition of IFS as well as PFS. However, the cubic sum of the support of membership and 
support against membership degrees is equal to or less than one.  And in this situation Senapati and Yager (Senapati & 
Yager, 2019; Senapati & Yager, 2020) very recently introduced the Fermatean Fuzzy set (FFS). They also showed that 
FFSs have more uncertainty than IFSs and PFSs and are capable of handling higher levels of uncertainties (Bai, 2013) and 
solved MCDM problems.  

A similarity measure is an important concept for controlling the degree of similarity between two objects in many fields, 
such as pattern recognition, medical diagnosis, personnel appointment etc. various types of similarity measures have been 
introduced (Pappis &  Karacapilidis, 1993; Chen, 1995; Li & Cheng, 2002; Liang & Shi, 2003 ; Hung & Yang, 2004; Ye, 
2011; Zhou et al., 2014; Liu et al., 2018 ). Among them, some similarity measures of intuitionistic fuzzy sets (IFSs) and 
Pythagorean fuzzy sets (PFSs) have been proposed. For example, Li and Cheng (2002) studied a similarity measure between 
IFSs and applied it to pattern recognition. Huang and Yang (2004) proposed the similarity measure between IFSs based on 
the Hausdorff distance and used it to calculate the degree of similarity between IFSs. Nguyen (2016) proposed a new 
knowledge-based similarity measure between IFSs and applied it to pattern recognition. Zhang (2016) introduced a novel 
approach based on similarity measures for Pythagorean fuzzy multiple criteria group decision making.  Zhang et al. (2012) 
presents a type of score function on intuitionistic fuzzy sets with double parameters and its application to pattern recognition 
and medical diagnosis. Ejegwa (Ejegwa, 2020; Ejegwa, 2019) introduced distance and similarity measures of Pythagorean 
fuzzy sets. Ye et al. (2011) proposed a cosine similarity measure for IFSs (CIFS) and applied it to pattern recognition. Also, 
Ye (2013) presented the cosine similarity measure for IVIFSs (CIVIFS) and applied it to group decision-making problems. 
On the other hand Liu et al. (2018) studied Cosine Similarity Measure between Hybrid Intuitionistic Fuzzy Sets and Its 
Application in Medical Diagnosis. Very recently, Liu et al. (2019) introduced Distance measure for Fermatean fuzzy 
linguistic term sets based on linguistic scale function. But as per our knowledge and belief, no one studied the distance 
based similarity measure and cosine similarity measure based on score function between FFSs. Influenced by this, in this 
paper, we shall propose distance based similarity measure and the cosine similarity measure of FFSs to handle uncertain 
information. In addition, applying the proposed similarity measures, we have solved group decision-making problems which 
are very fascinating in the real-world. In this paper, we have introduced three newly improved score functions for ranking 
of Fermatean fuzzy sets. We have applied the proposed score function to calculate the similarity measure and applied it to 
solve pattern recognition problem viz. personnel appointment.  Finally, a numerical example is given to illustrate the 
effectiveness of the proposed distance based and cosine similarity measures, which are also compared with the existing 
similarity measures. 
The contributions of the present paper are the following. In section 2, some definitions and basic concepts related to 
Fermatean fuzzy sets are described. Section 3 gives the ranking of FFSs based on proposed score functions. In section 4, a 
similarity measure of Fermatean fuzzy sets has been presented. Section 5 gives the group decision making with similarity 
measures between FFSs. Numerical example is given in Section 6. Section 7 contains the conclusion of the paper with the 
future scope of research.  

2. Preliminaries 

In this section some basic definitions about Fermatean fuzzy sets (FFSs) are discussed. After that some score functions are 
proposed to implement the entire paper.  

Definition 2.1. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let X be a Universal set. A Fermatean fuzzy set (FFS) 
is an object of the form { }, ( ), ( ) :F FF x x x x Xα β= ∈ where ( ) : [0,1]F x Xα →  and ( ) : [0,1]F x Xβ →  which 

satisfies the relation 3 30 ( ( )) ( ( )) 1,F Fx x x Xα β≤ + ≤ ∀ ∈ . The number ( )F xα and ( )F xβ are the degree of membership 
and non-membership of the element  x X∈  in the FFS F . 

For any FFS F and x X∈ , the degree of indeterminacy is represented by 3 33( ) 1 ( ( )) ( ( ))F F Fx x xπ α β= − − . It is to be 

noted that, for simplicity, we shall denote the object ,F FF α β= instead of { }, ( ), ( ) :F FF x x x x Xα β= ∈ . 

Definition 2.2. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let
1 11 ,F FF α β=  and

2 22 ,F FF α β=  be two FFSs. 

Then the basic arithmetical operations of two Fermatean fuzzy sets 1F  and 2F are defined as follows: 
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(i) Addition: 
1 2 1 2 1 2

3 3 3 33
1 2 ( ) ( ) ( ) ( ) ,F F F F F FF F α α α α β β⊕ = + −  

(ii) Multiplication: 
1 2 1 2 1 2

3 3 3 33
1 2 , ( ) ( ) ( ) ( )F F F F F FF F α α β β β β⊗ = + −  

(iii) Scalar Multiplication: 33 1 (1 ( ) ) , ( )F FF λ λλ α β= − − provided   

(iv) Exponent:
 

33( ) , 1 (1 ( ) )F FF λ λ λα β= − −
 

Definition 2.3. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let
1 11 ,F FF α β=   and 

2 22 ,F FF α β=  be two FFSs. 

Then their set operations are defined as follows: 

(i) Union: 
1 2 1 21 2 max( ), min( )F F F FF F α α β β∪ =  

(ii) Intersection: 
1 2 1 21 2 min( ), max( )F F F FF F α α β β∩ =  

(iii) Compliment: 
1 11( ) ,F FF β α′ =

 

Definition 2. 4. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let
1 11 ,F FF α β= ,

2 22 ,F FF α β=  and

3 32 ,F FF α β=  are three FFSs. Then the following properties hold: 

(i) 1 2 2 1F F F F∪ = ∪  

(ii) 1 2 2 3F F F F∩ = ∩  

(iii) 1 2 3 1 2 3( ) ( )F F F F F F∪ ∪ = ∪ ∪  

(iv) 1 2 3 1 2 3( ) ( )F F F F F F∩ ∩ = ∩ ∩   

(v) 1 2 1 2( )F F F Fλ λ λ∪ ∪ = ∪  

(vi) 1 2 1 2( )F F F Fλ λλ∪ = ∪
 

Definition 2. 5. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let ,F FF α β= be any FFS then score function of 

F denoted by ( )Fψ and is defined by 3 3( ) ( )F FFψ α β= − . Here, the score function ( ) [ 1,1]Fψ ∈ −  .  

Definition 2.6. (Senapati & Yager, 2019; Senapati & Yager, 2020) Let ,F FF α β= be any FFS then accuracy function of 

F denoted by ( )H F and is defined by 3 3( ) F FH F α β= + . 
3. Ranking of Fermatean fuzzy sets 

For the purpose of ranking, we have proposed some score functions ( )Fψ , ( ) [0,1]Fψ ∈ which are as follows:  

(i) (Type 1)
 

3

1 3 3
1( )

2
F

F F
F βψ

α β
−=

− −
 

 (iii) (Type2) 3 3
2

1( ) (1 2 )
3 F FFψ α β= + −

 

(ii) (Type 3) 3 3
3

1( ) (1 )
2 F FFψ α β= + −

 

Property 3.1. Let ,F FF α β= be any FFS then 1( ) [0,1]Fψ ∈ , 2 ( ) [0,1]Fψ ∈  and 3( ) [0,1]Fψ ∈ . 

0λ >
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Proof: For any FFS 3 0Fα ≥  and 3 31 1 0F Fβ β≤  − ≥ . Hence,  3 31 0F Fα β+ − ≥  and obviously 3( ) 0Fψ ≥ .  Again, 

3 3 3 3 3 31 1 2 1 2F F F F F Fα β α β α β+ ≤  + + ≤  + − ≤  as 3 0Fβ ≥ . So 
3 31 1
2

F Fα β+ − ≤  and 3( ) 1Fψ ≤  . 

Hence for Type 3 score function 3( ) [0,1]Fψ ∈ . In similar manner one can prove that 1( ) [0,1]Fψ ∈ and 2( ) [0,1]Fψ ∈ . 

Particularly, if 0,1F = , then 1( ) 0Fψ = , 2 ( ) 0Fψ = and 3( ) 0Fψ = . Again if 1,0F = , then 1( ) 1Fψ = , 2 ( ) 1Fψ =
and 3( ) 1.Fψ =  

Example 3.1. (Senapati & Yager, 2019; Senapati & Yager, 2020) If 1 0.93,0.60F = and 2 0.85,0.75F = then we have 
the following: 
For Type 1.  1 1( ) 0.8003Fψ = and 1 2( ) 0.5997Fψ = . Therefore, 1 1 1 2 1 2( ) ( )F F F Fψ ψ>  > . 
For Type 2. 2 1( ) 0.7976Fψ = and 2 2( ) 0.6021Fψ = . Therefore, 2 1 2 2 1 2( ) ( )F F F Fψ ψ>  > . 
For Type 3. 3 1( ) 0.9842Fψ = and 3 2( ) 0.5961Fψ = . Therefore, 3 1 3 2 1 2( ) ( )F F F Fψ ψ>  > .  
So we claim that our proposed score functions are justified as all score functions gives the same results similar to Senapati 
and Yager (Senapati & Yager, 2019; Senapati & Yager, 2020).  
Again if ,F FF α α=  then 2 3( ) ( ) 0.5F Fψ ψ= = whereas 3 ( )Fψ may not be 0.5 always.  

It is either greater than equal to 0.5 or less than 0.5. If we consider 
3 3

1
4 4,

2 2
F =  and 2 0.5,0.5F = then 

1 1 2 1 3 1( ) ( ) ( ) 0.5F F Fψ ψ ψ= = =  and 1 2 2 2 3 2( ) ( ) ( ) 0.5F F Fψ ψ ψ= = = . So score values are same although
3 3

1
4 4,

2 2
F =  and 2 0.5,0.5F = are different.  Hence, for ranking purpose another measure be needed and then 

accuracy function may be defined. 

Definition 3.1. Let
1 11 ,F FF α β=  and

2 22 ,F FF α β=  be two FFSs. Then ranking or order relations of 1F and 2F are 

defined as follows: 

(i) 1 max 2F F iff either ( 1 2( ) ( )S F S F> ) or ( 1 2( ) ( )S F S F= and 1 2( ) ( )H F H F> ) 

(ii) 1 min 2F F iff either ( 1 2( ) ( )S F S F< ) or ( 1 2( ) ( )S F S F= and 1 2( ) ( )H F H F< ) 

(iii)  1 2equalF F iff 1 2( ) ( )S F S F= and 2 2( ) ( )H F H F=  

From above it is noticed that if 
3 3

1
4 4,

2 2
F =  and 2 0.5,0.5F =  then 1( ) 0.5S F =  and 2( ) 0.5S F = for all the three 

types of score function but 1( ) 1.0H F =  and 2( ) 0.25H F =  hence 1 max 2F F . 
4. Similarity measures for Fermatean fuzzy sets 

The similarity measure can measure the similarity degree between two different alternatives. In this section we have 
proposed some score based similarity measures with Fermatean fuzzy sets using the concept of distance metric and some 
properties are also presented. 
Definition 4.1. Let X be a Universal set and { }, ( ), ( ) : , 1,2,3i i iF FF x x x x X iα β= ∈ = where ( ) : [0,1]iF x Xα →  and 

( ) : [0,1]iF x Xβ →  are three FFSs. The similarity measure S  between 1F and 2F  is a mapping : [0,1]S X X× →  
satisfies the following conditions: 
 

(i) 1 2 1 20 ( , ) 1, ,S F F F F X≤ ≤ ∀ ∈  
(ii) 1 2 1 2 1 2( , ) 1 , ,S F F F F F F X= ⇔ = ∈  
(iii) 1 2 2 1 1 2( , ) ( , ) , ,S F F S F F F F X= ∀ ∈  
(iv) 1 2 1 3 3 2 1 2 3( , ) ( , ) ( , ) , , ,S F F S F F S F F F F F X≤ + ∀ ∈  

 
The condition (i) expresses that S  is bounded-ness in 1 2,F F . Condition (iii) gives the fact that S  is symmetric in 1 2,F F . 
The inequality (iv) is generally called the triangle inequality.  
Let us assume that there are two PFSs A  and P  in { }1 2, ,..., nX x x x= .Also let ψ be the score function. Then the 
similarity measure between  A  and P  as follows: 
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( )
1
33 3 3

1

1( , ) 1
2

n

Ai Pi Ai Pi Ai Pi
i

S A P
n

α α β β π π
=

 
= − − + − + − 

 
    

 
(1) 

( )
1

1( , ) 1
2

n

Ai Pi Ai Pi Ai Pi
i

S A P
n

α α β β π π
=

= − − + − + −    
 

(2) 

( )3 3 3 3 3 3

1

1( , ) 1
2

n

Ai Pi Ai Pi Ai Pi
i

S A P
n

α α β β π π
=

= − − + − + −  
 

(3) 

( )
1
33

1

1( , ) 1 ( ) ( )
2

n

i i
i

S A P A P
n

ψ ψ
=

 
= − − 

 
  

 
(4) 

( )
1

1( , ) 1 ( ) ( )
2

n

i i
i

S A P A P
n

ψ ψ
=

= − −  
 

(5) 

( ) ( )( )3 3

1

1( , ) 1 ( ) ( )
2

n

i i
i

S A P A P
n

ψ ψ
=

= − −  
 

(6) 

1

( ) ( )1 1( , ) 1
2 1 ( ) ( )2

n
i i

i
i ii

A P
S A P

n A P
ψ ψ

ψ ψ=

 −
= −   + − 

  
 

(7) 

( )1( , ) 1 max ( ) ( )
2 i ii

S A P A P
n

ψ ψ= − −  
(8) 

 
 Now, we have also defined score based Cosine similarity measure as follows:  
 

2 2 2 21

( ) ( ) *1CosFFS( , )
( ) ( )

n
i i Ai Pi

i i Ai i Pi

A PA P
n A P

ψ ψ π π

ψ π ψ π=

 + =
 + + 

    
 

(9) 

 
Theorem 4.1. The cosine similarity measures between two Fermatean fuzzy sets  A  and P satisfies the following 
properties:  
(a) 0 CosFFS( , ) 1A P≤ ≤  
(b) CosFFS( , ) CosFFS( , )A P A P=  
(c) CosFFS( , ) 1,ifA P A P= =  
Proof: It is obvious that the property (a) is true according to the cosine value in [0, 1]  
(b) Multiplication of real numbers satisfies the commutative law, hence if the positions of A  and P are interchanged then 
the formula of cosine measure gives the same results. 
(c) Let  ,i Ai AiA α β=< >  and ,Pi PiP α β=< > . Now, if i iA P=  then Ai Piα α= and Ai Piβ β=  . So, ( ) ( )i iA Pψ ψ=
and 

iAi Pπ π=  for all 1,2,...,i n=  . 

Now, 
2 2 2 21

( ) ( ) *1CosFFS( , )
( ) ( )

n
i i Ai Pi

i i Ai i Pi

A PA P
n A P

ψ ψ π π

ψ π ψ π=

 + =
 + + 

 =
2 2

2 2 2 21

( ) ( )1

( ) ( )

n
Aii i

i i Ai i Ai

A P
n A A

ψ ψ π

ψ π ψ π=

 + 
 + + 

  

                                         

                                       =
2 2

2 2 2 21

( ) ( )1

( ) ( )

n
Aii i

i i Ai i Ai

A P
n A A

ψ ψ π

ψ π ψ π=

 + 
 + + 

 = 
2 2

2 2
1

( ) ( )1
( )

n
Aii i

i i Ai

A P
n A

ψ ψ π
ψ π=

 +
  + 

 ( )
1

1 11 1
n

i
n

n n=
= = = . 

5. Group Decision-Making with Similarity Measure between Fermatean fuzzy sets 
 
In this section, we shall apply different similarity measure between Fermatean fuzzy sets in personnel appointments 
problem. Here, we need several experts to evaluate properly the candidates/applicants of a particular competitive 
examination or personal interview for employment. The panel expert usually provides his/her preferences for candidates’ 
qualification as well as positions in terms of Fermatean fuzzy sets.  
 
Let us assume that a Company has organized an aptitude test for the selection of employees.  
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Assume that 1A is a set of qualifications P is a set of positions and A is a set of applicants. It is to be noted that for this 

organization (Company), all positions do not have same qualifications and it may varies. Let { }1 2, ,..., nX x x x= , 

{ }1 2, ,..., nP P P P= and { }1 2, ,..., mA A A A=  be finite set of qualifications, positions and applicants respectively.  

As per our considerations 3 3( ) , and 1, 1,2,..., ; 1,2,...,j i j j j ji i i i
P x p p p p i n j nα β α β=< > + ≤ = = and 

3 3( ) , and 1, 1,2,..., ; 1,2,...,j i j j j ji i i i
A x a a a a i n j mα β α β=< > + ≤ = =  are Fermatean fuzzy sets. For finding the decision 

experts will have to calculate the similarity measures between A and P i.e., ( , )S A P using different similarity measures 
and his/her opinion an applicant jA  is appropriate for position iP  if ( , )j iS a p  is greatest. In tabular form, this problem 
can be represented as follows: 
 
Table 1 
Applicants vs. Qualifications 

Applicants 1x  2x  3x    nx  

1A  1 1 1 1,a aα β< >  1 2 1 2,a aα β< >  1 3 1 3,a aα β< >    1 1,n na aα β< >  

2A  2 1 2 1,a aα β< >  2 2 2 2,a aα β< >  2 3 2 3,a aα β< >    2 2,n na aα β< >  

            
mA  1 1,m ma aα β< >  2 2,m ma aα β< >  3 3,m ma aα β< >    ,m n m na aα β< >  

 
Table 2 
Qualification vs. positions 

 1P  2P  3P    nP  

1x  1 1 1 1,p pα β< >  1 2 1 2,p pα β< >  1 3 1 3,p pα β< >    1 1,n np pα β< >  

2x  2 1 2 1,p pα β< >  2 2 2 2,p pα β< >  2 3 2 3,p pα β< >    2 2,n np pα β< >  

3x  3 1 3 1,p pα β< >  3 2 3 2,p pα β< >  3 3 3 3,p pα β< >    3 3,n np pα β< >  

            
nx  1 1,n na aα β< >  2 2,n na aα β< >  3 3,n na aα β< >    ,n n n na aα β< >  

 
Table 3 
Similarity measure of Applicants vs. Positions using ( , )S A P  

( , )S A P  1P  2P  3P    nP  

1A  1 1( , )S a p  1 2( , )S a p  1 3( , )S a p    1( , )nS a p  

2A  2 1( , )S a p  2 2( , )S a p  2 3( , )S a p    2( , )nS a p  
            
mA  1( , )mS a p  2( , )mS a p  3( , )mS a p    ( , )m nS a p  

 

After construction of Table 5.3 decision makers have to take decision as per their requirements. They should take horizontal 
decision if the organization can requites all the applicants.  Also decision makers should take vertical decision if the 
organization has limited fund/resources to pay salary.  It is to be noted that vertical decision is more competitive compare 
to horizontal decision.  

6. Numerical example and discussion 
 
In this section, we have taken a numerical example to discuss the proposed approach.  
 
Example 6.1.  
Let { }1 2 3 4, , ,A A A A A= be the set of applicants vying for positions, { }1 2 3 4 5, , , ,P P P P P P= be the set of positions and 

{ }Honesty,TeamSpirit,Hardworking,Transparency,AcademicFitnessX = be the set of qualifications expected by 
the applicants. Assume that the grades of the interview are captured by the decision makers in Fermatean fuzzy orthopair 
as presented below: 
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Table 4 
Applicants vs. Qualifications 

Applicants Honesty Team Spirit Hardworking Transparency Academic Fitness 
1A  0.5,0.1< >  0.6,0.1< >  0.7,0.2< >  0.8,0.1< >  0.5,0.2< >  

2A  0.8,0.1< >  0.6,0.2< >  0.7,0.1< >  0.6,0.2< >  0.4,0.5< >  

3A  0.5,0.2< >  0.6,0.1< >  0.5,0.1< >  0.5,0.2< >  0.8,0.1< >  

4A  0.7,0.1< >  0.5,0.3< >  0.8,0.1< >  0.6,0.2< >  0.7,0.1< >  
 
Let us assumed that Table 5 gives the stipulated standing qualifications by the expert panel, for each of the positions as 
below: 
 

 Table 5 
Qualification vs. positions 

 1P  2P  3P  4P  5P  
Honesty 0.7,0.2< >  0.7,0.3< >  0.6,0.2< >  0.8,0.1< >  0.6,0.3< >  

Team Spirit 0.8,0.1< >  0.7,0.2< >  0.8,0.0< >  0.6,0.2< >  0.8,0.1< >  
Hardworking 0.8,0.2< >  0.8,0.1< >  0.8,0.1< >  0.7,0.2< >  0.8,0.1< >  
Transparency 0.7,0.2< >  0.7,0.1< >  0.9,0.0< >  0.8,0.1< >  0.7,0.1< >  

Academic Fitness 0.9,0.1< >  0.9,0.0< >  0.6,0.3< >  0.7,0.2< >  0.5,0.3< >  
 
The example is numerically same with the example solved by Ejegwa (Ejegwa, 2019) but descriptively different. Now using 
our proposed similarity measures we have constructed the following tables as below: 
 
Table 6 
Similarity measure of Applicants vs. Positions using    (1)  

Applicants 1P  2P  3P  4P  5P  
1A  0.7571 0.7512 0.8248 0.8240 0.8306 
2A  0.7267 0.6969 0.7468 0.8091 0.8043 
3A  0.7914 0.7957 0.7206 0.7807 0.7584 

4A  0.7926 0.8110 0.7397 0.8382 0.7914 
 

Table 7 
Similarity measure of Applicants vs. Positions using (2)  

Applicants 1P  2P  3P  4P  5P  

1A  0.8006 0.7878 0.8468 0.9140 0.8752 
2A  0.7663 0.7759 0.7661 0.8798 0.8297 

3A  0.8276 0.8154 0.7531 0.8094 0.7909 
4A  0.8558 0.8636 0.7876 0.8776 0.8270 

 
Table 8 
Similarity measure of Applicants vs. Positions using (3) 

Applicants 1P  2P  3P  4P  5P  

1A  0.7074 0.7360 0.8220 0.8776 0.8460 

2A  0.7134 0.7486 0.7148 0.8836 0.8028 

3A  0.7314 0.7614 0.6652 0.7650 0.7204 

4A  0.8172 0.8486 0.7692 0.8536 0.8282 
 
Table 9 
Similarity measure of Applicants vs. Positions using (4) and Type-1 score function  

Applicants 1P  2P  3P  4P  5P  

1A  0.8761 0.8791 0.9310 0.9329 0.9409 

2A  0.8556 0.8576 0.8843 0.9322 0.9289 

3A  0.9148 0.9211 0.8692 0.9147 0.9091 

4A  0.9023 0.9125 0.8851 0.9400 0.9280 
Table 10 
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Similarity measure of Applicants vs. Positions using (4) and Type-2 score function 
Applicants 1P  2P  3P  4P  5P  

1A  0.8000 0.8063 0.8918 0.8735 0.8975 

2A  0.7677 0.7720 0.8175 0.8754   0.8755 

3A  0.8503 0.8613 0.8742 0.8416 0.8323 

4A  0.8459 0.8714 0.8168 0.8961 0.8660 
 
Table 11 
Similarity measure of Applicants vs. Positions using (4) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.8493 0.8541 0.9187 0.9051 0.9230 

2A  0.8121 0.8146 0.8604 0.8960 0.9032 

3A  0.8882 0.8963 0.8368 0.8803 0.8724 

4A  0.8824 0.9027 0.8602 0.9210 0.8956 
 
Table 12 
Similarity measure of Applicants vs. Positions using (5) and Type-1 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9426 0.9501 0.9655 0.9789 0.9724 

2A  0.9403 0.9465 0.9406 0.9767 0.9612 

3A  0.9496 0.9567 0.9349 0.9579 0.9510 

4A  0.9625 0.9690 0.9532 0.9714 0.9684 
 
Table 13 
Similarity measure of Applicants vs. Positions using (5) and Type-2 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9027 0.9148 0.9430 0.9594 0.9517 

2A  0.9006 0.9109 0.9009 0.9573 0.9321 

3A  0.9112 0.9228 0.8872 0.9219 0.9076 

4A  0.9387 0.9495 0.9208 0.9503 0.9399 
 
Table 14 
Similarity measure of Applicants vs. Positions using (5) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9269 0.9366 0.9577 0.9694 0.9638 

2A  0.9222 0.9293 0.9227 0.9647 0.9457 

3A  0.9336 0.9426 0.9146 0.9409 0.9304 

4A  0.9530 0.9608 0.9389 0.9618 0.9528 
 
Table 15 
Similarity measure of Applicants vs. Positions using (6) and Type-1 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9301 0.9391 0.9560 0.9779 0.9681 

2A  0.9287 0.9363 0.9288 0.9764 0.9576 

3A  0.9404 0.9490 0.9226 0.9540 0.9474 

4A  0.9528 0.9609 0.9435 0.9672 0.9674 
 
 
 
 
Table 16 
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Similarity measure of Applicants vs. Positions using (6) and Type-2 score function 
Applicants 1P  2P  3P  4P  5P  

1A  0.8961 0.9096 0.9360 0.9660 0.9507 

2A  0.8962 0.9082 0.8962 0.9660 0.9366 

3A  0.9120 0.9251 0.8848 0.9293 0.9191 

4A  0.9316 0.9442 0.9173 0.9498 0.9507 
 
Table 17 
Similarity measure of Applicants vs. Positions using (6) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.8941 0.9085 0.9365 0.9619 0.9489 

2A  0.8914 0.9023 0.8916 0.9591 0.9295 

3A  0.9085 0.9220 0.8799 0.9228 0.9110 

4A  0.9304 0.9425 0.9134 0.9467 0.9424 
 
Table 18 
Similarity measure of Applicants vs. Positions using (7) and Type-1 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9924 0.9942 0.9947 0.9937 0.9952 

2A  0.9924 0.9937 0.9902 0.9990 0.9910 

3A  0.9920 0.9937 0.9930 0.9920 0.9941 

4A  0.9960 0.9972 0.9934 0.9946 0.9940 
 
Table 19 
Similarity measure of Applicants vs. Positions using (7) and Type-2 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9868 0.9893 0.9909 0.9893 0.9915 

2A  0.9879 0.9899 0.9843 0.9984 0.9853 

3A  0.9858 0.9882 0.9881 0.9864 0.9893 

4A  0.9935 0.9951 0.9889 0.9910 0.9896 
 
Table 20 
Similarity measure of Applicants vs. Positions using (7) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9898 0.9920 0.9930 0.9915 0.9937 

2A  0.9905 0.9918 0.9875 0.9986 0.9882 

3A  0.9889 0.9911 0.9907 0.9892 0.9918 

4A  0.9946 0.9958 0.9911 0.9930 0.9914 
 
Table 21 
Similarity measure of Applicants vs. Positions using (8) and Type-1 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9745 0.9745 0.9885 0.9861 0.9888 

2A  0.9697 0.9696 0.9772 0.9882 0.9882 

3A  0.9863 0.9861 0.9745 0.9860 0.9855 

4A  0.9817 0.9816 0.9772 0.9887 0.9855 
 
 
 
Table 22 
Similarity measure of Applicants vs. Positions using (8) and Type-2 score function 
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Applicants 1P  2P  3P  4P  5P  

1A  0.9595 0.9595 0.9802 0.9742 0.9803 

2A  0.9515 0.9515 0.9655 0.9775 0.9794 

3A  0.9744 0.9742 0.9595 0.9740 0.9733 

4A  0.9733 0.9742 0.9655 0.9800 0.9733 
 
Table 23 
Similarity measure of Applicants vs. Positions using (8) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9695 0.9694 0.9852 0.9807 0.9852 

2A  0.9606 0.9605 0.9740 0.9802 0.9839 

3A  0.9810 0.9807 0.9694 0.9803 0.9794 

4A  0.9794 0.9807 0.9740 0.9849 0.9794 
 
Table 24 
Cosine Similarity measure of Applicants vs. Positions using (9) and Type-1 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9806 0.9828 0.9930 0.9952 0.9954 
2A  0.9790 0.9812 0.9822 0.9958 0.9934 
3A  0.9830 0.9906 0.9770 0.9902 0.9884 
4A  0.9880 0.9910 0.9842 0.9952 0.9944 

 
Table 25 
Cosine Similarity measure of Applicants vs. Positions using (9) and Type-2 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9646 0.9690 0.9882 0.9886 0.9906 
2A  0.9596 0.9642 0.9680 0.9894 0.9860 
3A  0.9768 0.9812 0.9562 0.9778 0.9738 
4A  0.9794 0.9856 0.9712 0.9906 0.9862 

 
Table 26 
Cosine Similarity measure of Applicants vs. Positions using (9) and Type-3 score function 

Applicants 1P  2P  3P  4P  5P  

1A  0.9770 0.9800 0.9924 0.9930 0.9942 
2A  0.7728 0.9756 0.9790 0.9930 0.9910 
3A  0.9854 0.9882 0.9718 0.9862 0.9836 
4A  0.9864 0.9904 0.9812 0.9940 0.9914 

 
All the horizontal decisions (From Table 4 to 26) have been presented in Table 27. Now, we have discussed horizontal 
decision. For instance, if we use (9) as a similarity measures then 1A is appropriate for 5P , 2A is appropriate for 4P , 3A is 
appropriate for 2P  and 4A is appropriate for 4P . Here it is seen that all 2A is more appropriate than 4A . The same result 
occurs for Type 1, Type 2 and Type 3 score functions (see last three row of Table 27). Consequently, the obtained result is 
tallied with the result reported by Ejegwa (Ejegwa, 2019). So, we claimed that our similarity measure and score functions 
proposed here are justified.  Similar conclusion may be drawn from other rows of table 27. All the vertical decisions (From 
Table 6 to 26) have been presented in Table 28. 
 
 
 
 
 
Table 27 
Horizontal Decisions taken from Table 6 to 26 
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 1A  2A  3A  4A  
Table No. Appropriate for Appropriate for Appropriate for Appropriate for 

Table 6 
5P  4P  2P  4P  

Table 7 
4P  4P  1P  4P  

Table 8 
4P  4P  4P  4P  

Table 9 
5P  4P  2P  4P  

Table 10 
5P  5P  3P  4P  

Table 11 
5P  5P  2P  4P  

Table 12 
4P  4P  4P  4P  

Table 13 
4P  4P  2P  4P  

Table 14 
4P  4P  2P  4P  

Table 15 
4P  4P  4P  5P  

Table 16 
4P  4P  4P  5P  

Table 17 
4P  4P  4P  4P  

Table 18 
5P  4P  5P  2P  

Table 19 
5P  4P  5P  2P  

Table 20 
5P  4P  5P  2P  

Table 21 
5P  4 5/P P  1P  4P  

Table 22 
5P  5P  1P  4P  

Table 23 
3 5/P P  5P  1P  4P  

Table 24 
5P  4P  2P  4P  

Table 25 
5P  4P  2P  4P  

Table 26 5P  4P  2P  4P  
 
Now, we have discussed vertical decision. For instance, if we use (9) as a similarity measures then positions 1P , 2P  and 4P  
are appropriate for 4A , positions 3P and 5P are appropriate for 1A . The same result occurs for Type 1, Type 2 and Type 3 
score functions (see last three row of Table 28). Consequently, the obtained result is tallied with the result reported by 
Ejegwa (Ejegwa, 2019). So, we claimed that our similarity measure and score functions proposed here are justified.  Similar 
conclusion may be drawn from other rows of Table 28.  
 
Table 28 
Vertical Decisions taken from Table 6 to 26 

 1P  2P  3P  4P  5P  
Table No. Appropriate for Appropriate for Appropriate for Appropriate for Appropriate for 

Table 6 
4A  4A  1A  4A  1A  

Table 7 
4A  4A  1A  1A  1A  

Table 8 
4A  4A  1A  2A  1A  

Table 9 
3A  4A  1A  4A  1A  

Table 10 
3A  4A  1A  4A  1A  

Table 11 
3A  4A  1A  4A  1A  

Table 12 
4A  4A  1A  1A  1A  

Table 13 
4A  4A  1A  1A  1A  

Table 14 
4A  4A  1A  1A  1A  

Table 15 
4A  4A  1A  1A  1A  

Table 16 
4A  4A  1A  1 2/A A  1 4/A A  

Table 17 
4A  4A  1A  1A  1A  

Table 18 
4A  4A  1A  2A  1A  

 
 
Table 28 
Vertical Decisions taken from Table 6 to 26 (Continued) 
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 1P  2P  3P  4P  5P  
Table No. Appropriate for Appropriate for Appropriate for Appropriate for Appropriate for 
Table 19 

4A  4A  1A  2A  1A  
Table 20 

4A  4A  1A  2A  1A  
Table 21 

3A  3A  1A  4A  1A  
Table 22 

3A  3 4/A A  1A  4A  1A  
Table 23 

3A  3 4/A A  1A  4A  1A  
Table 24 

4A  4A  1A  2A  1A  
Table 25 

4A  4A  1A  4A  1A  
Table 26 4A  4A  1A  4A  1A  

 
 
7. Concluding remarks 
 
The notion of Fermatean fuzzy sets is a new type of fuzzy sets to handle uncertain information more easily and effectively 
than the others existing fuzzy sets. Application of other fuzzy sets viz. intuitionistic fuzzy sets, Pythagorean fuzzy sets have 
been seen hugely in the existing literature but application of Fermatean fuzzy sets is very limited. So inspired from this, in 
this paper, we have solved Fermatean fuzzy multiple attribute group decision making problems where all the attributes are 
expressed in terms of Fermatean fuzzy sets. Firstly, we discuss the concept of Fermatean fuzzy sets. After that we propose 
some newly score function for ranking of Fermatean fuzzy sets. Then, first time we have proposed some score based 
similarity measures between two Fermatean fuzzy sets. We have also proposed score based cosine similarity measure 
between two Fermatean fuzzy sets. Applying all these similarity measures we have solved personnel appointments problem.  
Finally, a numerical example has been considered and solved for illustration purpose.  The results obtained after applying 
our proposed score functions as well as different similarity measures coincide with the other which is available in existing 
literature. Therefore, it has been concluded that the proposed score functions of FFSs and different similarity measures 
proposed here can be used to solve pattern recognition problems, medical diagnosis problems and MCDM problems 
considering Fermatean fuzzy sets. In future research, one may apply the proposed similarity measures in the field of group 
decision making problems arising in the field of science, engineering and management science etc.  
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