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 In this paper, we examine advanced optimization approach for portfolio problem introduced by 
Black and Litterman to consider the shortcomings of Markowitz standard Mean-Variance 
optimization. Black and Litterman propose a new approach to estimate asset return. They 
present a way to incorporate the investor’s views into asset pricing process. Since the investor’s 
view about future asset return is always subjective and imprecise, we can represent it by using 
fuzzy numbers and the resulting model is multi-objective linear programming. Therefore, the 
proposed model is analyzed through fuzzy compromise programming approach using 
appropriate membership function. For this purpose, we introduce the fuzzy ideal solution 
concept based on investor preference and indifference relationships using canonical 
representation of proposed fuzzy numbers by means of their correspondingα-cuts. A real world 
numerical example is presented in which MSCI (Morgan Stanley Capital International Index) is 
chosen as the target index. The results are reported for a portfolio consisting of the six national 
indices. The performance of the proposed models is compared using several financial criteria.      
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1. Introduction 

Modern portfolio theory (MPT) first introduced by Markowitz (1952) in his seminal paper, has 
changed the investment world, substantially. This theory tries to maximize portfolio expected return 
subject to a given amount of portfolio risk, or equivalently at the same time, minimizes risk while 
keeping a given level of expected return. The theory has been widely used in practice, in the 
investment industry and the history witnessed several Nobel Laureates for the theory. In recent years, 
however, the MPT has been widely criticized because of its high sensitivity to estimated parameters. 
 
The Black-Litterman model was first published in an international Goldman Sachs Fixed Income 
document in 1990 and made two major contributions to the asset allocation problem (Black & 
Litterman, 1990). First, it provides an intuitive prior based on the capital asset pricing model (CAPM) 
equilibrium market portfolio, as a starting point in the estimation of asset returns. Second, it provides 
a straight forward way to consider investor view and combines it with prior information. In addition, 
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these views can be partial or complete and can span arbitrary and overlapping sets of assets. It 
estimates expected excess returns and covariances, which requires input parameters to the 
optimization problem. These two contributions result in a modified expected return vector, which 
improves the initial expected returns and can be applied in portfolio optimization. In this paper, we 
formulate the portfolio selection problem as multi-objective linear program. There are two important 
criteria in any investment decision, which are risk and return. We make use of Black-Litterman 
approach to formulate portfolio return. In order to keep linearity of the model we can measure 
portfolio risk through its beta that is a common risk measure in the literature. We apply fuzzy multi-
objective programming in order to cope with the proposed model. 
 
The rest of the paper is organized as follows: In section 2, we survey the recent approaches in the 
investment literature. Section 3 discusses the Black-Litterman approach in details, which yields an 
appropriate estimate of asset returns. Thereafter, we formulate mathematically the advanced portfolio 
selection problem considering investor’s views as fuzzy variables in section 4. In section 5, we 
present a real-world numerical example to illustrate the presented procedure. Finally, section 6 is 
devoted to the concluding remarks. 
 
2. Literature review 
 
In the recent intricate and dynamic world, investment decision is a demanding human cognitive 
process with regard to uncertainties such as price and interest volatility. Therefore, both institutional 
investors and practitioners are always occupied with managing their portfolios, not only to optimize 
returns, but also to minimize total potential risks. Traditionally, asset allocation was based on the 
expected mean-variance analysis. It relies on the premise where investors would diversify assets to 
maximize expected return and minimize risk. Consider a market with ݊ risky assets where ߤ denotes 
the vector of the expected asset returns and ߑ is covariance matrix. The classical portfolio 
optimization problem can be described as: 
 
 ݉݅݊ 	(1 − ݔߑ௧ݔ√(ߣ −   ߤ௧ݔߣ
௧૚ݔ  = 1, (1)
ݔ  ≥ 0,  
 
where the portfolio ݔ is given in terms of relative investments into the risky assets, i.e. it holds that ݔ௧૚ = 1. Naturally, the feasibility set ݔ can contain additional constraints such as short sale 
prohibition ݔ ≥ 0. The parameter ߣ is defined as the investor risk aversion measure, which is used for 
tracing the whole efficient frontier. The dependability of MPT, as well as other mathematical models 
in determining the optimal portfolio depends heavily on availability of valid market data, sometimes 
they might not be able to reflect real-world situations accurately (Olaleye, 2008; Falkenbach, 2009). 
Thus, these market data do not represent one’s decision as some information is not quantifiable in 
nature, i.e. the human cognitive process. 
 
Specialist judgment seems to offer an acceptable alternative to handle this challenging problem. By 
relaxing the crispness of rigorous modeling and enabling a robust representation of expert knowledge, 
fuzzy logic systems can guide decision makers. The foundation of fuzzy logic for representing 
imprecise, vague and ambiguous information was first proposed by Zadeh (1965). They used fuzzy 
logic in expressing vague information into a scientific approach and later enhanced it via the 
introduction of the concept of linguistic variable. His approach has been further developed and widely 
used in investment, engineering design and decision-making, along with artificial intelligence and 
urban planning. According to Ko and Cheng (2003), fuzzy logic not only provides an approximate 
but also it is effective descriptions for ill-defined, or troublesome to cope with existing complex 
systems. The fuzzy approach can capture uncertainty in a realistic way (French, 2001). In order to 
overwhelm these problems, expert's knowledge is incorporated in modeling. Expert judgments are 
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pervasive and important to any analytical system (Fischhoff, 2002). It could be used in modifying the 
expected return and variance in accordance with various factors, which might not be taken into 
account by mathematical computations, for instance, the MPT. Keeney and Von Winterfeldt (2002) 
explained that human linguistic qualification is preferable to a simple numerical expression of 
knowledge since it can well reflect expert’s vagueness. It is therefore necessary to integrate such 
qualification into model computations. The application of fuzzy theory in decision making in 
different real world issues has been well documented in different contexts (Perng et al., 2005, Bagnoli 
& Smith, 1998, Pagourtzi et al., 2003). Watada (1997) introduced the vague goals of expected return 
and risk in order to consider fuzzy portfolio selection problem. Leon et al. (2002) proposed a fuzzy 
approach describing soft constraints and amended infeasibility in portfolio optimization problem. In 
Tanaka et el. (2000), the authors applied the possibility theory to cope with uncertainty and solve the 
portfolio optimization problem. According to Lai et al. (2002), Wang and Zhu (2002), and Giove et 
al. (2006) linear interval programming model has been used for portfolio selection. Carlsson et al. 
(2002) introduced a possibilistic approach for selecting portfolios with the highest utility value 
assuming assets returns as trapezoidal fuzzy numbers. 
 
Wang et al. ( 2005) and Zhang et al. (2005) discussed the general weighted possibilistic portfolio 
problem. Lacagnina and Pecorella (2006) developed a multistage stochastic soft constraint fuzzy 
program with recourse to handle both uncertainty and imprecision as well as providing a portfolio 
management problem. Lin et al. (2005) proposed a systematic approach by incorporating fuzzy theory 
in conjunction with portfolio matrix in order to help managers in arriving a better understanding of 
the overall competitive aspects of their business portfolios. Huang (2006) provided two portfolio 
selection models with fuzzy returns by chance criteria represented though credibility measure. Huang 
(2007) proposed two models for portfolio selection problem where the security returns are stochastic 
variables with fuzzy information. Fei (2007) studied the optimal consumption and portfolio choice 
with ambiguity and anticipation. Bilbao-Terol et al. (2006) applied fuzzy compromise programming 
to portfolio selection problem. Ammar (2008) solved the fuzzy portfolio optimization problem as a 
convex quadratic programming.  
 
Zhang et al. (2007) presented two types of portfolio selection models based on lower and upper 
possibilistic means and variances, respectively, and introduced the notions of lower and upper 
possibilistic efficient portfolio. Li et al. (2010) stated that portfolio returns are generally asymmetric, 
and investors would prefer a portfolio return with larger degree of asymmetry when the mean value 
and variance are the same.  In order to measure the asymmetry of fuzzy portfolio return, they defined 
the concept of skewness is as the third central moment. In the above mentioned works, there are two 
fundamental criteria including expected return and risk which an ordinary investor usually considers. 
Arenas Parra et al. (2001) proposed a model that considers three criteria viz., return, risk and 
liquidity. Ehrgott et al. (2004) took into consideration five criteria including short and long term 
return, dividend, ranking and risk; then use multi criteria decision making (MCDM) approach to 
solve the resulting optimization problem. Fang et al. (2006) proposed a portfolio rebalancing model 
with transaction costs using fuzzy decision theory considering three criteria. Black and Litterman 
(1990) add uncertainty on the views by means of Bayesian formulas. 
 
There are too many researchers focusing on the classical Markowitz optimization in fuzzy context. 
However, there is a little attention to the advanced portfolio optimization proposed by Black and 
Litterman. To the best of our knowledge, Lawrence et al. (2009)  was the only researcher who 
addressed this problem and proposed fuzzy goal programming to solve advanced portfolio problem 
assuming input data viz. mean portfolio return and beta, as fuzzy numbers. This paper aims to shed 
light on incorporating investor knowledge by fuzzy set theory into the advanced asset allocation 
model. We assume mean asset return and covariance as fixed estimated parameters and consider 
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fuzzy views. In order to extend the Black-Litterman approach in fuzzy context we will explain the 
most important features in section 3. 
 
3. Black-Litterman approach 
 
Black and litterman (1990) proposed a novel methodology (BL in sequel) that combines the market 
model with the investor’s views. Using Bayes’ formula, they calculate the posterior distribution, 
which can be applied instead of simple market expected returns. Consider a market of ܰ securities 
with random return ܺ which is normally distributed as ܺ~N(ߤ,Σ). Usually the covariance matrixΣ 
can be estimated with the exponential smoothing of the past returns (Engle & Managanelli, 2004). 
Black and Litterman (1990) further modeled ߤ as a normal random variable such that ߤ~N(ߨ, ߬Σ), 
where ߨ is the best available estimate for ߤ and ߬ represent the uncertainty of this estimate. It should 
be noted that the higher degree of confidence to the market results in the lower the parameter ߬, and 
vice versa. This reference model is normal and centered around the CAPM equilibrium. On the other 
words, BL adopt CAPM equilibrium distribution as the prior distribution. CAPM can simply model 
estimated mean excess returns (Sharpe, 1964). The model assumes there is a linear relationship 
between risk as measured by standard deviation and return. In addition, it imposes return to be 
normally distributed. 
 
Black and Litterman (1990) proposed that ߨ can be estimated as ߨ = ෥ݓΣߣ2̅  in which ݓ෥  represents the 
equilibrium portfolio, which stems from the average risk aversion level ̅ߣ. On the other hand, BL 
supposes that the investor has her own views that can be defined as “A statement on the market that 
can potentially clash with reference market model”. For example, a situation where the investor 
strongly believes that first asset outperform the second is shown as ݔଵ − ଶݔ ≥ 0. BL considers views 
only on expectations in normal market. They focus on linear views that include ܭ views represented 
by ܭ × ܰ dimensional array called pick matrix in which ܭth row specify the weight of the 
corresponding view. For more information on pick matrix the interested readers referred to Black and 
Litterman (1990). They proposed a normal model for views as ఓܲ~N(ݒ,Ω) in which ఓܲ is a vector 
denoting investor views, ݒ and ߗ represent views and uncertainty thereof respectively. Meucci (2009) 
proposed that the uncertainty about investor’s views inherits its structure from the market volatilities 
and correlations, so ߗ can be determined as ଵ௖ ܲΣܲ, where parameter ܿ represents the overall level of 
confidence in views. Using Bayes formula, BL calculate the conditional distribution of  ߤ and call it 
posterior distribution. The results are as follows, 
,ݒ|ߤ  ,஻௅ߤ)ܰ~ߗ  ,(஻௅ߑ
 
where 

஻௅ߤ  (2) = ߨ + ᇱܲߑܲ߬)ᇱܲߑ߬ + ݒ)ଵି(ߗ −  ,(ߨܲ

஻௅ߑ   = ଵି(ߑ߬)) +  .ଵܲ)ିଵିߗ′ܲ

Readers interested in the proof are referred to Meucci (2009). This normal posterior distribution 
represents the corresponding modification of reference model i.e. Markowitz Mean-Variance 
optimization because of introduction of the investor’s views. With this posterior distribution, we can 
now solve the mean-variance optimization to get ߤ. 
 
4. Proposed fuzzy Black-Litterman 
 
In the traditional BL approach (1990) the investor view is a key factor that is assumed to be a known 
and crisp vector. In this paper, we consider the investor view as fuzzy numbers, which can efficiently 
handle verbal statement of the experts. We estimate portfolio return via fuzzified BL formula, which 
should be maximized. Furthermore, we calculate the portfolio risk through its total beta, which 
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usually should be minimized. Thus, the resulting linear programming problem has two conflicting 
objective that has to be compromised based on investor point of view, which is summarized as 
follows, 
 

  max ̃ݖ =  ݔ′෤ߤ
  min ݓ =  ݔ′ߚ

(3) subject to 
૚’ݔ  = 1, 
ݔ  ≥ 0, 

where the fuzzy return vector ߤ෤ is as follows, 
 

෤ߤ  (4) = ෤஻௅ߤ = ߨ + ᇱܲߑܲ߬)ᇱܲߑ߬ + ෤ݒ)ଵି(ߗ −  (ߨܲ
Since trapezoidal fuzzy number is a more general form rather than triangular fuzzy number, in this 
paper, we propose trapezoidal fuzzy numbers to represent investor views. A simple trapezoidal fuzzy 
number could be represented with a quadruple as  ݒ෤௜ = ,௜ଵݒ) ,௜ଶݒ ,௜ଷݒ ,௜ଵݒ is the membership function and	ߙ݅ݒ  ௜ସ) as illustrated in fig 1, whereݒ … ,  ௜ସ are parameters bounding the fuzzy numbers. In theݒ
trapezoidal fuzzy number with this form, the membership function between ݒ௜ଶ and ݒ௜ଷ is equal to 1 
and for values lower than ݒ௜ଵ or higher than ݒ௜ସ the membership function is equal to zero. For other 
values between  (ݒ௜ଵ, ,௜ଷݒ) ௜ଶ) orݒ  .௜ସ), the membership function is some value between 0 and 1ݒ

Fig. 1. Trapezoidal fuzzy number 
 
In order to cope with the resulting multi-objective linear programming problem we use Lee and Li 
(1993) approach. They proposed a coherent way to handle fuzzy multi-objective linear programming 
with fuzzy parameters. Consider a fuzzy multi-objective linear programming problem of form: 
 

 max ෨ܼ(ݔ) = 	 (ܿ̃ଵݔ, ܿ̃ଶݔ, … , ܿ̃௟ݔ), 
(5)min ෩ܹ (ݔ) 	= 	 (ܿ̃′ଵݔ, ܿ̃′ଶݔ, …	 , ܿ̃′௥ݔ), 

 subject to  
ݔ  ∈ ܺ	 = 	 ݔ} ∈ ℝ௡	|	ܣሚݔ ∗ ෨ܾ, ݔ ≥ 	0}, 

 
where ܿ̃௞, ܿ′෩௦ are n-dimensional vectors representing objective confidents of maximization and 
minimization problems, respectively, ෨ܾ is an m-dimensional vector, ܣሚ is an ݉ × ݊ matrix, and the all 
components are fuzzy numbers. The asterisk shows that it could be either ≤ or  ≥ constraints. Let (ݔ)ఉఈ 
be a solution of problem (5) where ߙ ∈ [0,1] states “the grade of possibility” which means a grade at 
which all fuzzy coefficients are feasible, and ߚ ∈ [0,1] denotes “the level of compromise to which the 
solution satisfies all of the fuzzy goals” while the coefficients are at a feasible level ߙ. By means of 
Bellman –Zadeh (1970) rule of conjunction, the fuzzy parameters ߙ can be expressed as 
 

ߙ  (6) = ݉݅݊௞,௦,௜,௝{ߤ௖ೖ̃ೕ, ௖ᇱ෥ߤ ೞೕ, ௔෤೔ೕߤ , ݇|௕෨೔ߤ = 1, … , ݈, ݏ = 1,… , ,ݎ ݅ = 1,… ,݉, ݆ = 1,… , ݊} 
Eq. (6) means that the feasibility of the whole system is equal to the possibility of the most 
impossible component in the system or equivalently the minimum possible component. On the other 
words, the higher the possibility of the coefficient is, the stronger the limitations on the coefficient 

											1݅ݒ					 2݅ݒ 3݅ݒ 4݅ݒ
 ߙ݅ݒ
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are. Obviously, the optimal solution for a given level of ߙ is reached when the E.Q. 6 holds for all 
subscript: 
 

௖ೖ̃ೕߤ  (7) = ௖̃ᇱೞೕߤ = ௔෤೔ೕߤ = ௕෨೔ߤ =  ߙ

Let ෨ܲఈ, be the ߙ-cut of a fuzzy number ෨ܲఈ௎ and ෨ܲఈ௅ are respectively the upper and lower bound of its ߙ-cut: 
(8)  ෨ܲఈ௅ ≤ ෨ܲఈ ≤ ෨ܲఈ௎. 

Finally, the multi-objective linear program (5) could be reformulated as bellows (Lee & Lim, 1993): 
 

(9)  ( ෨ܼ௞)ఈ௎ =෍(ܿ̃௞௝)ఈ௎. ௝௡ݔ
௝ୀଵ , ݇ = 1,… , ݈, 

 ( ෩ܹ௦)ఈ௅ =෍(ܿ̃′௦௝)ఈ௅ . ௝௡ݔ
௝ୀଵ , ݏ = 1,… ,  .ݎ

In Eq. (9) ݇ and ݏ are enumerating indices related to maximization and minimization problems, 
respectively. In addition, when defined asterisk operator ∗ in the constraint is ≤ and  ≥ the 
corresponding constraint can be reformulated as Eq. (10) and Eq. (11), respectively. 

(10)  ෍(෤ܽ௞௝)ఈ௅ . ௝௡ݔ
௝ୀଵ ≤ ( ෨ܾ௜)ఈ௎, ∀݅ = 1,… ,݉ 

(11) ෍(෤ܽ௞௝)ఈ௎. ௝௡ݔ
௝ୀଵ ≥ ( ෨ܾ௜)ఈ௅ , ∀݅ = 1,… ,݉ 

It is obvious that for a given level of ߙ the problem becomes a deterministic linear problem solved 
with single objective function (Lee & Li, 1993). Let define four types of objective functions in order 
to become able to compromise different objective of the problem. Ideal and anti-ideal solution could 
be defined similar to Lee and Li (1993), which denote the best and worst cases, respectively. The 
assume that( ෨ܼ௞)ఈା, ( ෩ܹ௦)ఈା and ( ෨ܼ௞)ఈି , ( ෩ܹ௦)ఈି  are the ideal and anti-ideal solutions, respectively, which 
can be achieved through solving each of the following single objective linear programming problem 
independently for all possible values of ݇ and ݏ: 

 max௫∈௑ഀ( ෨ܼ௞)ఈା =෍(ܿ̃௞௝)ఈ௎. ௝௡ݔ
௝ୀଵ  

 min௫∈௑ഀ( ෩ܹ௦)ఈା =෍(ܿ̃′௞௝)ఈ௅ . ௝௡ݔ
௝ୀଵ  

(12) max௫∈௑ഀ൫ ෩ܹ௦൯ఈି = ෍൫ܿ̃′௞௝൯ఈ௎. ௝௡ݔ
௝ୀଵ  

 min௫∈௑ഀ( ෨ܼ௞)ఈି = ෍(ܿ̃௞௝)ఈ௅ . ௝௡ݔ
௝ୀଵ  

In order to obtain the optimum compromising level for each degree of ߙ we have to solve the 
following single objective linear programming problem: 

 max ߚ 

 subject to 

ߚ(13) ≤ )௞ఈߤ ෨ܼ௞), ߚ ≤ )௦ఈߤ ෩ܹ௦), 
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ߚ17 ∈ ݔ ,[0,1] ∈ ܺఈ, 

where	ߤ௞ఈ( ෨ܼ௞) and ߤ௦ఈ( ෩ܹ௦) are the level of realization of different objective functions that can be 
defined as follows: 

௞ఈ൫ߤ(14) ෨ܼ௞൯ = [∑ ൫ܿ̃௞௝൯ఈ௎. ௝௡௝ୀଵݔ − ( ෨ܼ௞)ఈି][( ෨ܼ௞)ఈା − ( ෨ܼ௞)ఈି]  

௦ఈ൫ߤ  ෩ܹ௦൯ = [൫ ෩ܹ௦൯ఈି − ∑ (ܿ̃′௞௝)ఈ௅ . ௝௡௝ୀଵݔ ][൫ ෩ܹ௦൯ఈି − ( ෩ܹ௦)ఈା] . 
Now, let	ߣ be the level of overall satisfaction to the solution (ݔ)ఉఈ  based on fuzzy goals and 
coefficients. According to Bellman-Zadeh's rule ߣ is calculated as ߣ = min	{ߙ, ,ߙ where ,{ߚ  are two ߚ
unknown parameters. The ߙ parameter shows the level of possibility of the fuzzy coefficients and the ߚ parameter denotes the compromise degree between different objective functions. A very efficient 
scheme to solve this problem (5) numerically assuming trapezoidal fuzzy number is described as the 
following algorithm, 
 
Step 1. Define ߝ=accuracy of tolerance set 0=ߙ. 

Step 2. Set solve the problem 13 to obtain ߚand ݔ. 

Step 3. If |ߙ − |ߚ ≤ ߣ then let ߝ = min	{ߙ, ∗ݔ and {ߚ = = and go to step 4. Otherwise set ݔ ఈାఉଶ  . 

Step 4. Output ߣand ݔ∗. 

For any given value of ߙ, after obtaining ( ෨ܼ௞)ఈା, ( ෩ܹ௦)ఈା, ( ෨ܼ௞)ఈି  and ( ෩ܹ௦)ఈି , one should solve the 
following linear programming problem in order to achieve the compromise level ߚ, 
 

 max ߚ = ଵ௟ା௥ (∑ ௞௟௞ୀଵߚ + ∑ ௦௥௦ୀଵߚ )
 subject to 

 

ߚ (15) ≤ ߚ ,௞ߚ ≤ ,ߚ ,௦ߚ ,௞ߚ ௦ߚ ∈ ݔ ,[0,1] ∈ ܺ′ఈ,
 
where ߚ௞and ߚ௦can be defined as follows, 
 

௞ߚ (16) = [∑ ቀܿ௞௝(ସ) − (ܿ௞௝(ସ) − ܿ௞௝(ଷ))ߙቁ . ௝௡௝ୀଵݔ − ( ෨ܼ௞)ఈି][( ෨ܼ௞)ఈା − ( ෨ܼ௞)ఈି] , ݎ = 1,… , ݈, 
௦ߚ  = [൫ ෩ܹ௦൯ఈି − ∑ ቀܿ௞௝(ଵ) − (ܿ௞௝(ଶ) − ܿ௞௝(ଵ))ߙቁ . ௝௡௝ୀଵݔ ][൫ ෩ܹ௦൯ఈି − ( ෩ܹ௦)ఈା] , ݏ = 1,… ,  .ݎ

In this paper, we have two objective functions including return and risk where one of which is fuzzy 
and we have a single non-fuzzy constraint that makes our problem even simpler than general cases. 
The return objective function uses fuzzified BL approach while the risk objective uses portfolio beta. 
Since the portfolio beta is calculated based on historical data, and it is not based on investor views, 
we do not fuzzify it. We should solve the following multi-objective fuzzy linear programming in 
which the investor's views are assumed to be fuzzy. 
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 max (z෤)஑୙ = ∑ (μ෤୨)஑୙୬୨ୀଵ x୨
 min w = ∑ β୨x୨୬୨ୀଵ

(17) subject to ෍x୨୬
୨ୀଵ = 1 x ≥ 0. 

 

5. Numerical example 
 

In this section, we apply a real data set in order to compare the performance of the results, 
empirically. MSCI index is used as the target index, which measures the performance of equity 
market within developed countries maintained by Morgan Stanley Capital International incorporation 
since 1969. MSCI world index contains 24 developed country market indices, which is a common 
benchmark for global equity funds. It should be noted that emerging markets index has been excluded 
from the benchmark. We used six industrial countries market index: United States (USA), Germany 
(D), France (F), United Kingdom (UK), Switzerland (CH) and Japan (JAP). 

Table 1 
Risk/return characteristics of MSCI total return indices in terms of US$; All figures in % 

Index Whole observation period: Jan 
2003 to April 2011 

In-the-sample period: Jan 2003 to  
August 2009 

Out-of-the-sample period: Sep 2009 
to April 2011 

   Μ  Σ  Β  μ Σ β μ Σ  β
MSCI  0.44 4.79 1.00 0.27 4.81 1.00 1.12 4.76 1.00 
USA  0.36 4.41 0.90 0.10 4.37 0.89 1.38 4.51 0.92 
JAP  0.27 5.00 0.77 0.33 5.20 0.82 -0.01 4.20 0.59 
UK  0.31 5.31 1.04 0.14 5.28 1.03 1.01 5.48 1.09 
D  0.77 7.11 1.39 0.63 7.21 1.40 1.31 6.87 1.35 
F  0.46 6.51 1.29 0.42 6.22 1.24 0.60 7.75 1.52 
CH  0.71 4.82 0.87 0.59 4.84 0.89 1.15 4.82 0.78 

Monthly Average return and Standard deviation are in % 
beta is respect to MSCI 
 

Monthly data are collected from January 2003 to April 2011; including 100 monthly return 
observations. Moreover, the whole observation period is decomposed into two sub-periods; from 
January 2003 to August 2009 including 80 observations used as in-the-sample observations, and from 
September 2009 to April 2011 including 80 observations assumed as out-of-the sample observations, 
which is used as the test set. In-the-sample period data are used for constructing optimized portfolios 
for the proposed models. On the other hands, the out-of-the-sample observations are applied to test 
the efficiency of obtained portfolio weights. Mean, standard deviation and beta relative to the MSCI 
world index of each series of data are summarized in Table 1. Consider an investor who is going to 
construct a portfolio using six country indices. The investor also has two views over the market as 
below: ܲ = ቂ1 0 00 0 −1 0 0 0+1 0 0ቃ, 
which implies that the USA index will grow in the future and the German index outperform that of 
English. Counting on these views the result of implementing fuzzy multi-objective programming in 
fuzzy BL and non-fuzzy BL are summarized in Tables 2 and Table 3, respectively. It could be 
observed that the optimum point is for ߙ = 0.7 which is presented in bold face. Fig. 2 depicts the 
efficient frontier for fuzzy and non-fuzzy BL models; which implies the fuzzified model has higher 
return for any given level of risk.  
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Table 2   
Results for fuzzy problem α Zା Zି Wା Wି β Z∗ W∗ μଵ୆୐ μଶ୆୐ μଷ୆୐ μସ୆୐ μହ୆୐ μ଺୆୐ 

1 0.2186 0.1005 0.7 1.1 0.6866 0.1816 0.8253 0.1094 0.1752 0.1619 0.1106 0.2107 0.2186
0.72 0.2245 0.098 0.7 1.1 0.7017 0.1868 0.8193 0.112 0.1797 0.166 0.1136 0.2199 0.2245
0.715 0.2246 0.0979 0.7 1.1 0.702 0.1869 0.8192 0.112 0.1798 0.1661 0.1137 0.2201 0.2246
0.71 0.2247 0.0979 0.7 1.1 0.7022 0.1869 0.8191 0.1121 0.1799 0.1662 0.1138 0.2203 0.2247
0.705 0.2248 0.0978 0.7 1.1 0.7025 0.187 0.819 0.1121 0.18 0.1662 0.1138 0.2204 0.2248

0.7 0.2249 0.0978 0.7 1.1 0.7027 0.1871 0.8189 0.1122 0.18 0.1663 0.1139 0.2206 0.2249
0.695 0.225 0.0977 0.7 1.1 0.703 0.1872 0.8188 0.1122 0.1801 0.1664 0.1139 0.2208 0.225 
0.69 0.2251 0.0977 0.7 1.1 0.7032 0.1873 0.8187 0.1122 0.1802 0.1664 0.114 0.2209 0.2251
0.685 0.2252 0.0976 0.7 1.1 0.7034 0.1874 0.8186 0.1123 0.1803 0.1665 0.114 0.2211 0.2252
0.68 0.2254 0.0976 0.7 1.1 0.7037 0.1875 0.8185 0.1123 0.1804 0.1666 0.1141 0.2213 0.2254
0.005 0.2435 0.0905 0.7 1.1 0.7203 0.2007 0.8119 0.1186 0.1913 0.1766 0.1214 0.2435 0.2395

 
Table 3  
Results for non-fuzzy problem α Zା Zି Wା Zି β Z∗ W∗ μଵ୆୐ μଶ୆୐ μଷ୆୐ μସ୆୐ μହ୆୐ μ଺୆୐ 
All 0.6669 1.1 0.7 0.105 0.2092 ࢻ 0.1744 0.8332 0.105 0.167 0.1549 0.1059 0.1973 0.2092

 
Table 4 contains the weights of optimized portfolio of each method. Needless to say, the sum of each 
row equals one, which is a typical constraint in any asset allocation; and all weights are positive 
values which implies that short selling is prohibited. One could observe that the investor, which has a 
view like pick matrix p, will invest more in USA index than those who have not. Furthermore, such 
an investor does not invest in UK stock market anymore. 

 

Fig. 2. Efficient frontier considering fuzzy and non-fuzzy BL model 
 

 

Table 4  
Optimized portfolio weights based on the in-the-sample period (Jan 2003 to August 2009) referring to 
different optimization models in % 
Model USA JAP UK D F CH 
Markowitz 21.0 6.0 14.0 38.0 12.0 9.0 
Fuzzy BL 54.0 0.0 0.0 43.0 1.5 1.5 
Non-fuzzy BL 44.0 4.0 3.0 35.0 2.0 12.0 
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Table 5 summarizes the comparison of different models using several financial criteria. Fig. 3 
presents a graphical comparison of different models based on financial criteria. It could be observed 
from this graph that Fuzzy-BL model outperforms the others almost in all financial criteria. Since in 
all performance measures presented here the more is the better, one could conclude that the higher the 
resulting area the stronger the performance of corresponding portfolio. It should be noted that 
portfolio models in general and the BL model in particular are tools. These tools have both 
advantages and disadvantages. Estimating input data to the BL model is difficult. Therefore, it is of 
great importance that the investor using the model understands the implemented estimations and their 
inherent problems. On the other hand, Portfolio models are used in a social and organizational 
context. This context is of great importance for the use of the model. 

Table 5  
Risk/return characteristics of optimized portfolios, all figures in %, Observation period: Feb 2009 to 
Aug 2011 

Model R(p) a STD(p) a TR(p) b Betac Information 
ratio d 

Sharpe 
ratio e 

Treynor 
ratiof 

Market 
ratiog 

Markowitz 1.3 5.6 1.4 1.1475 3.62 0.89 0.04 1.0005 
Fuzzy BL 1.5 5.4 1.1 1.1133 24.19 4.84 0.23 1.0026 
Non-fuzzy BL 1.4 5.1 0.8 1.0587 19.89 3.23 0.16 1.0016 
MSCI World 1.2 4.8 - 1.0000 - - - - 
aMonthly returns and standard deviations in % 
bTracking error measured by standard deviation of portfolio excess returnwith respect to MSCI (σ(XB-y)) 
cBeta of each portfolio to MSCI world stock market index	ߚ = ,௜ܴ)ݒ݋ܿ ܴ௕)/ݎܽݒ(ܴ௜) 
dExcess return to square root of tracking error in % 
eExcess return to volatility ratio in % 
fExcess return to beta in % 
g Relative performance of tracking portfolio to benchmark index

 

 

Fig. 3.   Comparing different approaches based on financial criteria 

6. Concluding remarks 
 

In this paper, we have considered fuzzy portfolio selection problems based on Black-Litterman (BL) 
model, which is a useful tool of the investment in order for taking into account  the investor’s views 
into asset pricing process. Since the investor’s view about future asset return is always subjective and 
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imprecise, we have modeled it using fuzzy numbers and, obviously, the resulting model is multi-
objective linear programming. The proposed model has been analyzed through fuzzy compromise 
programming approach using appropriate membership function. A real world numerical example has 
been presented in, which results are reported for a portfolio consisting of the six most important 
national indices including embracing Japan, USA, UK, Germany, Switzerland, and France. The 
performance of the proposed models is compared using several financial criteria. We have 
demonstrated that the proposed model could be solved analytically and efficiently by performing 
fuzzy multiple objective algorithm.  

In the future, we will apply this fuzzy portfolio selection problem and solution methods to other asset 
allocation problems considering planning horizon and portfolio insurance. Nonetheless, this new 
proposed model of portfolio selection problems and the efficient solution methods will allow us to 
solve more complicate problems in real world situations under more random and ambiguous 
conditions. 
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