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 Determining the optimal inventory control and selling price for deteriorating items is of great 
significance. In this paper, a joint pricing and inventory control model for deteriorating items 
with price- and time-dependent demand rate and time-dependent deteriorating rate with partial 
backlogging is considered. The objective is to determine the optimal price, the replenishment 
time, and economic order quantity such that the total profit per unit time is maximized. After 
modeling the problem, an algorithm is proposed to solve the resulted problem. We also prove 
that the problem statement is concave function and the optimal solution is indeed global.  
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1. Introduction 
 

 
Nowadays, most business units are faced with increasingly volatile business environments, 
characterized by shorter product life cycles and more rapid technological developments. In order to 
obtain competitive margins, new  products must be introduced into the market, frequently. In this 
case, life cycles of old and new products overlap and they coexist in a considerable period of time 
(Chew et al., 2014). Deterioration can be defined as the loss of marginal value of commodity, which 
yields in decreased usefulness. Under this definition, many goods such as clothing and electronic 
devices can be considered as perishable items. Today, competition in the market has led all the 
competitors to increase the quality of their products, so a producer’s success is determined by the 
price of his/her products. Pricing and inventory control policy are two important factors for the 
success of business owners. In recent years, many researchers have studied the pricing and inventory 
control issues simultaneously for deteriorating items. Most physical goods such as drugs, vegetables 
deteriorate over time (Wee, 1993). Pricing and inventory control of deteriorating items have been 
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extensively studied by many researchers. Deteriorating inventory analysis began with the work of 
Ghare and Schrader (1963), who established the classical no-shortage inventory model with a 
constant rate of decay. However, it has been empirically observed that failure and life expectancy of 
many items can be expressed in Weibull distribution items. This empirical observation has prompted 
researchers to present the products’ deterioration time by Weibull distribution. Covert and Philip 
(1973) extended Ghare and Schrader's model and obtained an economic order quantity model for 
variable rate of deterioration by assuming a two-parameter Weibull distribution. Researchers such as 
Philip (1974), Misra (1975), Tadikamalla (1978), Wee (1997), Chakrabarty et al. (1998), and 
Mukhopadhyay et al. (2004) developed economic order quantity models by concentrating on this type 
of products. Abad (1996) considered a pricing and lot sizing problem for a product with variable rate 
of deterioration and partial backlogging. Aggarwal and Jaggi (1995) explored the ordering policy for 
deteriorating items under permissible delay in payments. Hwang and Shinn (1997) dealt with pricing 
and lot sizing decisions for exponentially deteriorating products, with also permissible delay in 
payments. Jamal et al. (1997) generalized Aggarwal and Jaggi's model to allow for shortages. Chang 
and Dye (2001) extended Jamal et al.'s model. Chang et al. (2002) considered the linear demand for 
deteriorating items over time and partial backlogging rate. 
 
Chang et al. (2006) established an EOQ model for deteriorating items for a retailer to determine its 
optimal selling price and lot sizing policy with partial backlogging. Dye et al. (2007) presented a 
pricing and inventory policy for deteriorating items with shortage. Most studies assume that 
deterioration begins from the moment of a product’s arrival in the stock. In fact, most of the goods 
are thought to have a quality maintenance or original condition span in which no deterioration occurs. 
In the real world, this phenomenon exists commonly among goods such as fresh fruits and vegetables. 
Wu et al. (2006) defined the non-instantaneous phenomenon and developed a replenishment policy 
for non-instantaneous deteriorating items with stock-dependent demand to minimize the total 
inventory cost per unit time.  
 
Geetha and Uthayakumar (2010) proposed an EOQ-based model for non-instantaneous deteriorating 
items with permissible delay in payments. In this model, demand and price are constant and shortages 
are allowed and are partially backlogged. Cai et al. (2011) studied pricing and ordering policy 
problems in two-stage supply chains by considering the partial lost sales based on the game theory. 
Musa and Sani (2012) developed a mathematical model for inventory control of non-instantaneous 
deteriorating items with permissible delay in payments. Maihami and Nakhai (2012) developed a 
mathematical model for joint pricing and inventory control of non-instantaneous deteriorating item 
with partial backlogging, the unsatisfied demand being backlogged and the fraction of shortage 

backordered considered as xekx   0)( . Avinadav et al. (2013) employed a price-and time-

dependent function and developed a mathematical model to calculate the optimal price, the order 
quantity and the replenishment period for perishable items.  
 
Pricing is a major strategy for a seller to achieve the maximum profit. Consequently, in this paper, 

Maihami and Nakhai's proposed model is developed and a different backlogging function for 

unsatisfied demand and time-dependent deterioration rate is used. The rest of the paper is organized 

as follows. In section 2, we describe the assumption and notation employed throughout this study is 

described; therein, the mathematical model and the necessary considerations for finding an optimal 

solution are established. Furthermore, it is demonstrated that the total profit is a concave function of 

selling price when the replenishment schedule is given. In section 3, we provide a simple algorithm to 

find the optimal replenishment schedule and selling price for the proposed model. In section 4, we 

use a numerical example to illustrate the algorithm. Finally, we make a summary and provide some 

suggestions for future research in section 5.  
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2. Assumptions and notations 

2.1. Assumptions 

The mathematical model is based on the following assumptions: 
  
1. The mathematical model is proposed for a non-instantaneous deterioration item. 
2. The lead time is zero. 
3. The demand rate �(�, �) = (� − ��)���,	(� > 0, � > 0) is a linearly decreasing function of the price 

and decreases (increases) exponentially with time when � < 0 (� > 0).  
4. Shortages are allowed; only a fraction of the demand is assumed to be backlogged. Following 

Chang and Dye (1999) we take  �(�) = 1 (1 + ��)⁄  (� > 0); Note that if 1)( x (or 0) for all x , 

and then the shortage is completely backlogged (or lost).  
5. The on-hand inventory deteriorates at a rate  �. 

 

There is no replacement or repair of deteriorated items and they are withdrawn immediately from 

store. 

2.2. Notations 

c the constant purchasing cost per unit 

h the holding cost per unit per unit time  

s The backorder cost per unit per time 

o The cost of lost sales per unit  

td
 The length of time in which the product exhibit no deterioration 

t1
 The length of time in which there is no inventory shortage 

T The length of replenishment cycle time 

Q The order quantity 

P* 
The optimal selling price per unit 

��
∗
 The optimal length of time in which there is no inventory shortage 

T* The optimal length of replenishment cycle time 

Q* 
The optimal order quantity 

I1(t)  the inventory level at time  t ∈[0,td] 
 

I2(t)  the inventory level at time t ∈[td ,t1] 
  

I3(t)  the inventory level at time t ∈[t1,T]
 
  

I0
  the maximum inventory level  

S The maximum amount of demand backlogged 

TP(p,t1,T) The total profit per unit time of the inventory system  

TP* The optimal total profit per unit time of the inventory system  
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2.3. Mathematical formulation 

Based on the represented notations, the inventory level follows the pattern depicted in Fig.1. In order 

to establish the total profit function, the following time intervals are considered separately, ],0[ dt  the 

inventory level is assumed to decrease only by demand, the interval ],[ 1ttd  
in which the inventory 

level is affected by both demand and deterioration and drops to zero and the interval ],[ 1 Tt  where the 

shortage occurs.  Hence, the inventory level is governed by the following differential equation during 
the first interval:  
 
�	��(�)

��
= −�(�, �)							0 ≤ � ≤ ��  (1) 

 

With the boundary condition 01 )0( II  , solving the differential Eq. (1) for the inventory yields,  
 

��(�) =
� − ��

�
�1 − ����+ ��					0 ≤ � ≤ ��  (2) 

 

At the next interval ],[ 1ttd , the inventory level is affected by demand and deterioration 

simultaneously, so the inventory status can be presented by solving the equation below: 
 
��2(�)

��
+ ��2(�) = −�(�, �)							�� ≤ � ≤ �1 

(3) 

 

and the boundary condition 0)( 12 tI the inventory level is follows, 

 

��(�) =
� − ��

� + �
	������(���)�� − �(���)��						�� ≤ � ≤ �� (4) 

 

Considering the continuity of )(tI at dtt  , the maximum inventory level for each cycle is as 

follows, 
 

�� =
� − ��

� + �
	����� ��(���)�� − �(���)�� �	−

� − ��

�
�1 − ���� � (5) 

 
During the interval ],[ 1 Tt , the inventory level only depends on demand, shortage occurred and 

demand is partially backlogged according to the fraction )( tT   . That is, the inventory level at 

time t is governed by the following differential equation:  
 
���(�)

��
= −�(�, �)�(� − �) = 	

�(�, �)

1 + �(� − �)
		�� ≤ � ≤ � (6) 

With the condition 0)( 13 tI the solution of Eq. (6) is as follows, 

 

��(�) = −(� − ��) �
����

1 + �(� − �)

�

��

�� =
�
��+

1
�
�

�
	�����1 − � −

1

�
�− ���� − � −

1

�
��	�1 ≤ � ≤ � 

 
(7) 

  

where ��(�) =∫
�−��

��

�

�
��. The maximum shortage is as follows, 

 

��= −��(�) =
�
���

�
�
�

�
������ − � −

1

�
�− ���−

1

�
�� 

(8) 
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Fig. 1. Graphical representation of the inventory system 

 

The order quantity per cycle is the sum of 0I and SS , i.e. 

 

� = �� + ��=
� − ��

� + �
	�−�����(�+�)�1 − �(�+�)���	−

� − ��

�
[1 − ����]+

�
���

�
�
�

�
������ − � −

1

�
�− ���−

1

�
�� 

(9) 

 

Next, the total relevant inventory cost per cycle consists of the following elements: 
 

i. the ordering cost per cycle is A  . 
ii. The inventory holding cost that is denoted by HC  is given by 
 

�� = ℎ �� ��(�)�� +

��

�

� ��(�)��

��

��

� = ℎ

⎣
⎢
⎢
⎢
⎢
⎡

(� − ��)��������(���)�� + ��(���)�� − (� + �)�(�������)�

��(� + �)

+

(� − ��)����� �
−((���������� − 1�(� + �))

�
+ ����

(���)�� + ����
(���)���

�(� + �) ⎦
⎥
⎥
⎥
⎥
⎤

 

 
 

(10) 

 
iii. The shortage cost per cycle due to backlog that is denoted by SC  is given by 
 

�� = � � [−��(�)]�� = �(� − ��)
(� − ��)

���
������� − �����

�
�
��(�(�� − �) − 1)���� ��� − �� +

1

�
����− ���� + �����

�
�
�����−

1

�
��

�

��

 
(11) 

iv. The opportunity cost due to lost sales which is denoted by OC  is given by 
 

�� = � � �(�, �)(1 − �(� − �))�� =

�

��

�(� − ��) ��
���

�
+
����

�
�
����−

1
�
�

�
� − �

����

�
+
����

�
�
������� − � −

1
�
���

�
�� 

(12) 

 
v. the purchase cost per cycle is as follows, 
 

�� = �� = � �
� − ��

� + �
��(���)�� − 1�+

����
�
�
�

�
������ − � −

1

�
�− ���−

1

�
��� 

 
(13) 

 
vi. :SR The sales revenue 
 

�� =
���� − 1

�
(� − ��)� + ��

�
���

�
�
�

�
�����1 − � −

1

�
�− ���−

1

�
���  

 
(14) 
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Therefore, the total profit per unit time of proposed model is obtained as follows, 
 
�� (�, ��, �) =

1

�
(�����	������� − ��������	����− ����ℎ���	����− �ℎ������	����− �����������	����− ���������	ℎ������	����) (15) 

),,( 1 TtpTP  is function of pTt ,,1 ; so for any given p The necessary conditions for the total relevant 

profit per unit time to be maximized are 
���(�,��,�)

���
= 0  and 

���(�,��,�)

��
= 0 simultaneously. That is:  

 
���(�,��,�)

���
= 

�����(����)

�
+

����

�����
�

�
����

− � ��(���)��(� − ��) +
���

�����
�

�
����

� − �(� − ��)�−���� −
��(��)

�����
�

�
����

� −                         

	
	(����)��(��������

(��
�
�
)�
����[�(���

�

�
���)]�

�

�
����)

���
− ℎ�

�����(����)��(���)���(���)����������(���)�

��(���)
− �(���)������ (� − ��)��� 

 
 

(16) 

��� (�,��,�)

��
=   −

����������(����)
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+

�
��

�
��������

�

�
��������

�

�
�����

�
−

����

�����
�

�
����
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�
��

�
�(���[�

�

�
]���[���

�

�
���])

�
−

���

�(���
�

�
���)

) − 
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�
(��

�
�
)�
���[�

�

�
]

�
−

�
(��

�
�
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���[�(���

�

�
���)]

�
+

�
(��

�
�
)���(���

�
�
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�(���
�

�
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(17) 

 
Theorem 1. 
 
(a) The system of (16) and (17) has a unique solution. 
(b) The solution in (a) satisfies the second-order conditions for maximization.  
 

Proof. See Appendix A for details. 

Solving the Eq. (16) and Eq. (17), the optimum value for *T and *
1t is obtained, so the selling price 

can be determined from the Eq. (18). For this purpose, it is sufficient to solve the following equation:  

 

���(�,��
∗,�∗)

��
=

�(������
∗
�)�

�∗�
+

(������
∗
�)(����)

�∗�
+

��(����(���)�
∗
�)

���
+

�
�∗�

�
�(���[�

�

�
]���[���

�

�
��∗�])

�
+     

��(
��

∗�

�
−

���
∗
�

�
+

�
(�∗�

�
�
)�
��[�

�

�
]

�
−

�
(�∗�

�
�
)�
��[�(��∗�

�

�
��∗�)]

�
) + 

���(����)�(���
∗������

∗
����

��∗�
�
�
��
���[�

�

�
]��

(�∗�
�
�
)�
���[�(��∗�

�

�
��∗�)](����(��

∗��∗�)))�

���
−  

ℎ(−
������(�(���)��� + �(���)�

∗
�� − ��������(� + �))

��(� + �)
+
������(−

����(−1+ ����)(� + �)
�

+ �(���)����� + �(���)�
∗
����)

�(� + �)
) 

 

 

(18) 

The second order derivation of 
),,( **

1 TtP
TP with respect to P is given by the following equation: 

����(�, ��
∗, �∗)

���
= −

2�(−1 + ����)

��
−
2���(−���� + ����� − �(��

�
�
)��Ei[−

�
�
]− �(��

�
�
)��Ei[�(−� −

1
�
+ ��)](−1 + �(−� + ��)))

���
< 0 

(19) 

3. The algorithm 

We propose a simple algorithm to obtain the optimal solution of the problem.  
 
Step 1. Start with j=0 and the initial value of 1ppj  . 

Step 2. Find the optimal value of *T and *t  for a given price jp  . 

Step 3. Use the result in step 2 and then determine the optimal 1jp by Eq. (18).  

Step 4. If the difference between jp and 1jp is sufficiently small, set 1
*

 jpp , otherwise set 

1 jj and go to step 2.  
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By using above algorithm, we obtain the optimal solution **
1

* ,, Ttp , we can obtain *TP using Eq. (15). 

4. Numerical example 

To illustrate the solution procedure, we solve the following numerical example; the results can be 
obtained by applying the Mathematica 8.0.  
 
4.1. Example.  
 
We adopt the same example of Maihami and Nakhai (2012) to see the optimal inventory control 
policy and optimal selling price. The example is based on the following parameters and functions:  
   

orderperA /250$ , unitperC /200$  , timeunitperh /40$ , timeperunitpersc //80$ ,

unitperoc /120$ , 08.0 , 04.0dt  tepptD 98.0)5.0500(),(  , 
x

x
2.01

1
)(


  

First we set
b

bca
p

2
1


 , after five iteration we have 64.1880* p , 06321.0*

1 t , 08547.0* T

6* 109.64617 TP . Fig.2. shows that *TP is strictly concave in p . 

 

 
Fig. 2. Graphical representation of ),|( **

1 TtpTP
 

6. Sensitivity analysis 

In this section, we focus on the effects of changes in the parameters of the system on *p , *
1t , *T , and 

*TP . The sensitive analysis is performed by changing each value of the parameters by +50%, +25%, -
25% and -50%, taking one parameter at a time end keeping the remaining parameter values 
unchanged. The computational results are shown in Table 1. 

The sensitive analysis shown in Table 1 indicates the following observations:  

1- When the value of parameters increases, the optimal selling rate will increase. *p  is too much 

positively sensitive to change in parameter c . This result is reasonable because the purchase 
cost has a strong and positive effect on the optimal selling rate.  

2- When the values of A , s , and o  increase, the optimal value of *
1t  increases and it decreases as 

the value parameters h and   increase.  

3- When the value of parameter A  increases, the optimal length of *T  increases and as the 
values of parameters h , s , o , and   increases, it would decrease.  

4- When the values of all the above parameters increase, the optimal profit per unit time will 
decrease; this implies that the increase in costs and deterioration rate have a negative effect on 
the total profit per unit time.  
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Table 1  
Sensitive analysis with respect to the model parameters 

Parameter Value *p  
*
1t  

*T  
*TP  

A  

125 1873.00 0.05182 0.06732 9.62021 106 

188 1876.16 0.05687 0.07341 9.61300 106 

313 1886.38 0.06601 0.08796 9.57023 106 

375 1891.07 0.06936 0.08984 9.21869 106 

c 

100 1842.82 0.07401 0.08162 9.97000 106 

150 1861.24 0.06872 0.08221 9.86203 106 

250 1908.00 0.06767 0.08602 9.20153 106 

300 1937.21 0.07337 0.08917 9.00205 106 

h 

20 1877.53 0.07901 0.08392 9.67899 106 

30 1881.05 0.07464 0.08016 9.64865 106 

50 1884.61 0.07258 0.07936 9.62001 106 

60 1885.04 0.07209 0.07786 9.61054 106 

s 

40 1878.59 0.06723 0.08429 9.66253 106 

60 1880.00 0.06907 0.08391 9.65713 106 

100 1881.04 0.07045 0.07975 9.63190 106 

120 1883.19 0.07100 0.07816 9.61732 106 

o 

60 1880.35 0.06509 0.08625 9.66631 106 

90 1880.51 0.06896 0.08390 9.65163 106 

150 1881.01 0.06973 0.08238 9.64502 106 

180 1881.11 0.07013 0.08547 9.64265 106 

  

0.04 1878.28 0.07901 0.08982 9.67953 106 

0.06 1879.86 0.07316 0.08801 9.66385 106 

0.1 1882.32 0.06016 0.08391 9.63509 106 

0.12 1883.36 0.05736 0.08072 9.629876 106 

 

7. Conclusion 
 
In this paper, an appropriate model for a retailer to determine its optimal selling price and 
replenishment schedule for deteriorating item has been established. The demand is deterministic and 
depend on time and price, simultaneously. In addition, shortage is allowed and can be partially 
backlogged, where the backlogging rate is variable and dependent on the time of waiting for the next 
replenishment. In this study, some useful theorems, which characterize the optimal solution have 
been mentioned and an algorithm has been presented for determining the optimal price and optimal 
inventory control parameters. Finally, a numerical example is provided to illustrate the algorithm and 
solution procedure.  
 

Appendix A 

(a) Because of high complication in Eqs. (15) and (16), a straightforward proof does not exist. So, 
we only explain the proof procedure. First we must obtain )(1 Tort based on )( 1torT from Eq. 

(15) and Eq. (18), ( call this function )(xF ). For )(xF , we take the first-order derivative with 

respect to x  and show that )(xF  is a strictly decreasing or increasing function. Next we use 

the intermediate value theorem and complete the proof. A simple and similar proof can be 
found in Yang et al. (2009).     

(b) Let ),( **
1 Tt   be the solution of Eq.(15) and Eq. (16), we obtain 
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By assuming 0 ,   ,   , abp  , we have 0
2
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1

**
1 





t

TP
TtP , because the first, second, fourth, 
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By assuming	� < 0,	|�| > �,	|�| > �, �� < � we have 
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  Using the example provided by Maihami and Nakhai (2012), we find the optimum value for *
1t and

*T , thus, the determinant of hessian matrix at the stationary point ),( **
1 Tt  is:  

���(�) =
����

���
� .
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> 0 

 

Hence, the Hessian matrix at point  *
1

*,tT  is negative definite and this completes the proof.  
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