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 Over time, the number of unexpected earthy, oceanic and atmospheric events is rising each 
year. Hence, disaster management is considered as one of the most important scientific and 
practical issues in developed and developing countries. Therefore, in this study, we review and 
develop the problem of locating the emergency units with constraints including the number of 
available ambulances, limited budget for deployment of ambulances and the minimum 
acceptable level of covering. The proposed model improves the spatial queuing model (SQM) 
and Maximal Covering Location Problem (MCLP) by considering the cost of the deployment 
of the emergency units, which makes it closer to real-world conditions. Because the proposed 
model is NP-hard, the model is solved using three heuristics including Simulated Annealing 
(SA), Genetic Algorithm (GA) and a hybrid of both. The preliminary results indicate that the 
hybrid method had better performance to achieve the optimal or close to optimal solution. 

  © 2014 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

Facility location (FL) is a 100-year history and some experts believe that it is a classic and ancient 
knowledge. Some experts believe that finding accommodations is a classical and ancient knowledge. 
The first FL model that was discussed and can be used is the Location Set Covering Model (LSCM) 
that was provided by Toregas et al. (1971) to aim of minimizing the number of ambulances needed to 
cover all the inquiries. This model is not very close to reality because the only criterion for locating 
units was the time of interval between the points and there were no differences between various 
demand points. Ball and Lin (1993) offered a reliable emergency location model. In this model, 
without considering the capacity of ambulances, a linear constraint to make the number of 
ambulances to reach a reliable level was added to the LSCM model. Church and Revelle (1974) 
presented Maximal Covering Location Problem model (MCLP). This model, because of the limited 
number of ambulances and specifying the points of demand, optimizes the services in circumstances, 
which would have the most surface coating. MCLP model is one of the most important of the 
positioning issues and usually it is the main base of other positioning models. The time for resolving 
MCLP model comply a non-polynomial function and these issues are said NP-hard issues (ReVelle, 
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1989). Pirkul and Schilling (1988) presented Capacitated Maximal Covering Location Problem model 
(CMCLP). This model, considered the capacity of ambulances, developed the MCLP model. The 
primary goal is the same as MCLP model and looks for the maximum total coverage of areas of 
requests. Shariff et al (2012) solved MCLP model with Genetic Algorithm. Maximal Expected 
Covering Location Problem model (MEXCLP) was presented by Daskin (1983) using the expansion 
of MCLP model. In this model, a probability (q) is attributed to each ambulance, which represents 
unavailability of ambulance and the model was applied for a case study in city of Bangkok. They 
claimed that they could cover, in addition to increasing inquiries, and reduce the number of required 
ambulances from 21 to 15. This model was an extended model by Repede and Bernardo (1994) and 
they presented Time and Maximal Expected Covering Location Program model (TIMEXCLP) by 
considering the speed of traffic throughout the day. Fuzzy mode of MCLP model as well as was 
presented by Davari et al. (2011) and they solved the resulted problem using Simulated Annealing 
algorithm. Hogan and Revelle (1986) provided supporting coating model (BACOP). The fact that 
some regions need more ambulance due to their demands, in this model was emphasized. In this 
model by using double variable in MCLP model, at least, two ambulances were assigned for higher-
demand areas. Gendreau et al. (1987) presented a Double Standard Model (DSM) model where a 
two-level coating was used. The purpose of this model maximized the requests for covered areas 
using two ambulances. Schmid and Doerner (2010) developed the double standard model. In 2012, 
they also considered a time period and the possibility of moving ambulances in various courses 
contributed DSM model and named multi period Double Standard Model (mDSM). Revelle and 
Hogan (1989) offered a probability model under the title Maximum Availability location Problem 
(MALP1). The model was to maximize covered requests with the probability of α. In fact, a lack of 
access coefficient “q” was considered for relief centers. Locating model with optimization of two 
functions provided by Burkey et al. (2012). In this model, one of the target functions was to 
maximize coverage of inquiries. Locating models that has been raised in recent years can be 
Bottleneck Steiner tree model presented by Zhang et al. (2012). Syam and Cote (2010) presented a 
model to minimize fees and a spatial queuing model (SQM), which was originally presented by 
Geroliminis et al. (2009) for locations of emergency vehicles urban networks, with regard to the 
characteristics of the time and place inquiries. In SQM model, the probability of lack of availability 
of emergency units was considered and with this restriction it was closer to the real model. However, 
this model also has some weakness, that is the lack of possibility for establishment of more than one 
ambulance in a region, and decisions are only based on interval between time points and covers 
minimum level of areas but cannot improve the coating and maximize it according to the other 
limitations and conditions. Therefore, this paper presents a combination of MCLP model and SQM 
model by adding target function for minimizing the cost of establishment of units in each area. 
 
2. The proposed mathematical model 
 

In this model, our goal is to develop a distance line model and to solve the issue of positioning 
emergency medical or treatment units by considering the numbers limitations of the existing 
ambulances, budget and a minimum level of acceptable coating to minimize costs using target 
function. A decision maker determines the coefficients of the objective functions. In this model, 
unlike the SQM model, the possibility of establishing only one ambulance in each region is removed 
and it is possible to consider more than one ambulance. With the possibility of the establishment of 
several units, it is possible to reduce the cost of site construction. With establishment of one 
ambulance, with respect to response time, certain areas will be covered. In fact, we are interested in 
determining the place or places of deployment medical units with optimized response time, coverage 
area (Considering MCLP model) by optimizing the cost of construction and the establishment of 
units. By adding MCLP model to the proposed model, SQM model became more real and In addition 
to observance of the minimum level of coating, the possibility of achieving the optimum coating will 
be achieved. In addition, in the proposed model, the weakness of SQM model in considering the 
number of possible events as the sole criterion to determine demand for each region with a view to 
putting the severity of possible accidents and population density, somewhat repairable. 
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2.1. The model assumptions 
 

Assumptions and characteristics of the issue are determined as follows: 
 

All of the parameters and data used in the issue are absolute. 
There are N separate ambulances. 
No limited connections exist between them. 
Ambulances across the schedule horizon, if not busy, are available. 
Every ambulance in a moment can only be deployed to an area. 
Demand in every area is depend on highly occurrence of events, number of events and population 
density. 
All available ambulances are stationed. 
There is a possibility of having no ambulance in some areas. 
There is the possibility of the establishment of more than one ambulance at each location. 
Area required for the deployment of ambulances has been considered identical. 
Each ambulance can only be settled in one place. 
The probability that at least one ambulance is available is 1-(1/2 ^ N) .N is the number of the existing 
ambulances. 
The symbols listed below are used for mathematical. 
 

2.2  Input Parameters 
 
J: number of places or regions on demand, 
N: number of available ambulances, 
Tnkj: response time to demand location, j when ambulance n is based on the location k, 
Ak: land prices or the cost of the deployment of the units in the kth place, 
d: the area required for the establishment of any ambulance, 
λ୨: Highly probable events at j, 
h୨: The number of possible accidents at the location j, 
Mj: Population density at the location j, 
Cୡ୭୴: The minimum acceptable level of coverage, 
a: The minimum acceptable response time, 
B: available budget, 
w୫
ᇱ : Recommended weight m th target function used by user for model or system. 

 
2.3  Indices 
 

n: the index number of the ambulance, n = 1, ...,N, 
k: ambulance deployment locations index, k = 1, ..., J, 
j: demand location index,  j = 1, ..., J, 
i: index of sites, i = 1, ..., I, 
v, s: index of possible modes of response system, v, s = 1, ..., 2N, 
m: index of the number of available objective functions, m = 1, 2, 3. 

 

2.4  Decision variables 
 

Z: minimum cost deployment of ambulances, 
P୬୩୨: A fraction of the deployment to the area j by nth ambulance deployed in location k, 
x୧୩:	The number of ambulances in unit or base i , which are located on position k, 
yj: ൜

1			if	area	j	is	coverd	by	at	least	one	ambulance	
0											if	area	j	is	not	coverd	by	any	ambulance   

L୧୩: ቄ1			if	unit	i	is	k	locatin
0																															else, 
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y୬୩୨
ᇱ : ൝

1		if	area	j	is	covered	by	n	th	ambulance
	in	k	location	

0																																																																				else
, 

L୬୩ᇱ : ቄ1				if	ambulance	n	is	in	k	location
0																																																					else     , 

 x୧: number of ambulances in base i, 
fj: demand in j area, 
w୩୨: A set, which includes the database index,  
Enkj: set of scenarios that serve n, which is the nearest available server in area j, 
Bs: Set of position of the ambulances in case s   (Bୱ = {bଵ, bଶ, … , b୒}), 
Bଶొ : Set the position of the ambulances, when, no ambulance is available and idle, 
p{Bୱ}: The possibility of partially related peak mode	Bୱ, 
b୬: ቄ1				if	ambulance	n	is		buzy

0																																								else
,  

w୫: mth coefficient of target function, 
λୱ୴ and μୱ୴	: is the upward and downward mean rates in which transitions are made from different 
states to state v corresponding to vertices Bs and Bv, given the system is in states. The decision 
variables are the number of ambulances and the establishment of units in each unit to minimize target 
function and apply desired  limits. 
 
2.5 Proposed model 
 
The proposed model is formulated as follows: 
Minimize	Z = wଵ ∑ ∑ ∑ L୬୩ᇱ

୎
୩ୀଵ . P୬୩୨	. y୬୩୨ᇱ୎

୨ୀଵ . t୬୩୨ 		+ w2 ∑ ∑ Lik	. Ak	.I
i=1 d	. xik 	−w3 ∑ fj	. yj

J
j=1 				J

k=1 	୒
୬ୀଵ                        

subject to (1) 

fj =
λj. hj. Mj

∑ λj. hj. Mj
J
j=1

,  

wm =
wm
′

∑ wn
′3

n=1
,∀m = 1,2,3, (2) 

xi = ෍ L	ik	. xik	,∀i = 1,2, … , I	, I ≤ J,

J

k=1

					 (3) 

෍ fj	. yj 	 ≥ 	Ccov,

J

j=1

			 (4) 

෍ xi = N,																																																																																																																																						
I

i=1

 
(5) 

෍෍ Lik	. xik
i∈wkj

≥ yj,∀j = 1,2, … , J,

J

k=1

 
(6) 

yj ∈ {0,1},						∀j = 1,2, … , J (7) 
wkj = ൛i ∈ I	, k ∈ Jหtikj ≤ aൟ, (8) 

Pnkj = fj .
∑ p{Bs}Bs∈Enkj

(1 − p{B2N})
, ∀j, k, n 

(9) 

p{B୴}቎ ෍ λୱ୴
ୱ൛ా౩∈ిొ:ౚ౩౬శ సభൟ

+ ෍ μୱ୴
ୱ൛ా౩∈ిొ:ౚ౩౬ష సభൟ

቏ = ෍ λ୴ୱp{Bୱ}
ୱ൛ా౩∈ిొ:ౚ౬౩శ సభൟ

+ ෍ μ୴ୱp{Bୱ}				(v = 1,2, … , 2୒)			
ୱ൛ా౩∈ిొ:ౚ౬౩ష సభൟ

 

 

(10) 
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෍෍Lik	. Ak	.
I

i=1

d	. xik 	 ≤ B

J

k=1

, 
(11) 

෍ p{Bs} = 1,																																																																																				
2N

s=1

 
(12) 

෍෍Lik = I,
I

i=1

J

k=1

																									 
(13) 

෍ Lik ≤ 1,						∀k = 1,2, … , J,
I

i=1

 
(14) 

෍ Lik = 1,						∀i = 1,2, … , I,

J

k=1

		 
(15) 

y୬୩୨
ᇱ ∈ {0,1},∀j, k, n, (16) 

Lik ∈ {0,1},∀k = 1,2, … , J	, ∀i = 1,2, … , I,																																					 (17) 

Lnk
′ ∈ {0,1},∀k = 1,2, … , J	, ∀n = 1,2, … , N (18) 

Objective function in this model is composed of three target functions combined with specified 
coefficients. The three target functions minimize average response time, minimize cost of sites 
construction according to the number of ambulances and maximize surface coating of inquiries. 
Constraints (1) determine the demand for each region (Based on population density, the number and 
severity of potential events). Constraints (2) specify the coefficients of each target function. 
Constraints (3) ensure that the number of ambulances managed in a certain area is exactly equal to the 
number specified for base. Constraints (4) is minimum coverage, which states that covering all area 
must be bigger than a predetermined amount (Cୡ୭୴ ≤ 1). Constraints (5) specify the number of 
facilities that should be deployed. Constraints (6) determine areas covered by acceptable distance, 
every area j can only be covered if a facility exists in  part of a place in time “a” if there is no such 
facilitate, left side of limits is zero and y୨ is forced to be zero. Constraints (7) are associated with 
decision variables, which must be zero or one. Constraints (8) represents a collection including i base, 
which is located in place k and cover j area. Constraints (9) represent the fraction of dispatching  
ambulance n to the area j when located in area k. Constraints (10) are detailed balance equations 
determining steady-state probabilities of the “finite-state continuous time Markov process” model 
with N servers. Constraints (11) ensure that the cost of the designated location would not exceed the 
available budget. Constraints (12) state that the sum of probabilities is equal one. The constraints (13) 
specify the number of sites, which must be established. Constraints (14) ensure that there is a 
maximum of one base is in any area. Constraints (15) ensure each health unit locate only in one place. 
Constraints (16), (17) and (18) ensure L୬୩ᇱ ,	L୧୩,	y୬୩୨ᇱ  are zero or one. The upward transition rate, λ୧୨, 
can be considered as the demand for requested service that will create a transition from state i to state 
j, given that the system is in state i, while the downward transition, μ୧୨, is the service rate for this 
specific demand. In order to estimate upward and downward transition rates λ୧୨	and μ୧୨, the term of nth 
order districting is introduced. For n = 1, the term is equivalent to districting as defined above; for n 
> 1, it is the partitioning of the study area in sub areas according to the nth nearest server. The nth 
order districting indicates that, for every region, the n1 nearest servers are unavailable and the nth 
responsible server will intervene if requested. Mathematically, this term can be expressed as follows: 
 

D୩୪
୬ = ൛jϵJ:	t୪୨ = min൫n, U୨൯and	t୩୨ = min൫1, U୨൯ൟ, (19) 
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where D୩୪
୬  is the sub-area belonging to the 1st order district of server k and the nth order district of 

server l (k = 1, 2, . . ., N and l = 1, 2,. . ., N); min(n, Uj) is the nth smaller term of the set Uj = {tij} i = 
1,2,. . .,N; j is the service region; J is the set of service regions in the service area. 
For n = 1, only districts D୧୧

ଵ  with i = j can be defined and for n > 1 only districts with i≠j make sense. 
Similarly, λ୩୪

୬ 	is defined as the total demand of the D୩୪
୬  sub-area; it is straightforward that, for every 

order of districting, the entire demand is completely covered: 
 

෍෍ λ୩୪
୬ =

୒

୪ୀଵ

୒

୩ୀଵ

λ									(n = 1,2, … ) (20) 
 

If unit k’s state changes from idle to busy then Bi = {b1, . . .,0k, . . .,bN_1,bN} and Bj = {b1, . . .,1k, . . 
.,bN_1,bN}. The upward transition λ୧୨	can be calculated as follows: 
 

λ୧୨ = λ୩୩
ଵ + 	 ෍ λ୪భ୩

ଶ 	+ ෍ ෍ λ୪భ୩
୫ ∩ λ୪భ୪ౣషభ

୫ିଵ ∩ …∩ λ୪భ୪మ		
ଶ 	

୪భ,…,୪ౣషభ∈୒:∏ ୠౢ౟ୀଵ
ౣషభ
౟సభ

୑

୫ୀଶ					୪భ∈୒:ୠౢభୀଵ

 
(21A) 

 

where M is the maximum order of districting (M ≤number of busy servers). 
 
The calculation of the downward rates lij is based on the upward rates kij. If Eq. (21A) has P different 
terms (different sub-areas), denoted for the simplicity as λ௣ and ߤ௣ is the service rate for each of these 
sub-areas, the downward rate μ୧୨ is 

μ୧୨ =
λ୧୨

∑ (
λ௣
௣ߤ

)୔
୮ୀଵ

 

 

(21B) 

3. The implementation of the solutions method 
 
Locating issues, even the simplest, like MCLP model are NP-hard problems. Therefore, the models, 
which are more complex than MCLP model, are also NP-hard. As a result, the model presented in 
this study with regard to this topic, which is more complex than the MCLP model is categorized as 
NP-hard problems. The method of solving such problems is single-pointed innovative. Methods that 
have been used in this study are simulated annealing (SA), genetic algorithm (GA) and a hybrid of 
these two methods. 

 
3.1. Simulated Annealing (SA) 
 
This method is a discrete optimization technique and the policy of algorithm is inspired from slow 
freezing process in physics science. This method is an algorithm based on local search that has ability 
to quit from local optimization, which first by irregular jump and by time passage to reach in a better 
point trying to have a more systematic search. There are some components for implementation of the 
algorithm SA such as resolve policy, coding procedure, and production of the initial answer, 
temperature reduction program and stop criteria. Each of these components will briefly describe. 
 
3.1.1 Coding procedure 
 

Coding procedures is a procedure to declare a policy to answer the issue to a computer. Coding 
procedures in research is in form of zero and one. 
 
3.1.2. Primary answer production 
 

We can select primary answer in two ways, random or accept a specified good answer as the primary 
answer. In this study, way of selection is random. The structure of the answer is a 1 × J array where j 
represents the number of demand regions. As was said in the previous section, we may have the 
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answer to be understandable by the computer coding. So to create the answer at first, an array of 1 × 
(J × N) is created where N is the number of available ambulances, and (0 and 1) components with the 
condition that the sum of components in the array is equal N. Fig. 1 is an example. (It is assumed N = 
3 and J =5). 

 

 
Fig. 1. The basic structure of an answer to a problem of locating the emergency units 

 

Now array is divided by J ε N cells and fill in new cell. In this way, the answer is coded, finally the 
final structure can be seen in Fig. 2. This means that each location has few ambulances or facilitate. 
 

 
Fig. 2 .The final structure for a solution of a hypothetical problem emergency units positioning 

 

3.1.3  Operator of move 

For the production of a current answer, neighborhood operators of move are used. The structure of 
the neighborhood determines how to move from one mode to the other mode. In this study, the 
strategy of creating the neighborhood, which fits the issue is explained next and the implementation is 
demonstrated in Fig. 3. 

The strategy of locating: a random position of the primary structure of the answer is selected. 

Alternative strategy: If the selected component is zero instead of one in the same position and zero, 
otherwise. 

Control strategy: the sum of the array components. If the obtained value is less than N locating 
strategy runs until a position with zero value is selected and the replacement strategy runs on 
component and if the value obtained is greater than N. Therefore, the strategy of locating runs until a 
position is selected and the component value is one and the replacement strategy runs on that 
component. After creating the neighborhood, if the result is improved we accept the new result, 
otherwise, we may accept or decline. 

3.1.4 Temperature reduction program 

Use this tool to determine how to lower the temperature. In this research, in order to lower the 
temperature, we use linear cold function Tl=T(l-1)×α  where α is a positive number less than 1 and 
called cold rate. 

3.1.5 Stop criteria 

Temperature based stop criteria is considered and as long as the current temperature is greater than 
one the algorithm goes forward. Although it may decrease the temperature until we reach the desired 
temperature to stop, it may cause more time to solve algorithm but reaching a favorable answer has 
greater priority in the research. 

3.2 Genetic Algorithm (GA) 

In the 70's, a scientist from the University of Michigan named John Holland presented the idea of 
using genetic algorithms in optimization of engineering. The basic idea of the algorithm is inherited 
characteristics by gene transfer. Components that make the structure of the algorithm are: one issue to 
resolve, coding procedures and display the answer, production of the initial population, evaluation 
function, parental choice, Crossover and Mutation operators and stop quality.  
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Fig. 3. Neighborhood create operators, in  designed 
SA algorithm 

Fig. 4. Schematic picture of Binary Tournament 
method 

 

3.2.1 The evaluation function 

By using this function, each chromosome is decoded and a quality and a value is assigned to it. 

3.2.2 Parental choice method 
 

In this research to choose the parents of existing population, tournament method is a type of 0, 1 is 
used. In this way all the existing answers have the same chance of selection and work started with 
choosing two random answers from population and one of those is selected  based on the amount of 
fitted as a parent. Fig. 4 shows the proposed GA model, 

3.2.3. Crossover operator 

Crossover operator executes combining two selected parents hoping to create two better new 
children, to continue the process of the evolution. The crossover operator receives two chromosomes 
and creates maximum two children. In the study two points method is used. First two random points 
are selected, all the genes between two points on parents are passed on to children and remained 
genes in order of existing in other parent will move to other child. Fig. 5 shows details of our method. 

Parent 1 1 0 0 0 1 1 1 0 1 0  Child 1 0 0 0 0 1 1 0 1 1 1 

                       

Parent 2 0 0 0 0 1 0 1 1 1 1  Child 2 0 1 1 0 1 0 1 0 1 0 

 

Fig. 5. Schematic view of Two Point Crossover method 

3.2.4 Mutation operator 

In this study, the way of mutation operator is to select a random gene and the inner number of gene is 
changed, if the number is 0 changes to 1 and 0 to 1. Now the total numbers within the gene are 
calculated, if this value is not equal to the number of available ambulances, again we choose a 
random gene and the number inside it changes with condition. By changing it, the sum of the gene 
numbers is equal to the number of ambulances, otherwise, we select a different random gene and 
continue to meet the desired condition. 

3.2.5 Stop criteria 

In order to end the genetic algorithm, several criteria can be used. Here stop criteria is the number of 
evolved generations. 
 

3.3. Combined algorithm of SA and GA algorithms 
 
By combining two or more algorithms, contrasting behavior characteristics are also combined and the 
performance of established algorithm can be improved. In different compositions, an algorithm can 
be combined, the most important are serial combination, parallel combination and within 
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combination. In this study, we use serial combination, the final answer of genetic algorithm is initial 
response to simulated refrigeration algorithm. Because the genetic algorithm is not sensitive to initial 
answers and the final answer is not much influenced by initial answers. On the other hand, we know 
if refrigeration simulation algorithm works with a good initial solution due to the high escalated 
ability, certainly will reach to a good answer. Some successful combination of SA & GA are referred 
by Roach and Nagi (1996), Ghoshal (2004), Mohanta et al. (2007), Chen and Shahandashti (2009), 
Oyso and Bingul (2009), Sonmez and Bettemir (2012) and Zameer et al. (2014). 
 
4. Computational results 
 
To evaluate the performance of these three algorithms, first, several samples in accordance with the 
model are created and after setting the parameters, they are solved by algorithms. In order to 
determine the most appropriate algorithm for solving this group of positioning issues we will 
compare the results. 
 
4.1. Creating sample issue 
 
The parameters required to create sample issues are: The number of regions looking for services, the 
area required for the establishment of any ambulance, the number of existing ambulances, the 
minimum acceptable level of coating, the maximum available budget, the coating standard time, the 
number and the severity of potential events and the population density in each area, the land prices in 
each area for establishment of ambulance, the time interval between all regions and the weight of 
each of the target functions. These factors and interval are considered in Table 1. 

 
Table 1 
Sample issues parameters and their limits 
Factor region Factor region 
The number of regions calls for the population [9  50] Numbers of probable [1  10] 
Needed area for establishment of any ambulance [1  3] Intensity of probable [1  10] 
Number of existing ambulances [9  50] Population density in each [1  10] 
Minimum acceptable of covering area [.7  .99] Land price in each area [30  200] 
Maximum available budget [300  2000] Time interval between [1  10] 
Standard covering time [5  8]   
 

4.2. Parameter setting 

The parameter setting is one of the most important components of an innovative algorithm, which has 
the major impact on the performance. Table 2 shows refrigeration simulated algorithm input 
parameters as well as the selected levels. For the suitable set of the algorithm parameters, we run 
questions five times with five sizes in MATLAB for achieving the lowest objective function and 
change the results (values of the objective functions) to the relative deviation of the percentage 
indicator (RPD), the results of MATLAB in accordance with Eq. (22) and Eq. (23) will be converted 
to this index and finally, using testing design in MINITAB software (version 16) average of resulting 
RPD checked. By examining Fig. 6 and the Table 3 and analyzing the final results of the  software 
MINITAB we conclude that combination temperature parameter in level 3, the alpha parameter in 
level 5 and MaxIt parameter in level 2 yield a better performance. In summary, the results can be 
viewed in the Table 4. 

Table 2 
Input parameters of refrigeration simulation algorithm 
Factors Temperature Alpha MaxIt 
Levels 50-150 0.8-0.99 20-50 
 

RPD =
|Algorithmୱ୭୪ − Bestୱ୭୪|

Bestୱ୭୪
× 100						 (22) 

ARPD = RPDതതതതതത =
∑ RPD୒୳୫ୠୣ୰	୭୤	୰୳୬
୧ୀଵ

Number	of	run
			 (23) 
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Algorithmୱ୭୪ of the amount of objective function for a specific question is specified. Bestୱ୭୪ is the 
minimum value of the objective function are among the results achieved. 
 

Table 3 
RPD total averages for every combination. 

NO. temperature alpha MaxIt ARPD NO. temperature alpha MaxIt ARPD 
1 50 0.8 20 2.030411 31 100 0.9 40 2.545093 
2 50 0.8 30 3.150903 32 100 0.9 50 2.718226 
3 50 0.8 40 3.176465 33 100 0.95 20 2.248257 
4 50 0.8 50 1.813668 34 100 0.95 30 2.551799 
5 50 0.85 20 3.662824 35 100 0.95 40 2.821449 
6 50 0.85 30 1.76158 36 100 0.95 50 1.58458 
7 50 0.85 40 2.897191 37 100 0.99 20 1.557005 
8 50 0.85 50 2.312985 38 100 0.99 30 0.622008 
9 50 0.9 20 2.308249 39 100 0.99 40 1.531592 

10 50 0.9 30 1.156827 40 100 0.99 50 0.987595 
11 50 0.9 40 2.11823 41 150 0.8 20 1.787572 
12 50 0.9 50 2.287474 42 150 0.8 30 2.437263 
13 50 0.95 20 1.810775 43 150 0.8 40 2.888002 
14 50 0.95 30 2.222103 44 150 0.8 50 2.293158 
15 50 0.95 40 1.787055 45 150 0.85 20 2.003632 
16 50 0.95 50 1.566903 46 150 0.85 30 1.849884 
17 50 0.99 20 0.990911 47 150 0.85 40 2.149828 
18 50 0.99 30 1.360141 48 150 0.85 50 2.366179 
19 50 0.99 40 0.904622 49 150 0.9 20 2.568364 
20 50 0.99 50 0.913025 50 150 0.9 30 2.679819 
21 100 0.8 20 3.958418 51 150 0.9 40 2.335867 
22 100 0.8 30 2.770093 52 150 0.9 50 1.620695 
23 100 0.8 40 3.38322 53 150 0.95 20 2.066858 

24 100 0.8 50 2.45935 54 150 0.95 30 1.437718 
25 100 0.85 20 1.992338 55 150 0.95 40 1.597699 
26 100 0.85 30 0.516732 56 150 0.95 50 2.584224 
27 100 0.85 40 2.21936 57 150 0.99 20 1.589379 
28 100 0.85 50 2.988631 58 150 0.99 30 1.782064 
29 100 0.9 20 2.328364 59 150 0.99 40 0.728149 
30 100 0.9 30 1.166194 60 150 0.99 50 0.098507 

 

Table 4 
The proposed SA algorithm parameters values 
MaxIt Temperature Alpha 
30 150  0.99 

 
According to the procedure described, innovative genetic algorithm parameters were also set. Genetic 
algorithm input parameters and levels of choice have been shown in Table 5. 
 
Table 5 
The levels of the genetic algorithm parameters  
Factor Mutation Crossover nPop MaxIt 
Level  0.8-0.99 0.01-0.2 10-50 10-30 
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Fig. 6. The achieved results of implementation 
of software MINITAB for achieved ARPD 
from running algorithm SA 
 

Fig. 7. The MINITAB software 
implementation results for ARPD made in 
from GA algorithm 

Fig. 8. The scope of an existing algorithm output 
changes 
 

Finally, with regard to the target function fitting criteria, turn it into a relative deviation percent index 
and reviews Fig. 7 obtained from MINITAB software, MAXIT parameter in level 3, NPOP parameter 
in level 3, mutation parameter in level 5 and crossover parameter in level 3 will have best 
performance. In summary, the results can be found in Table 6. Due to the large volume of results of 
MATLAB, we ignore. 
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Table 6 
The GA algorithm proposed parameters values 

Mutation Crossover nPop MaxIt 
0.99 0.124 20 20 

 
4.3  Comparison of the proposed algorithms with LINGO software 
 
In order to compare the designed algorithms with LINGO software, we have produced several issues 
in three small, medium and large sizes and we have solved them by LINGO software. Now any of the 
above three issues with any of the existing algorithms have been solved and the average solutions 
have been calculated. To obtain the average relative error percentage we use Eq. (23) and Eq. (24). 
After the calculation of the relative error percentage for each issue we observe that the maximum 
relative error for the implementation of the genetic algorithm, simulation of refrigeration algorithm 
and hybrid algorithm are 1.93683%,  0.903348% and 0.90%, respectively. In addition, the average 
relative errors for thee mentioned methods are 0.409511%, 0.769066% and 0.405%, respectively, 
which are very small numbers.  
 

4.4. Algorithm comparison 

After setting the parameters for the algorithms, sample problems have been solved by all three 
algorithms in specific time and the results of them (target function fitting) are converted to relative 
deviation of percentage index and compared with 95% statistical analysis of trust domain. The result 
of this analysis and evaluation is displayed in Fig. 8, and it can be seen that hybrid algorithm is better 
than algorithms and acted with fewer domain changes than the rest. 

5. Discussion and conclusions 
 

Emergency medical service centers with consideration in a timely manner to patients, decrease 
mortality and losses due to injuries. Because the goal is to save lives, suggestions to improve the 
performance of these centers are very welcomed. One of the most important parameters in the 
provision of emergency medical services with high quality is the time of providing these services and 
the amount of covering the possible accidents. The location of establishing these centers has a 
fundamental role for reducing response time to demands and covering these demands and reducing 
the cost of locating units and hence, the location of these units in cities, especially the big and 
populated cities is very important. In this study, in order to achieve to the proper place for the 
establishment of emergency medical services or emergency vehicles, a single objective mathematical 
model with the aim of minimizing the objective function with constraints including the number of 
available ambulances, limited budget and minimum acceptable level of covering has been presented. 
Then three heuristic approaches include SA algorithm and GA algorithm and a hybrid of SA and GA 
to achieve the optimal or near optimal solution have been used. The preliminary results have 
indicated that the hybrid algorithm may perform better than two SA and GA algorithms 
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