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 We study the question of how to ideally divide total profits among supply chain members, 
especially in a stochastic demand market. The Shapley value is used as the methodology 
solution to divide profits in a supply chain. To illustrate the Shapley value solution and 
procedures, a two-echelon supply chain consisting of one supplier and two heterogeneous 
retailers is examined. The goal is to figure out ideal transfer prices for products delivered 
among supply chain members. These transfer prices will achieve the suggested profit 
allocations among three companies. 
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1. Introduction 

 
Recently, supply chain management research has stressed the importance of coordination in 
decentralized supply chains (e.g., Corbett et al., 2004; Cachon & Lariviere, 2001; Bernstein & 
Federgruen, 2005). Supply chain coordination helps create more streamlined business processes and 
enables cost reduction. It has been shown that supply chain members are not primarily concerned 
about the supply chain total profits, but about their individual profits (e.g., Cachon, 1999; Fransoo et 
al., 2001). It is critical for each supply chain member to achieve a certain level of profits to insure 
supply chain coordination. Supply chain coordination is a series of activities, which are taken by 
independently managed parties in a supply chain to act in the same way as operated by one single 
decision maker. It often leads to global cost reduction, higher service levels, a reduction of the 
bullwhip effects, better resource utilization and effective market demand responses. One critical 
question in coordinating a decentralized supply chain is how to price products shipped between 
supply chain members. Normally, supply chain members will sign contracts to reach agreements 
which determine profits from transactions. Cachon (2003) demonstrated that a lot of incentive 
contracts could coordinate supply chains. In order to implement an incentive contract, agreements 
regarding the profit allocation scheme must be reached before the realization of supply chain demand. 
The goal of this paper is to figure out ideal transfer prices for products delivered between supply 
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chain members. The role of transfer prices as a coordinating mechanism has been explored for this 
problem (e.g., Yeom & Balachandran, 2000). Despite the extensive literature, transfer pricing 
remains a complex problem in a stochastic demand market. Both revenue and costs are always jointly 
necessary for a comprehensive description and analysis of supply chain transfer pricing.  
 
The objective of the research presented herein is to explore fair sharing of revenue and costs among 
supply chain members in a stochastic demand market. A two-echelon supply chain will be examined 
consisting of one supplier and two heterogeneous retailers; each company is an autonomous profit-
generating entity. Each retailer faces a stochastic demand. In particular, the role of transfer prices in 
supply chain coordination is considered. The transfer price is a term that is generally used by 
divisions affiliated to the same organization to denote product/service unit price of intra-company 
transactions (Vaysman, 1998). However, the terminology has also been extended to refer to payments 
among companies that are not affiliated with one organization, e.g., decentralized supply chain 
members (e.g., Gjerdrum et al., 2002; Vidal & Goetschalckx, 2001). A value-sharing method based 
on the Shapley value from the cooperative game theory is proposed to determine transfer prices of 
delivered products among supply chain members. The Shapley value solution is an appealing 
allocation rule since it takes into account the potential payoff from alternative options. The Shapley 
value of each player is partially determined by how much the player can get by remaining 
independent from the grand coalition. It assigns a higher payoff to players who contribute more to the 
grand coalition. Once reached, such an agreement could simplify the process of bargaining on 
transfer prices which embody fairness. Rosenthal (2008) calculates transfer prices in a vertically 
integrated supply chain, where supply chain members share technology and transaction costs. A 
limitation of Rosenthal’s work (2008) is the assumption of deterministic demand. This paper study a 
supply chain facing stochastic demands and establish a division scheme of profits.  
 
The remainder of the article is organized as follows. In Section 2, the core and the Shapley value are 
introduced, followed by a review of current research of the Shapley value solution over supply chain 
management in Section 3. Then methodologies and numerical examples are presented in Section 4. In 
Section 5, a summary and conclusion are taken to discuss the contribution and future studies.  

 
2. The core and the Shapley value    
 
Both the core and the Shapley value are commonly used in cooperative games, where the players are 
allowed to form binding agreements. The core and the Shapley value are two alternative solution 
concepts to divide the total payoff among all players in cooperative games. If and only if the core is 
nonempty, the grand coalition will form; while the Shapley value offers a fair solution to the division 
of profits (costs) of the grand coalition. In a coalition game, a unique payoff vector can be reached 
through the Shapley value.  
 
A cooperative game is a pair ( ; )N v , where N is the set of players and :v  2N   is the 
characteristic function. Any subset S of N is called as a coalition, and ( )v S is the worth of S . For any 

coalition S N , the number of players in S is denoted by S . A characteristic function v , defined 

on all subsets of N , is a real-valued function that shows the amount of payoff received by the players 
in the coalition S . By definition, ( ) 0v   . For game ( ; )N v , ( )ix v  is an allocation function that is 

used to assign a payoff of ix  to player i  in N . Assuming that N  represents the grand coalition, an 

allocation ix is in the core of game v  if and only 

  
( )ii N

x v N


     and      ( )ii S
x v S


                                                 (1)
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for any S N . A core allocation divides the total payoff of the grand coalition among all the players, 
and the sum of the payoffs to the players of each coalition S is no less than the payoff of the coalition 
S . With an allocation in the core of a game, no coalition has an incentive to quit from the grand 
coalition N  since leaving the grand coalition will cause it to get less. However, the core of a 
cooperative game may be empty. So what conditions on game v guarantee the core is not empty? One 
of the early answers was presented by Shapley (1971) by showing that for a convex game, the core is 
not empty. In a convex game, the Shapley value allocation is an element of the core (Shapley, 1971).  
 
The Shapley value is an expected payoff to player i , ( )i v , which is the only solution that satisfies 

the four axioms below (Shapley, 1953). 
 
1) The first axiom is the symmetry axiom. This axiom illustrates that players would be assigned the 
same value if they are treated identically by the characteristic function. 2) The second axiom, named 
as the efficiency axiom, states that the sum of  ( )i v  over all players is equal to ( )v N . This axiom 

implies that the Shapley value assigns the total value of the coalition to the players in N . 3) The third 
axiom is the dummy axiom. If ( ) ( )v S i v S   for all S, then player i  must get zero. 4) The last 
axiom, called as the law of aggregation, requires that if we combine two games described by 
characteristic functions v and w , then ( )i v w    ( ) ( )i iv w  for any player i  in N . It shows that 

the total Shapley value of two games v  and w , which are played at the same time, equals to the sum 
of the Shapley value when the player plays the game v and  w at different times.   
 
The Shapley value i  is defined by the following formula  
 

 
\{ }

( )!( 1)!
( ) ( ) ( )

!i
S N i

s n s
v v S i v S

n




 
    (2)

  

In Eq. (2), the term  ( ) ( )v S i v S   represents the contribution of the player i  joining S . The 

fractional term, 
( )!( 1)!

!

s n s

n

 
, indicates the probability that a coalition S is already formed before 

player i  joins S . Therefore, player i will have a Shapley value that is the expected sum of all the 
incremental values resulting from the player joining S  weighted with the probabilities of the player 
joining the respective coalition.  
 
3. The application of the Shapley value in supply chain management 
 
Lately, the Shapley value has been used in a few supply chain management papers as a solution 
methodology. For example, Bartholdi and Kemahlioğlu-Ziya (2005) used the Shapley value to 
allocate supply chain savings, which result from inventory pooling for all of the parties in a supply 
chain. Feess and Thun (2014) applied the Shapley value to divide surplus to analyze investment 
incentives. Granot and Sošić (2003) found a fair allocation scheme for the maximal residual profits 
among multiple retailers by the Shapley value. In a following study by Sošić (2006), the Shapley 
value is again used to distribute profits from residual inventory transshipment among farsighted 
retailers. A ‘farsighted’ retailer would consider both his actions and how other retailers would react to 
his actions. It turns out that the profits from residual inventory transshipment would be always 
maximized under the Shapley value allocation. Robinson (1993) reexamined a cooperative game 
initially presented by Gerchak and Gupta (1991). He used the Shapley value to allocate a fair cost 
sharing among a number of retailers, each of them facing random demands. But these retailers have a 
continuous-review single-period inventory model with full back ordering. Robinson (1993) then 
presented a cost allocation scheme based on the Shapley value that made every retailer better off and 
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considered the allocation of costs among only retailers. All of these papers examine a different 
division problem, since we study a supply chain consisting of both retailers and supplier and explore 
revenue and cost allocation scheme with stochastic demand.      
 
Additionally, the Shapley value has been used to divide profits of supply chains in a couple of papers. 
Manes and Verrecchia (1982) applied both the Massachusetts formula (MF) and the Shapley value 
adjusted MF to set intra-company transfer prices. One limitation of this model is that it only studies a 
constant product flow. In the existing literature, the closest research to our work was done by 
Rosenthal (2008), where a cooperative game is set up among all divisions in a vertically integrated 
supply chain and a procedure is provided to obtain transfer prices between divisions using the 
Shapley value. In Rosenthal (2008)’s model, a division sells a certain amount of products to its 
downstream division and the profits are allocated among all upstream divisions in the supply chain. 
With subadditive coalition cost functions, the game between divisions is shown to be a convex game, 
where the core of the game exists and the Shapley value of the game is the centroid of the core. One 
limitation of this model is that, as mentioned, it does not consider varying demands. Furthermore, the 
author did not aim to explain what would occur from the decision maker’s selection of different 
transfer prices within the range, wherein each set of values provides stable outcomes of the game.  

 
4. Methodology 
 
4.1 Model assumptions 
 
The purpose of the methodology section is to develop a sequence of mathematical models to compute 
transfer prices among supply chain members. In this paper, we investigate a decentralized supply 
chain with one supplier and two heterogeneous retailers (denoted by 0R , 1R , and 2R , respectively). 
The two retailers are in different and independent markets and may purchase from any supplier, 
including 0R . The supplier can sell to 1R , 2R or elsewhere. In the beginning, the three companies have 

transactions but without any agreements. From the transaction history, the wholesale price of 0R , 0p , 

retail price per unit product of 1R , 1p , and retail price per unit product of 2R , 2p , are all public 

information. Basically, these prices are current market prices and can be used as benchmarks for 
transfer prices. Furthermore, the demand information can be acquired from retailers’ records. The 
demand can be affected by seasonality, substituted product promotion, product retail price, etc. 
However, it is possible that there is a fluctuating tendency resulting from more than retail prices. We 
assume that demand distribution is following a certain stochastic functions, but not a function of retail 
price. Letting demand be a function of only retail price will be a leftover research question for future 
study. The next step is to figure out the transfer prices among supply chain members if they form a 
coalition and make a transaction in one time period with one single order. In the game of 0R , 1R , and

2R , the characteristic function ( )v S , where :v 2N  , is defined as the worth of the coalition S . 
When the grand coalition is formed complete information can be further assumed: each player knows 
about the cost information of the other players in the coalition - including purchase cost, holding cost, 
shortage cost, fixed cost (e.g., technology and transactions cost) etc., and revenue information. In the 
grand coalition, the profit generated from sales by the two retailers is to be allocated among the three 
players. Since the objective is to divide the total profits of the grand coalition among the three 
players, we will only prove that the grand coalition is stable. Not as in the literature of coalition 
structure (Owen, 1977; Hart, & Kurz, 1983; Casajus, A., 2009), we do not study whether all of the 
coalitions in the game will form or not. The “worth”s of these coalitions are calculated for the 
application of the Shapley value if these coalitions form. We know that normal demand functions are 
widely used in the literature (e.g., Gerchak & Gupta, 1991; Cachon, 2003). Then let 1R ’s demand be 
normally distributed with density function 1( )f d , 2R ’s demand be normally distributed with density 
function 2 ( )f d , and 1 2( ) ( )f d f d . The two retailers remain independent, and their total demand is 
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still normal. Both retailers order a certain amount of products from the supplier to fulfill their own 
stochastic demand. It is assumed that if the two retailers form a coalition, they will share a common 
warehouse and the common unit holding cost is less than either individual unit holding cost ( ih h ,

1,2i  ). The retail price ip  is determined by each retailer. The supplier sells a common product to two 
retailers at a wholesale price 0p  with 0 0 ic p p  , whereby 1,2i  ,and 0c  is the manufacturing cost 
per unit of  0R . It is interesting to figure out how much the transfer price should be if the retailers and 
the supplier form an alliance. Transfer prices are the sale prices among all three players when they 
cooperate. In this paper, a wholesale price denotes the market price charged by the supplier to a 
retailer without any agreement between them. The transfer price herein is the unit payment between 
the supplier and a retailer within a coalition. It should be made clear that with a cost saving coalition 
( 0 12GB B B  0 1 2B B B   ), the transfer price is very likely different from the wholesale price to 
indicate a relatively fair profit allocation. The supplier has enough capacity to satisfy orders from the 
two retailers --- no capacity constraints. The firms are in one country, without tax rate difference. 
Following the assumption by Rosenthal (2008), transactions between the supplier and a retailer could 
save some fixed cost as compared with the case without any agreement. So do holding costs. Cost 
functions are accordingly subadditive. The models that we are going to present are newsvendor 
models in a single time period with one order (no repeating orders). Furthermore, except the grand 
coalition, those coalitions do not really occur, but occur theoretically. For example, retailers do not 
truly pool stock to reduce variance, but theoretically it could be figured out how much contribution 
and benefits each retailer will have if they order together.  

 
4.2 Notations 
 
      Parameters:  

( )if d : Demand density function of retailer i ( 1, 2i  ) 

  iD :   Demand of retailer i ( 1, 2i  ) (units) 

  Z :    The total demands of the two retailers (units) 
( )g z :  Probability density function of the two retailers’ total demand  

  iB :    Fixed cost of retailer i ( 1, 2i  ) per order ( /order) 

  ih :     Unit holding cost of retailer i ( 1, 2i  ) ( /unit) 

  h :     Unit holding cost of retailers if the two retailers form a coalition (  /unit) 
  i :     Unit shortage cost of retailer i ( 1, 2i  ) (  /unit), where i  ih  

 0p :     The wholesale price of  0R (  /unit)  

 1p :     Retail price per unit product of 1R (  /unit), where 1p  0p  

 2p :     Retail price per unit product of 2R (  /unit), where 2p  0p  

 0B :     Fixed cost of 0R per order from 1R  or 2R  (  /order) 

 0c :     Manufacturing cost per unit of  0R (  /unit), where 0c 0p  

01B :    Fixed cost per order if 0R and 1R  make a coalition (  /order) 

02B :    Fixed cost per order if 0R and 2R  make a coalition (  /order) 

12B :     Fixed cost per order if 1R  and 2R make a coalition (  /order) 

GB :     Fixed cost per order of the grand coalition (  /order) 

i

GB :    Fixed cost of player i  per order in the grand coalition ( 0,1,2i  ) (  /order) 

 
Variables: 

 iq :   Order quantity of retailer i ( 1, 2i  ) (units) 
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G
iq :  Order quantity of retailer i  if the grand coalition forms 

Dependent variables: 
 
 i :   Expected profit of player i ( 0,1,2i  )  

  
10 : Expected profit of 0R resulting from transactions with 1R  

 
20 : Expected profit of 0R resulting from transactions with 2R   

 ij :  Total expected profits of the coalition composed of  iR  , and jR  ( , 0,1,2i j  ; i j )  

 G :  Total expected profits of the grand coalition  

 G
i :  Expected profit of player i ( 0,1,2i  ) if the grand coalition forms but before transfer  prices 

are paid         
 iTP : The transfer price between 0R  and iR when 0R , 1R , and 2R form a coalition. 0iTP  ( 1, 2i  ) 

denotes a net payment from retailer i  to the supplier, while 0iTP   ( 1, 2i  ) denotes an 

opposite payment from the supplier to retailer i  (  /unit) 
 

4.3 Model development  
 
In this three-player game, there are seven possible coalitions, S {{ 0R }, { 1R }, { 2R }, { 0R , 1R }, 

{ 0R , 2R }, { 1R , 2R }, { 0R , 1R , 2R }}. The analysis proceeds as follows. First, determine coalition S ’s 

worth, ( )v S . In this supply chain, ( )v S is simply the coalition’ expected profits, S . Such profit 

levels are well-defined as shown in the following subsections. Note that for a coalition consisting of 
one player, the coalition’s worth is equal to this player’s profit when all three players remain 
independent. Second, calculate the Shapley value using Eq. (2). Finally, use retailer i ’s Shapley 
value to calculate the transfer price paid to the supplier by retailer i . Indeed, to determine the transfer 
prices paid by the two retailers, it is assumed that the grand coalition forms and that each player earns 
a payoff equal to its Shapley value from game (3; v ). More specifically, for game (3; )v , retailer i ’s 

transfer price is defined as 
G
i i

i G
i

TP
q

 
 ( 1, 2i  ).  

Calculating transfer prices requires an additional step because G
i is not well-defined. Indeed, to 

characterize G
i , the fixed cost of the grand coalition must be allocated to the three players. For 

consistency, we assume that the Shapley value is used as the fixed cost allocation rule. In this game, 
each coalition’s worth is the fixed cost it would incur if that coalition were to form. For the sake of 
clarity, it will be shown that in a fully coordinated supply chain consisting of three players (i.e., one 
that plays the cooperative game (3; )v  and uses the transfer prices defined above), each player does 

earn its Shapley value as expected payoff. Then retailer i ’s expected payoff is just ( )i v . Meanwhile, 

the amount transferred to the supplier via transfer prices is  
 

1 1 2 2( )( ) ( )( )G GTP q TP q 1 1 2 2
G G       .  

Hence       

1 1 2 2( )( ) ( )( )G GTP q TP q 0 0( )G
G G       0 0

G   .  
 

But since in the grand coalition, the supplier’s only source of revenue is obtained from transfer prices, 
it is clear that 0 0 1 2 0( )G G G Gc q q B     . Hence,  
 

1 1 2 2( )( ) ( )( )G GTP q TP q 0 1 2 0 0( )G G Gc q q B     .  
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Therefore, the supplier’s expected profit, which is on the left-hand side of the above equation, is also 
equal to its Shapley value from game (3; )v .  
4.3.1 The case of one-member coalitions 
 
Here, no coalition is formed among the three players. In this case, each retailer chooses his order 
quantity to maximize his own profits and the supplier would deliver the amount ordered by the 
retailers for a wholesale price 0p . Each retailer faces a newsvendor problem. That is,  

Max    ( )i iq      0min( , ) [ ] [ ]i i i i i i i i i i iE p q D D q h q D B p q           (3)

 

where 1, 2i   and 
( ) 0

[ ]
0 ( ) 0

i i i i
i i

i i

D q if D q
D q

if D q
   

    
.
 

Suppose the optimal order quantities of ( 1, 2)iR i  are 1
Nq and 2

Nq , respectively (Refer Section 4.3.4 

for the evidence of the existence and uniqueness of  
1

Nq and 
2

Nq ).  Then the worth of iR  is as follows, 
 

( )iv R  ( )N
i iq .  

 

With the optimal order quantity, 1
Nq , the total payment of 1R to 0R is 0 1

Np q  and the resulting order 

fixed cost of 0R is 0B . Let the profit of 0R resulting from 1R  be 
10 , then 

10 0 1 0
Np q B   . Regarding 

a transaction of 0R with 2R , similarly, the total payment of 2R  to 0R  is 0 2
Np q  with an optimal order 

quantity, 2
Nq , 

20 0 2 0
Np q B   . Hence the revenue of 0R is 0 1 0 2

N Np q p q  and the cost of 0R is 

0 0B B 0 1 0 2
N Nc q c q  . Therefore, the profit function of 0R is the sum of profits from transactions with 

the two retailers 
 

0( )v R  0   
1 20 0   0 1 2 0 1 2 0( ) ( ) 2N N N Np q q c q q B     (4)

 
4.3.2 The case of two-member coalitions 
 
There are three scenarios if two of the players are cooperating.  
 
Scenario 1: 1R  forms a coalition with 0R , with 2R  staying isolated. 
 

In this scenario, 1R  and 0R would like to maximize their total profits. The coalition revenue is 

1 1 1min( , )p q D . The total fixed cost is now 01B , with the assumption of fixed cost saving, 

01 0 1B B B  . The manufacturing cost of the order quantity 1q is 0 1c q . Then 
 

Max  01 1( )q     1 1 1 1 1 1 1 1 1 01 0 1min( , ) [ ] [ ]E p q D D q h q D B c q           (5)
 

Let 1
Sq  denote the order quantity when 01 1( )q is maximized (refer Section 4.3.4 for the existence and 

uniqueness of 1
Sq ). The payoff of 2R is the same as in Section 4.3.1, since 2R orders to optimize his 

own profits. Therefore, the worth of the coalition composed of 1R and 0R , 0 1( )v R R , is  
 

20 1 01 1 0( ) ( )Sv R R q   .  
 

Except the payoff of the coalition 0R and 1R , 0R would get some profits from  transactions with 2R , 

even without any agreement between 0R  and 2R . 
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Scenario 2: 2R  forms a coalition with 0R , with 1R  staying isolated. 

Similarly, we would like to maximize the expected profit function of the coalition of 0R  and 2R by  

Max  02 2( )q     2 2 2 2 2 2 2 2 2 02 0 2min( , ) [ ] [ ]E p q D D q h q D B c q           (6)

 
Let 2

Sq  denote the order quantity when 02 2( )q  is maximized (Refer Section 4.3.4 for the evidence of 

the existence and uniqueness of  
2

Sq ). The payoff of 1R is the same as in Section 4.3.1, since 1R  orders 

to optimize his own profits. Therefore, the worth of the coalition composed of 2R and 0R is  

0 2( )v R R  
102 2 0( )Sq   .  

 
Scenario 3: A coalition composed of 1R  and 2R , with 0R staying isolated.  

  
If 1R  and 2R  form a coalition, we assume they will place an order together and share one common 

warehouse. The fixed ordering cost is reasonably assumed to be less than the sum of their individual 
fixed costs: 12 1 2B B B  . The common unit holding cost is reduced and less than their individual unit 

holding costs: 1 2min( , )h h h .  

Max     12 1 2 1 2 1 2
1,2 1,2

( , ) min( , ) [ ] [( ) ( )]i i i i i i
i i

q q E p q D D q h q q D D   

 

 
       

 
    

                            12 0 1 2( )B p q q   . (7)
 
Let 1

Rq and 2
Rq  denote the order quantity when 12 1 2( , )q q  is maximized (Refer section 4.3.4 for the 

evidence of the existence and uniqueness of  1
Rq and 2

Rq ). The worth of the coalition, 1 2( )v R R , is  

1 2 12 1 2( ) ( , )R Rv R R q q .  
  

4.3.3 The case of the grand coalition 
 
In the grand coalition, the two retailers would place an order together to the supplier and share one 
common warehouse. The order quantity is the sum of their individual orders but would optimize the 
payoff of the grand coalition. Recall that 0 12GB B B  0 1 2B B B   . To get the optimal order 

quantity of retailer i ( 1, 2i  ) G
iq   (Refer Section 4.3.4 for the evidence of the existence and 

uniqueness of  G
iq ),  we would like to maximize the expected profit function of the grand coalition:  

max      1 2 1 2 1 2
1,2 1,2

( , ) min( , ) [ ] [ ( )]G i i i i i i
i i

q q E p q D D q h q q D D  

 

 
       

 
    

                               GB 0 1 2( )c q q  . (8) 
 
The worth of the grand coalition, 0 1 2( )v R R R , is  

 

0 1 2 1 2( ) ( , )G G
Gv R R R q q . 

         
4.3.4  Solutions of the mathematical models 
 
Eqs. (3-6) are all typical newsvendor problems (Nahmias, 2004).  Regarding Eq. (3)  
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i      0min( , ) [ ] [ ]i i i i i i i i i i iE p q D D q h q D B p q          .   

Then  

1
1 1 1 1 1 1 1 1 1 0

1

(1 ( )) (1 ( )) ( )
d

p F q F q h F q p
dq

       , and                                     
 

2
1

1 1 1 1 12
1

( ) ( )
d

h p f q
dq

     .      
 

Since 1 1( ) 0f q  , 
2

1
2

1

0
d

dq


 . Thereafter, the optimal order quantity 1

Nq  is obtained when 1

1

0
d

dq


  

  Rearranging terms gives 

1 0 1
1 1

1 1 1

( )N p p
F q

p h




 


 
.  (9) 

 

Eq. (9) gives the rule to acquire the optimal order quantity 1
Nq . Since 1 0 0p p  and 1 0  , then

1 0 1 0p p    and 1 0 1

1 1 1

p p

p h




 
 

 0 ; since 1 0 1p p   1 1p    1 1 1p h    , 1 0 1

1 1 1

1
p p

p h




 


 
. 

Then there must exist one 1
Nq , which satisfies Eq. (9). In addition, with the monotonicity of a 

cumulative distribution function 1( )F  , the optimal order quantity 1
Nq  is unique.  

 
Similarly for 2R , to determine the value of 2q that maximizes the profit of 2R , 2( )v R , there must 

exist one 2
Nq , which satisfies Eq. (3) and the optimal order quantity 2

Nq  is unique. 2
Nq is reached when 

2 2( )NF q   2 0 2

2 2 2

p p

p h




 
 

. 

 The same actions are executed on Eq. (5) to determine the value of 1q that maximizes the profit of 1R

and 0R , 0 1( )v R R : 
 

 01     1 1 1 1 1 1 1 1 1 01 0 1min( , ) [ ] [ ]E p q D D q h q D B c q          . 

 
It will be maximized when  

1 0 1
1 1

1 1 1

( )S p c
F q

p h




 


 
.       (10)

Since 1 0 0 0p p c   and 1 0  , then 1 0 1 0p c     and 1 0 1

1 1 1

p c

p h




 
 

0 ; since 1 0 1p c   1 1p    

1 1 1p h    , 2 0 2

2 2 2

1
p p

p h




 


 
. Then there must exist one 1

Sq , which satisfies Eq. (10). In addition, 

with the monotonicity of a cumulative distribution function 1( )F  , the optimal order quantity 1
Sq  is 

unique. Hence 1
Sq is reached where the demand cumulative distribution function equals to the fraction 

1 0 1

1 1 1

p c

p h




 
 

. 

 
Similarly we can determine the value of 2q that maximizes the profit of 2R and 0R , 0 2( )v R R , using 

Eq. (6). There exists a unique optimal order quantity 2
Sq , satisfying 2 2( )SF q  2 0 2

2 2 2

p c

p h




 
 

. 
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Eqs. (7-8) are not typical newsvendor problems, each with two variables. However, the value of 1q  

and 2q  can be determined simultaneously that maximize the payoff of the coalition consisting of 1R

and 2R , 12 :  
 

   12 1 2 1 2 12 0 1 2
1,2 1,2

min( , ) [ ] [( ) ( )] ( )i i i i i i
i i

E p q D D q h q q D D B p q q   

 

 
          

 
  . 

 

 

Since demands are following normal distribution functions, the sum of two normal random variable, 
Z  , is still following a normal distribution, ( )g z .  Here,  E Z     1 2E D E D   and ( )Var Z  

1 2( ) ( )Var D Var D  .  

12
1 1 1 1 1 1 1 2 0

1

(1 ( )) (1 ( )) ( )p F q F q hG q q p
q

 
      


, and                                   

 

12
2 2 2 2 2 2 1 2 0

2

(1 ( )) (1 ( )) ( )p F q F q hG q q p
q

 
      


.      

 

2
12

1 1 1 1 1 22
1

( ) ( ) ( )p f q hg q q
q

 
    


,         

 

2
12

2 2 2 2 1 22
2

( ) ( ) ( )p f q hg q q
q

 
    


, and                                                              

 

2
12

1 2
1 2

( )hg q q
q q


  


.       

 

 

Since 
22 2 2

12 12 12
2 2

1 2 1 2q q q q

     
     

   0 , and  
2

12
2

1q




0 , the optimal order quantity 1
Rq  of 1R  and 2

Rq  of 

2R can be obtained when 12

1

0
q





, and  12

2

0
q





. Rearranging terms gives 

 
1 1 21 1 1 0(1 ( )) ( )R R Rp F q hG q q p     , and                                                         (11)

 
2 1 22 2 2 0(1 ( )) ( )R R Rp F q hG q q p     .       (12)

 

1
Rq  and 2

Rq  determined by Eq. (11) and Eq. (12) simultaneously are used as the optimal order 

quantity of 1R  and 2R  when they form a coalition. Next, we will show the existence and uniqueness 

of 1
Rq  and 2

Rq . Because 0 ( ) 1G   ,  1 1p 
11(1 ( ))RF q 0p  and  1 1p 

11(1 ( ))RF q 0p h  . 

With 1 0p p and 1 h  ,  
11( ) 1RF q   and 

11( ) 0RF q  . Similarly, 2 2( ) 1RF q   and 
22 ( ) 0RF q  . Thus, 

there must be at least one 
1

Rq  and 
2

Rq  satisfy the system of Eqs. (11) and (12). Meanwhile, since 

 
11 1 1(1 ( ))Rp F q    

22 2 2(1 ( ))Rp F q   ,  
11( )RF q and 

22 ( )RF q  have a positive linear relationship. 

With the increasing monotonicity of cumulative distribution functions, 1( )F   and 2 ( )F  , 
1

Rq and 
2

Rq  

have a monotonically increasing relationship. Furthermore, the cumulative distribution function ( )G 
is also a monotonically increasing function. Since Eq. (11) and Eq. (12) can be further written as 
            

1 1 0p p   
11 1 1( )Rp F q 

1 2
( )R RhG q q   and  

2 2 0p p    
22 2 2 ( )Rp F q 

1 2
( )R RhG q q  ,  
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there is at most one set of solutions that could satisfy Eq. (11) and Eq. (12). Suppose there is one set 
of solutions 1q and 2q , no matter increasing 1q and 2q or decreasing 1q and 2q will not make the 

previous two equations balance any more. So far, the existence and uniqueness of the solution to the 
system Eq. (11) and Eq. (12) have been proved. Eq. (8) is also a maximizing problem with two 
variables. Similarly, there exist a unique solution 

1

Gq and 2
Gq  to maximize Eq. (8), satisfying  

 

 
1 11 1 1 2 0(1 ( )) ( )G G Gp F q hG q q c      ,    and                                                    (13)

 
2 1 22 2 2 0(1 ( )) ( )G G Gp F q hG q q c     . (14)

 

Accordingly, retailer 1 and retailer 2’s expected profits with the grand coalition are as follows 
 

     
11 1 1 1 1 1 1 1min( , ) [ ] [ ]G G G GE p q D D q h q D         1

GB , and 

     
22 2 2 2 2 2 2 2min( , ) [ ] [ ]G G G GE p q D D q h q D         2

GB . 

 
4.3.5 The transfer pricing problem 
 
Next transfer prices will be set between the supplier and each retailer to allocate the costs and 
revenue. With the assumption of subadditive cost function, the game by 0R , 1R  and 2R is convex with 

a non-empty core (Rosenthal, 2008).  Hence there exists at least one solution that satisfies the 
conditions of the core. The Shapley value allocation is the centroid of the core set in a convex game 
(Shapley, 1971). The core allocation insures that the total payoff of the grand coalition is split among 
all the players, and the sum of the payoffs to the players of each coalition S is not less than the payoff 
of the coalition S . With an allocation in the core of a game, no player can get more without lowering 
other’s payoff. The Shapley value is the unique payoff division that divides the payoff of the grand 
coalition and satisfies the four mentioned axioms. The Shapley value solution (Eq. 2) is thus used as 
our profit division rule to set fair transfer prices. the Shapley values of 0R , 1R , and 2R can be 

obtained as follows, respectively: 
 

1  
2 11 12 2 01 0 0 02 0

1 1 1 1
( ) ( )

3 6 6 3 G                 ,  (15)

2   
1 22 12 1 02 0 0 01 0

1 1 1 1
( ) ( )

3 6 6 3 G                 ,          
                   

    (16)

0  
2 10 01 0 1 02 0 2 12

1 1 1 1
( ) ( ) ( )

3 6 6 3 G                 .
                             

 (17)

 
The following steps are to allocate the fixed cost of the grand coalition among the three players by the 
Shapley value: 
 

     
1 1 12 2 01 0 012 02

1 1 1 1

3 6 6 3
GB B B B B B B B       , 

 

     2 2 12 1 02 0 012 01

1 1 1 1

3 6 6 3
GB B B B B B B B       ,and 

 

     0 0 01 1 02 2 012 12

1 1 1 1

3 6 6 3
GB B B B B B B B       . 

 

 
Now the transfer price between 0R  and 1R , 1TP , can be set as 
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1 1
1

1

G

G
TP

q

 
 , or  

1 1( )( )GTP q     1 1 1 1 1 1 1 1min( , ) [ ] [ ]G G GE p q D D q h q D        1

GB  1 .  

 
Similarly, we get the transfer price, 2TP , between 0R and 2R  

2 2
2

2

G

G
TP

q

 
 , or 

 

2 2( )( )GTP q     2 2 2 2 2 2 2 2min( , ) [ ] [ ]G G GE p q D D q h q D        2

GB 2 .         

      
4.4 A numerical example 
 
The numerical example is designed to show the whole methodology procedure associated with 
transfer pricing assuming normal demand distribution functions. For each coalition of three players, 
the profit functions can be obtained following the suggested solution in Section 4.3.4. With the profit 
functions, the Shapley value Eq. (2) is then used to reach the ideal transfer prices between retailers 
and the supplier. Demands to retailer 1 and retailer 2 are both normally distributed, defined as 1D  and 

2D , with 1 ~ (1000,200)D N and 2 ~ (800,150)D N . Then 1 2 ~ (1800,250)D D N . Other parameters 

are assigned as follows: 1 $100B  ; 2 $80B  ; 1 $.6 /h unit ; 2 $.8 /h unit ; 1 $1.2  ; 2 $1  ; 

1 $10p  ; 2 $11p  ; 0 $2c  ; 0 $5p  ; 0 $150B  ; 01 $120B  ; 02 $100B  ; 12 $80B  ; $125GB  ; 

$.3 /h unit .  
By following the procedure suggested in Section 4.3, we get; 
 

1(1) 3961.2v   ; 2(2) = 3959.6v  ; 0(0) 5191.3v  
 

(01) 9484.07v   ; (02)v = 9420.62 ; 12(12) 8062.92v    
(012) 13942.4Gv    
1 1166.72Gq  ; 2 932.36Gq   

 
After Eq. (2) is applied, the Shapley value of each member is computed as 1 4243 , 2 4208 , and 

0 5491 . The highest Shapley value is assigned to the supplier and the reason is that the supplier 

can earn most even though the supplier remains independent from the grand coalition and his 
contribution to the grand coalition is the highest among the three. The percentage of profit increases 
for 1R  2R 0R will be 7.1, 6.3, and 7.6, respectively. Next, Eq. (2) is used to calculate the allocation of 

fixed costs to each member in the grand coalition: 1 36.7GB  ,   2 16.7GB   , and 0 71.7GB  . 

Therefore,  
 

1
1

5409.81
G

TP
q

 =4.65  and  2
2

4344.2
4.66

G
TP

q
   .  

Comparing with the case without any agreement, the transfer prices are reduced from the $5 
wholesale price. The retailers are happier about it since they can expect instant profit increase. And 
the supplier is happier too because even though the unit prices paid by the retailers are reduced, his 
profit still increases with a significant percentage.  
 

5. Discussion and Summary 
 
In this paper, we studied a supply chain with one supplier and two retailers. The research discussed 
herein contributes to the supply chain transfer pricing literature by relaxing the assumption of 
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deterministic demand. The Shapley value solution is explored to obtain a fair sharing of revenues and 
costs. Even when there are multiple suppliers and retailers, our analysis provides a procedure to 
follow for supply chain profit division. This paper has shed light on the difficulties in achieving 
supply chain coordination when retailers face stochastic demands. From a managerial perspective, the 
transfer prices obtained by this procedure would offer an acceptable suggestion when supply chain 
members are bargaining on contract agreements. A supply chain contract has been shown to be an 
effective tool to coordinate supply chains, but how to reach supply chain contract agreements still 
needs more attention. Since supply chain members are more concerned about their individual profits, 
the agreements on transfer prices are critical for all members. Given the widely used stochastic 
demand assumption, the transfer prices obtained by our procedure have the advantage of 
incorporating practical market demand into a model in profit division. Furthermore, a supply chain 
contract is difficult to perform if the supply chain members are independent firms. Sometimes legal 
actions are necessary to ensure performance of a successfully negotiated contract, which results in 
huge costs and hurts supply chain relationships. However, fairly settled contracts are more likely to 
be executed by supply chain members.  
 
Distributive decisions involve a variety of factors, and the profit division suggested by the Shapley 
value may not be accepted by more powerful players since they have power to earn more. The power 
of a player would affect the player’s behavior. It could be true that since powerful players have more 
resources, they can act at will without causing serious negative outcomes to themselves. Future 
research can focus more on power in profit allocation: how to measure and assign power among 
players in supply chains. A natural extension of our model would be to consider profit division 
among multi-stage supply chain members with coordination. Multi-stage supply chains are widely 
studied in inventory management (Khouja, 2003), profit division in a constant demand market 
(Rosenthal, 2008), etc. This multi-stage extension in a stochastic market would bring further realism 
as it would determine the profit division scheme for a long term relationship, very likely with 
repeated transactions. Another limitation is about the stochastic demand, which is simply assumed 
fluctuating as a random variable.  More subtly, demand could be a function of retail price in the 
future, and we can treat the retail price as a decision variable and see how to affect the profit division.  
 
As indicated by Ronchi et al. (2007), supply chain coordination is much less frequently adopted than 
expected. Probably it results from firm interaction problems, such as lack of mutual trust, conflict of 
risk and benefit sharing allocation, etc. Our model improves supply chain coordination by providing 
procedures to set fair transfer prices among individual supply chain members. We believe that the 
class of problems in transfer pricing for supply chain transactions represents a promising area for 
future research and practice.  
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