
* Corresponding author.  Tel./Fax.: +91-33-2414-6153 
E-mail address:  s_chakraborty00@yahoo.co.in    (S. Chakraborty) 
 
© 2015 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.dsl.2014.9.001 
 
 

 
 

 
 

Decision Science Letters 4 (2015) 51–62 
 

 

Contents lists available at GrowingScience
 

Decision Science Letters  
 

homepage: www.GrowingScience.com/dsl 
 
 
 

 

 

 

Q-analysis in Materials Selection   
 

 

Orchi Bhattacharyya and Shankar Chakraborty* 
  
 

 

 

 

Department of Production Engineering, Jadavpur University, Kolkata - 700 032, West Bengal, India 

C H R O N I C L E                            A B S T R A C T 

Article history:  
Received  March 14, 2014 
Accepted September 2, 2014 
Available online  
September 5  2014 

 The designers often face the problem of choosing the best fitted material for a specific 
application from a huge array of available alternatives while simultaneously fulfilling all the 
given design requirements. For dealing with the material selection problems, a systematic and 
efficient approach is thus necessary. Selection of an optimal material from among various 
alternatives based on different conflicting subjective as well as objective attributes can be 
defined as a typical multi-criteria decision-making (MCDM) problem. The material selection 
problems for diverse engineering applications have already been solved by the past researchers 
employing different MCDM approaches. In this paper, the feasibility of Q-analysis technique as 
an MCDM tool is explored for arriving at the most appropriate decision regarding materials 
selection. Its applicability is demonstrated with the help of four illustrative examples and its 
capability to provide almost accurate material selection decisions is also validated. 

  © 2015 Growing Science Ltd.  All rights reserved.
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1. Introduction 

It is well established that materials play an important role in engineering design and subsequent 
manufacture of a component/product. Material selection is one of the most challenging issues in the 
design and development of products, and it is also critical for the success and competitiveness of the 
manufacturing organizations. An inappropriate selection of materials may result in damage or failure 
of a product and significantly decrease its performance. An ever-increasing availability of materials, 
with each having its own characteristics, applications, advantages and limitations, and having 
complex relationships with various selection parameters (criteria), has made the material selection 
process more challenging and complex than even before (Edwards, 2005). Selection of the most 
suitable material for a given application thus involves the study of a large number of factors, like 
mechanical, electrical and physical properties, and cost considerations of the materials. Material 
selection for engineering design needs a clear understanding of the functional requirements for each 
individual component/product and various important criteria need to be simultaneously considered.  
The core objective of a material selection procedure is to identify the material selection attributes; 
such as material cost, product shape, material impact on environment, performance characteristics, 
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availability, fashion, market trends, cultural aspects, aesthetics, recycling and target group, and obtain 
the most appropriate combination of material selection attributes in conjunction with the feasible 
requirements. Thus, great efforts need to be extended to determine those conflicting attributes that 
influence material selection, eliminate the unsuitable materials and choose the proper material in 
order to strengthen the existing material selection procedure. Thus, the material selection process can 
be regarded as a multi-criteria decision-making (MCDM) problem. A systematic and efficient 
approach to material selection is necessary in order to select the best alternative for a given 
engineering application. MCDM methods are gaining importance as potential tools for analyzing and 
solving complex problems due to their inherent ability to judge different alternatives on various 
criteria for possible selection of the best option. MCDM analysis has some unique characteristics, like 
presence of multiple non-commensurable and conflicting criteria, different units of measurement 
among the criteria and presence of quite different alternatives. There are three main steps in any 
MCDM technique involving numerical analysis of alternatives, i.e. a) determining the relevant 
criteria and alternatives, b) attach numerical measures to the relative importance to criteria and impact 
of the alternatives on those criteria, and c) process the numerical values to determine a ranking of 
each alternative.  
 
The earlier researchers have already applied several mathematical tools and techniques, specially 
MCDM methods, like graph theory and matrix approach (Rao, 2006), VIKOR (Vlse Kriterijumska 
Optimizacija Kompromisno Resenje) method and its different variants (Rao, 2008; Chatterjee et al., 
2009; Jahan et al., 2011; Bahraminasab et al., 2011; Cavallini et al., 2013), technique for order 
performance by similarity to ideal solution (TOPSIS) (Shanian & Savadogo, 2006; Thakker et al., 
2008; Athanasopoulos et al., 2009; Chauhan & Vaish, 2012; Jahan et al., 2012; Chauhan & Vaish, 
2013; Çalışkan et al., 2013;  Çalışkan, 2013; Yousefpour & Rahimi, 2014), ELECTRE  (ELimination 
and Et Choice Translating REality) method (Chatterjee et al., 2009), preferential ranking methods 
(Chatterjee et al., 2011; Chatterjee & Chakraborty, 2012;  Maity et al., 2102; Çalışkan et al., 2013; 
Çalışkan, 2013), additive utility (UTA) method (Athawale et al., 2011), preference selection index 
method (Maniya & Bhatt, 2010), multi-objective optimization on the basis of ratio analysis 
(MOORA) method (Karande & Chakraborty, 2012), axiomatic design model (Cicek & Celik, 2010), 
utility concept (Karande & Chakraborty, 2013), desirability function approach (Karande & 
Chakraborty, 2013), quality function deployment (QFD) technique (Cavallini et al., 2013; Prasad & 
Chakraborty, 2013) and analytic network process (Milani et al., 2013) for materials selection. It is 
thus well established that MCDM methods are quite capable of solving different material selection 
problems accurately. However, a need is still felt to review those adopted MCDM methods, and 
implement further competent and advanced methods for empirical validation and testing of various 
available approaches. In this paper, the applicability and feasibility of an almost unexplored MCDM 
tool, i.e. Q-analysis is demonstrated with the help of four illustrative material selection examples. 
 

2. Q-analysis 
 

Q-analysis, developed by Atkin (Atkin, 1978), is basically an approach to study structural 
characteristics of social systems in which two sets of indicators, features or characteristics are related 
to each other. It involves relatively simple calculations, and once the approximate sets are defined 
along with their relationships, no further information about the system is required. It also provides an 
algebraic topological framework for data reduction to facilitate a macroscopic conceptualization of 
the systems. For this purpose, indices, like connectivity level, eccentricity and complexity are defined 
and interpreted. The application of Q-analysis starts with the following data matrix which may often 
be treated as a decision or evaluation matrix. 
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In case of a decision matrix, m is the number of candidate alternatives, n is the number of selection 
criteria and aij is the performance of ith alternative with respect to jth criterion. The matrix, A can be 
mapped into an incidence matrix, B using a mapping function defined by a slicing or threshold 
parameter θ (Duckstein & Nobe, 1997). This mapping is defined as follows: 
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where bij is the element in ith row and jth column of the incidence matrix, B and aij is its counterpart in 
the data matrix. Subsequently, Q-analysis had been integrated with MCDM principles to develop a 
new technique as multi-criteria Q-analysis (MCQA) for choosing the most appropriate alternative for 
a given application (Hiessl et al., 1985; Duckstein et al., 1988). During the recent past, MCQA had 
been successfully applied to solve several decision-making problems, like performance evaluation of 
a distribution system (Duckstein, 1983), factory automation project selection (Chin et al., 1991), 
water resources management (Özelkan & Duckstein, 1996; Pillai & Srinivasa Raju, 1996; Eder et al., 
1997; Srinivasa Raju & Nagesh Kumar, 2001) and selection of a logistic-park location (Teng et al., 
2007). In MCQA, apart from the initial decision matrix, a vector, w is required to provide the relative 
importance or priorities of the considered criteria. As most of the MCDM problems have a weight on 
each criterion, those can be similar to MCQA method. Although MCQA can accept non-numerical 
scales for the criteria, but it is better computationally to quantify all the ratings/weights. Therefore, 
for MCQA, the decision matrix needs to be normalized employing the following two equations so 
that the most favorable value for each criterion being one and the least desirable being zero. 
For beneficial criteria, 
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for non-beneficial criteria, 
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where rij is the normalized value of aij. Now, Q-analysis is applied to the normalized decision matrix 
where the alternatives are the simplices and criteria are the vertices (Duckstein & Nobe, 1997). 
Several slicing parameters (θ) can be used in Q-analysis, but in this paper, ten slicing parameters are 
adopted in equal intervals of one-tenth. The element of the incidence matrix, B at slicing parameter 
value of k which corresponds to slicing parameter (1/10)k is formed as follows: 
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In MCQA, MCQA I adopts a project satisfaction index (PSI) and a project comparison index (PCI), 
while MCQA II uses a project discordance index (PDI). PSI is a utility-based index, whereas, PCI is 
an outranking-based index. The PSI value of an alternative is independent from the other alternatives, 
while the PCI value of an alternative is dependent on the criteria values for the other alternatives. The 
value of PSI for a particular alternative determines how well it satisfies the considered criteria and is 
expressed as below: 
 
PSIi = 

kj
ijj

k bw
,

 , (6) 
 

where wj is the weight or relative importance of jth criterion.  
After computing the PSI values for all the alternatives, those values are normalized as follows: 
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PSINi = 
)PSImax(
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i
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On the other hand, the value of PCI basically ranks the alternatives by comparing the related q-
connectivity. The shared face matrix (Sk) is used here to find the number of common satisfied criteria 
between the alternatives, and the equivalence classes and q-connectivity are then easily found among 
the considered alternatives (Duckstein & Nobe, 1997). The formulation of Sk matrix is given as 
below: 
 

eeBBS TTkkk  )(  (8) 

        
where e = (1, 1, 1, 1, 1, 1, 1, 1, 1) (for nine alternatives). 
Now, the PCI value for ith alternative is defined as follows: 
 
PCIi =   

k
ikik

k qq *ˆ , (9) 

where ikq̂ = k
iis  and *

ikq = k
ij

ijj
s


max . After computing the PCI values for all the alternatives, they are 

again normalized as below:   
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MCQA I determines the ranking of the alternatives using a rating index (RI) which can be given as 
follows: 
 
RIi = [(1 – PSINi) + (1 – PCINi)] (11) 
 
When arranged in ascending order, a lower value of RI indicates a better alternative. 
 
3. Illustrative examples 
 
In order to justify the feasibility and solution accuracy of Q-analysis technique as an effective 
MCDM tool, the following four material selection problems are analyzed and subsequently solved. 
  
3.1 Example 1 
 
In the first example, a gear material selection problem as solved by Milani et al. (2005) is considered. 
For design and manufacture of gears, nine alternative gear materials were taken into account and their 
performances were evaluated based on five criteria, i.e. surface hardness (SH) (in Bhn), core hardness 
(CH) (in Bhn), surface fatigue limit (SFL) (in N/mm2), bending fatigue limit (BFL) (in N/mm2) and 
ultimate tensile strength (UTS) (in N/mm2). Among those five criteria, core hardness is the only non-
beneficial attribute for which smaller values are recommended. The quantitative data for this gear 
material selection problem is provided in Table 1. Milani et al. (2005) applied entropy method to 
determine the criteria weights as wSH = 0.172, wCH = 0.005, wSFL = 0.426, wBFL = 0.292 and wUTS = 
0.102. These criteria weights are considered here for the subsequent MCQA-based analysis. Using 
Eqns. (3) and (4), the original decision matrix is first normalized, as given in Table 2, where all the 
normalized criteria values lie between 0 and 1. Then employing ten slicing parameters in equal 
intervals of one-tenth and using Eqn. (5), ten incidence matrices are subsequently developed. One of 
those incidence matrices as developed for a slicing parameter value of 0.60 is exhibited in Table 3. 
The relevant S6 matrix at slicing parameter θ6 = 0.60 which is constructed by employing Eqn. (8), is 
given in Table 4. Now, for this gear material selection problem, the corresponding values of PSI, 
PSIN, PCI and PCIN are computed, as given in Table 5, which lead to the final calculation of 
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material rating index (MRI) values for all the alternatives. When these indices are arranged in 
ascending order of their values, a material ranking list as 9-7-8-6-5-2-1-3-4 is derived which 
identifies carburised steel as the most appropriate material for gear manufacture, followed by surface 
hardened alloy steel. Cast iron is the worst choice of material for this application. Using TOPSIS 
method, Milani et al. (2005) obtained the ranking of the alternative materials as 9-8-6-5-4-2-1-3-7 
which closely matches with the MCQA-based results, showing a high Spearman rank correlation 
coefficient of 0.8660. Figure 1 graphically compares those two rank orderings. 
  
Table 1  
Decision matrix for gear material selection problem (Milani et al., 2005) 

Sl. No. Material SH CH SFL BFL UTS
1. Cast iron  200 200 330 100 380
2. Ductile iron  220 220 460 360 880
3. S.G. iron  240 240 550 340 845
4. Cast alloy steel  270 270 630 435 590
5. Through hardened alloy steel 270 270 670 540 1190
6. Surface hardened alloy steel 585 240 1160 680 1580
7. Carburised steel  700 315 1500 920 2300
8. Nitrided steel  750 315 1250 760 1250
9. Through hardened carbon steel 185 185 500 430 635

 

Table 2  
Normalized decision matrix for example 1 

Sl. No. SH CH SFL BFL UTS
1 0.0265 0.8846 0 0 0
2 0.0619 0.7308 0.1111 0.3171 0.2604
3 0.0973 0.5769 0.1880 0.2927 0.2422
4 0.1504 0.3462 0.2564 0.4085 0.1094
5 0.1504 0.3462 0.2906 0.5365 0.4219
6 0.7080 0.5769 0.7094 0.7073 0.6265
7 0.9115 0 1 1 1
8 1 0 0.7863 0.8049 0.4531
9 0 1 0.1453 0.4024 0.1328

 

Table 3 
Incidence matrix (B6) at slicing parameter θ6 = 0.60 for example 1 

Sl. No. SH CH SFL BFL UTS
1 0 1 0 0 0
2 0 1 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 1 0 1 1 1
7 1 0 1 1 1
8 1 0 1 1 0
9 0 1 0 0 0

 

Table 4  
Matrix (S6) at slicing parameter θ6 = 0.60 for example 1 

Alternative 1 2 3 4 5 6 7 8 9
1 0 0 -1 -1 -1 -1 -1 -1 0
2 0 0 -1 -1 -1 -1 -1 -1 0
3 -1 -1 -1 -1 -1 -1 -1 -1 -1
4 -1 -1 -1 -1 -1 -1 -1 -1 -1
5 -1 -1 -1 -1 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 -1 3 3 2 -1
7 -1 -1 -1 -1 -1 3 3 2 -1
8 -1 -1 -1 -1 -1 2 2 2 -1
9 0 0 -1 -1 -1 -1 -1 -1 0
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Table 5  
Material rating indices for example 1  

Sl. No. PSI PSIN PCI PCIN MRI
1 0.0180 0.0003 0 0 1.9997
2 0.2624 0.0496 0 0 1.9504
3 0.1683 0.0318 0 0 1.9682
4 0.4502 0.0852 0 0 1.9148
5 0.6880 0.1302 0 0 1.8968
6 2.7137 0.5135 1.4 0.4120 1.0745
7 5.2840 1 3.4 1 0
8 3.2810 0.6209 0 0 1.3791
9 0.3723 0.0704 1 0.2940 1.6356

 

 
Fig. 1. Comparison of material rankings for example 1 

3.2 Example 2 
 
In this problem, the most suitable material for designing a cryogenic storage tank for transportation of 
liquid nitrogen is considered. For this purpose, the candidate material must have some desirable 
properties, like good weldability and processability, lower density and specific heat, smaller thermal 
expansion coefficient and thermal conductivity, adequate toughness at the operating temperature, and 
sufficient strength and stiffness. Table 6 provides the properties of the candidate materials for this 
problem, which has seven criteria and seven alternatives (Dehghan-Manshadi et al., 2007). Among 
these criteria, toughness index (TI), yield strength (YS) (in MPa) and Young’s modulus (YM) (in 
GPa) are the beneficial attributes, and density (D) (in g/cm3), thermal expansion coefficient (TE) (in 
10-6/˚C), thermal conductivity (TC) (in cal/cm2/cm/˚C/s) and specific heat (SH) (in cal/g/˚C) are the 
non-beneficial attributes. Dehghan-Manshadi et al. (2007) determined the weights of those seven 
criteria as wTI = 0.2140, wYS = 0.1550, wYM = 0.1190, wD = 0.1900, wTE = 0.1550, wTC = 0.0830 and 
wSH = 0.0830, and observed the ranking of the alternative materials as 5-7-1-4-2-3-6 applying a 
modified digital logic technique. These sets of criteria weights are also used here for the subsequent 
analysis.   
 
Table 6  
Decision matrix for cryogenic storage tank material selection problem (Dehghan-Manshadi et al., 2007) 

Sl. No. Material TI YS YM D TE TC SH
1. Al 2024-26 75.5 420 74.2 2.8 21.4 0.37 0.16
2. Al5052-0 95 91 70 2.68 22.1 0.33 0.16
3. SS 301-FH 770 1365 189 7.9 16.9 0.04 0.08
4. SS 310-3AH 187 1120 210 7.9 14.4 0.03 0.08
5. Ti-6Al-4V 179 875 112 4.43 9.4 0.016 0.9
6. Inconel 718 239 1190 217 8.51 11.5 0.31 0.07
7. 70Cu-30Zn 273 200 112 8.53 19.9 0.29 0.06
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The normalized decision matrix is developed in Table 7. Tables 8 and 9 respectively show the 
incidence matrix (B8) and the corresponding S8 matrix at a slicing parameter value of 0.80. The 
material rating indices are given in Table 10. When these values are sorted in ascending order, a 
ranking of materials as 5-7-1-3-2-4-6 is attained. SS 301-FH gains the top position in the list and 
Al5052-0 is the worst material. When this rank ordering is compared with that obtained by Dehghan-
Manshadi et al. (2007), an excellent Spearman’s rank correlation coefficient of 0.9600 is achieved.    
 
Table 7  
Normalized decision matrix for example 2 

Sl. No. TI YS YM D TE TC SH
1 0 0.2582 0.0286 0.9795 0.0552 0 0.8809
2 0.0281 0 0 1 0 0.1130 0.8809
3 1 1 0.8095 0.1077 0.4095 0.9322 0.9762
4 0.1605 0.8077 0.9524 0.1077 0.6063 0.9604 0.9762
5 0.1490 0.6154 0.2857 0.7009 1 1 0
6 0.2354 0.8626 1 0.0035 0.8346 0.1695 0.9881
7 0.2844 0.0855 0.2857 0 0.1732 0.2260 1

 
Table 8  
Incidence matrix (B8) at slicing parameter θ8 = 0.80 for example 2 

Sl. No. TI YS YM D TE TC SH
1 0 0 0 1 0 0 1
2 0 0 0 1 0 0 1
3 1 1 1 0 0 1 1
4 0 1 1 0 0 1 1
5 0 0 0 0 1 1 0
6 0 1 1 0 1 0 1
7 0 0 0 0 0 0 1

 
Table 9  
Matrix (S8) at slicing parameter θ8 = 0.80 for example 2 

Sl. No. TI YS YM D TE TC SH
1 1 1 0 0 -1 0 0
2 1 1 0 0 -1 0 0
3 0 0 4 3 0 2 0
4 0 0 3 3 0 2 0
5 -1 -1 0 0 1 0 -1
6 0 0 2 2 0 3 0
7 0 0 0 0 -1 0 0

 
Table 10  
Material rating indices for example 2 

Sl. No. PSI PSIN PCI PCIN MRI
1 0.6750 0.1328 0.2 0.0345 1.8327
2 0.6610 0.1300 0 0 1.8700
3 5.0828 1 5.8 1 0
4 2.5913 0.5098 2.5 0.4310 1.0592 
5 1.3394 0.2635 5.6 0.9655  0.7710
6 2.9615 0.5826 1.5 0.2586  1.1588 
7 0.6860 0.1350 0 0 1.8650 

 
3.3 Example 3 
 
In this example, an insulation material selection problem for computer cables is solved applying Q-
analysis approach. Jahan et al. (2012) also solved that problem consisting of six materials and six 
criteria, as shown in Table 11, using a target-based normalization technique.  These six criteria are 
dielectric strength (DS) (V/mm), volume resistance (VR) (ohm/cm), dissipation factor (DF) (60 Hz), 
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dielectric constant (DC) (60 Hz), thermal expansion (TE) (10-5/˚C) and relative cost (RC). Here, 
dielectric constant, relative cost and dissipation factor are non-beneficial attributes; dielectric strength 
and volume resistance are beneficial attributes, and a target value of 2.3 x 10-5/˚C is set for thermal 
expansion. Combining the subjective and objective weights, Jahan et al. (2012) determined the final 
criteria weights as wDS = 0.1847, wVR = 0.2758, wDF = 0.1444, wDC = 0.1148, wTE = 0.0911 and wRC 
= 0.1892, which are also used here for the MCQA-based approach.  
Table 12 provides the normalized decision matrix for this material selection problem for computer 
cables. The incidence matrix (B2) and the related S2 matrix at a slicing parameter of 0.20 are 
respectively shown in Tables 13 and 14. Table 15 exhibits the computed values of material rating 
indices. After arranging these indices in ascending order, a ranking list as 1-3-2-5-6-4 is derived. 
PTFE is identified as the best material for computer cables, whereas, polysulfone is the worst choice. 
A Spearman’s rank correlation coefficient of 0.8300 is achieved when this rank ordering is compared 
with that of Jahan et al. (2012).  
 
Table 11  
Decision matrix for insulation material for computer cables (Jahan et al., 2012) 

Sl. No. Material DS VR DF DC TE RC 
1 PTFE 14820 10000 0.0002 2.1 9.5 4.5 
2 CTFE 21450 10000 0.0012 2.7 14.4 9 
3 ETFE 78000 100 0.0006 2.6 9 8.5 
4 Polyphenylene oxide 20475 1000 0.0006 2.6 6.5 2.6 
5 Polysulfone 16575 1 0.0010 3.1 5.6 3.5 
6 Polypropylene 21450 100 0.0005 2.2 8.6 1 

 
Table 12  
Normalized decision matrix for example 3 

Sl. No. DS VR DF DC TE RC
1 0 1 1 1 0.4432 0.5625
2 0.1049 1 0 0.4 1 0
3 1 0.0099 0.6 0.5 0.3864 0.0625
4 0.0895 0.0999 0.6 0.5 0.1023 0.8
5 0.0278 0 0.2 0 0 0.6875
6 0.1049 0.0099 0.7 0.9 0.3409 1

 

Table 13  
Incidence matrix (B2) at slicing parameter θ2 = 0.20 for example 3 

Sl. No. DS VR DF DC TE RC 
1 0 1 1 1 1 1 
2 0 1 0 1 1 0 
3 1 0 1 1 1 0 
4 0 0 1 1 0 1 
5 0 0 1 0 0 1 
6 0 0 1 1 1 1 

 

Table 14  
Matrix (S2) at slicing parameter θ2 = 0.20 for example 3 

Sl. No. DS VR DF DC TE RC 
1 4 2 2 2 1 3 
2 2 2 1 0 -1 1 
3 2 1 3 1 0 2 
4 2 0 1 2 1 2 
5 1 -1 0 1 1 1 
6 3 1 2 2 1 3 
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Table 15  
Material rating indices for example 3 

Sl. No. PSI PSIN PCI PCIN MRI
1 3.3174 1 8.2 1 0
2 2.1512 0.6485 0 0 1.3515
3 1.5459 0.4660 5.8 0.7073 0.8267
4 1.1657 0.3514 0 0 1.6486
5 0.4406 0.1328 0 0 1.8672
6 2.0346 0.6133 0 0 1.3867

 

3.4 Example 4 
 

Çalışkan et al. (2013) considered a problem of appropriate tool holder material selection operating 
under hard milling conditions and solved it using three different MCDM techniques, i.e. extended 
PROMETHEE II (EXPROM2), TOPSIS and VIKOR methods. In order to satisfy the requirements of 
the milling conditions, six important criteria, like Young’s modulus (YM) (in GPa), compressive 
strength (CS) (in MPa), fracture toughness (FT) (in (MPa m)½), material’s mechanical loss coefficient 
(MLC), hardness (H) (in HV) and cost (C) (in $/kg) were taken into account along with nine 
candidate tool holder materials. Among those criteria, cost is a non-beneficial attribute. The 
quantitative information for this tool holder material selection problem is given in Table 16. Applying 
analytic hierarchy process (AHP) technique, Çalışkan et al. (2013) determined the criteria weights as 
wYM = 0.222, wCS = 0.175, wFT = 0.216, wMLC = 0.216, wH = 0.110 and wC = 0.060, which are also 
used in the subsequent MCQA-based analysis. Table 17 shows the normalized decision matrix for 
this problem. The corresponding incidence matrix (B3) and S3 matrix at a slicing parameter of 0.30 are 
respectively shown in Tables 18 and 19. Subsequently, the material rating indices for all the tool 
holder material alternatives are calculated, as shown in Table 20. Using MCQA approach, the 
candidate materials are ranked as 4-6-7-9-3-5-8-1-2, suggesting the superiority of tungsten carbide-
cobalt as the best suited material for tool holder design, followed by Fe-5Cr-Mo-V. AISI 6150 
obtains the last position in the ranking list. Applying EXPROM2 method, Çalışkan et al. (2013) 
derived a rank ordering of 7-5-6-8-3-4-9-1-2 which when compared with that obtained by MCQA 
approach gives an acceptable value of Spearman’s rank correlation coefficient of 0.8830. A graphical 
representation of those two rank orderings is displayed in Fig. 2.   

Table 16  
Decision matrix for tool holder material selection problem (Çalışkan et al., 2013) 

Sl. No. Material YM CS FT MLC H C
1 AISI 1020 210 330 54.5 0.00111 150 0.673
2 AISI 1040 212 632.5 46 0.00117 355 0.7045
3 AISI 4140 212 655 87.5 0.000515 305 0.864
4 AISI 6150 206.5 1575 38 0.00026 483 1.175
5 AISI 8620 206.5 360 111.5 0.00089 190 0.8665
6 Maraging steel 187.5 1825 80 0.00071 532.5 6.97
7 AISI S5 210 1930 21 0.00002055 771 7.99
8 Tungsten carbide-cobalt 593 4405 14.05 0.00135 1250 79.6
9 Fe-5Cr-Mo-V 212.5 1655 120 0.00113 448.5 1.73

 

Table 17  
Normalized decision matrix for example 4 

Sl. No. YM CS FT MLC H C
1 0.0555 0 0.3818 0.8195 0 1
2 0.0604 0.0742 0.3016 0.8646 0.1864 0.9996
3 0.0604 0.0798 0.6933 0.3719 0.1409 0.9976
4 0.0469 0.3055 0.2261 0.1801 0.3027 0.9936
5 0.0469 0.0074 0.9198 0.654 0.0364 0.9975
6 0 0.3669 0.6225 0.5186 0.3477 0.9202
7 0.0555 0.3926 0.0656 0 0.5645 0.9073
8 1 1 0 1 1 0
9 0.0617 0.3252 1 0.8345 0.2714 0.9866
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Table 18  
Incidence matrix (B3) at slicing parameter θ3 = 0.30 for example 4 

Sl. No. YM CS FT MLC H C 
1 0 0 1 1 0 1 
2 0 0 1 1 0 1 
3 0 0 1 1 0 1 
4 0 1 0 0 1 1 
5 0 0 1 1 0 1 
6 0 1 1 1 1 1 
7 0 1 0 0 1 1 
8 1 1 0 1 1 0 
9 0 1 1 1 0 1 

 

Table 19  
Matrix (S3) at slicing parameter θ3 = 0.30 for example 4 

Material 1 2 3 4 5 6 7 8 9
1 2 2 2 0 2 2 0 0 2
2 2 2 2 0 2 2 0 0 2
3 2 2 2 0 2 2 0 0 2
4 0 0 0 2 0 2 2 1 1
5 2 2 2 0 2 2 0 0 2
6 2 2 2 2 2 4 2 2 3
7 0 0 0 2 0 2 2 1 1
8 0 0 0 1 0 2 1 3 1
9 2 2 2 1 2 3 1 1 3

 

Table 20  
Material rating indices for example 4 

Sl. No. PSI PSIN PCI PCIN MRI
1 1 0.0847 1.2372 0.3111 1.6042
2 0 0 1.1882 0.2988 1.7012
3 0 0 0.8642 0.2173 1.7827
4 0 0 0.5274 0.1326 1.8674
5 0 0 1.6956 0.4264 1.5736
6 0.3 0.0254 1.2186 0.3064 1.6682
7 0.5 0.0424 0.5400 0.1358 1.8218
8 11.8 1 3.9765 1 0
9 1.7 0.1441 2.3736 0.5969 1.2590

 

 
Fig. 2. Comparison of material rankings for example 4 

 

4. Conclusions 
 
In this paper, the feasibility of Q-analysis is explored to be an efficient MCDM tool for solving 
material selection problems. High Spearman’s rank correlation coefficient values suggest that the 
rank orderings of the candidate materials derived using Q-analysis technique are quite accurate and 
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acceptable when compared with those obtained by the past researchers. Q-analysis involves relatively 
simple calculations, just requiring ‘book-keeping’ type of calculations for arriving at the best course 
of action. It is also flexible in the sense that changing the slicing levels or criteria definitions has no 
effect on the final results. As this method provides both the score and rank of each material, it helps 
the designers to have a better insight to the material selection problems, taking into account both 
differences and similarities of the alternative materials. Thus, it can be applied to any complex 
decision-making problem having any number of alternatives and quantitative criteria.       
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