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 Weather forecast has been a major concern in various industries such as agriculture, aviation, 
maritime, tourism, transportation, etc. A good weather prediction may reduce natural disasters 
and unexpected events. This paper presents an empirical investigation to predict weather 
temperature using minimization of continuous ranked probability score (CRPS). The mean and 
standard deviation of normal density function are linear combination of the components of 
ensemble system. The resulted optimization model has been solved using particle swarm 
optimization (PSO) and the results are compared with Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) method. The preliminary results indicate that the proposed PSO provides better results 
in terms of CRPS deviation criteria than the alternative BFGS method.  
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1. Introduction 

 
Weather forecast has been a major concern in various industries such as agriculture, aviation, maritime, 
tourism, transportation, etc. A good weather prediction may reduce natural disasters and unexpected 
events. Since 1950, with the advent of computers with high computing power, numerical weather 
prediction models have been presented. Numerical weather prediction models involve differential 
equations, which describe the physical laws and dynamics of atmosphere and they mainly depend on 
boundary conditions. Due to approximate solutions of numerical methods, results obtained from the 
implementation of numerical models approximate the real-world conditions and always contain some 
errors (Palmer, 1998; Zeng et al., 1993). Of course, the use of numerical methods is not the only cause 
of the error in the output but there are also some other sources of error. Among them the presence of 
errors in the initial/boundary values, the lack of data in some areas and chaotic nature of the dynamical 
system of the atmosphere are the most important.  
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According to Eckel et al. (2012) “Ambiguity is uncertainty in the prediction of forecast uncertainty, or 
in the forecast probability of a specific event, associated with random error in an ensemble forecast 
probability density function. In ensemble forecasting ambiguity arises from finite sampling and 
deficient simulation of the various sources of forecast uncertainty”.  
 
In a deterministic forecast, only one initial condition is considered as the input to the model regardless 
of the inherent uncertainty of the atmosphere. But in an ensemble prediction system the forecast is 
produced by drawing a finite sample from the probability distribution describing the uncertainty of the 
initial state of the atmosphere and the weather is forecasted by a probability distribution function. Since 
each ensemble member is a deterministic forecast, it involves systematic errors and needs to be post 
processed. There are some methods to remove bias and produce a probability distribution function such 
as rank histogram (Hamill, 2001), dressing method (Roulston & & Smith, 2003), Bayesian model 
averaging (BMA) (Raftery, et al., 2005), ensemble regression (Unger et al., 2009), variance inflation 
technique (Johnson & Bowler, 2009), ensemble model output statistics model (EMOS) (Gneiting et al., 
2005) and ensemble kernel density model output statistics (EKDMOS) (Veenhuis, 2013). 
 
In this research, an attempt is made to estimate a normal density function to forecast the surface 
temperature over Iran through minimization of continuous ranked probability score (CRPS) using 
particle swarm optimization (PSO) algorithm in the training period. 
 
2. The proposed study  
 
This paper presents an empirical investigation to predict weather temperature using continuous ranked 
probability score (CRPS) (Gneiting et al., 2005; Toth & Kalnay, 1997; Gneiting & Raftery, 2007). Let  
𝑋𝑋1, … ,𝑋𝑋m be the components of ensemble system. In addition, let 𝑆𝑆2 be the variance of the components 
of ensemble system. Therefore, the linear combinations of ensemble system is defined as follows,  
 
 

𝑁𝑁(𝑎𝑎 + 𝑏𝑏1𝑋𝑋1 + ⋯+ 𝑏𝑏𝑚𝑚𝑋𝑋𝑚𝑚, 𝑐𝑐 + 𝑑𝑑𝑆𝑆2) (1) 
 

where 𝑎𝑎 + 𝑏𝑏1𝑋𝑋1 + ⋯+ 𝑏𝑏𝑚𝑚𝑋𝑋𝑚𝑚 and 𝑐𝑐 + 𝑑𝑑𝑆𝑆2 are mean and variance of the ensemble system. Let 𝑏𝑏1, … , 𝑏𝑏m 
be the coefficients that present the performance of each ensemble member and c and d represent the 
coefficients of variance and are estimated in training period. The CRPS function is defined as follows, 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐹𝐹, 𝑦𝑦) = � (𝐹𝐹(𝑡𝑡) − 𝐻𝐻(𝑡𝑡 − 𝑦𝑦))2𝑑𝑑𝑡𝑡
+∞

−∞

 
 

(2) 

where 𝐻𝐻(𝑡𝑡 − 𝑦𝑦) is a Heaviside function, which is defined as follows, 

𝐻𝐻(𝑡𝑡 − 𝑦𝑦) = �0                     𝑡𝑡 < 𝑦𝑦
 1          otherwise  

(3) 

Let F be a normal density distribution function with mean and standard deviation of μ and σ. Therefore 
we have, 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒩𝒩(𝜇𝜇,𝜎𝜎2),𝑦𝑦) = 𝜎𝜎 �
𝑦𝑦 − 𝜇𝜇
𝜎𝜎

�2Φ�
𝑦𝑦 − 𝜇𝜇
𝜎𝜎

�� + 2𝜑𝜑 �
𝑦𝑦 − 𝜇𝜇
𝜎𝜎

� −
1
√𝜋𝜋

� (4) 

 

where 𝜑𝜑 �𝑦𝑦−𝜇𝜇
𝜎𝜎
� and Φ�𝑦𝑦−𝜇𝜇

𝜎𝜎
� are the probability density and distribution functions, respectively. When 

𝐹𝐹𝑖𝑖 represents the deterministic prediction, 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 = 1
𝑛𝑛
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐹𝐹𝑖𝑖 , 𝑦𝑦𝑖𝑖) 𝑛𝑛
𝑖𝑖=1 will be changed to mean 

absolute value. In fact, the average score is the mean absolute error, which is the generalized model 
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and as it tends to zero the prediction will be more desirable. 
  

3. Particle Swarm Optimization 
 

Particle swarm optimization (PSO) is an evolutionary technique for optimizing functions designed 
based on social behavior of birds by Kennedy (2010). In this technique, a group of particles, as the 
variables of an optimization problem, are scattered in the search environment. More precisely, some 
particles have better positions than others do. Therefore, based on aggregative particles' behavior, other 
particles may try to raise their position to the prior particles’ positions. The proposed PSO uses the 
following notations, 
 

t, t=1, …, T Index for repetition  

i, i=1, …, I Index for particles 

d, d=1, …, D Index for dimensions  

u Uniform distribution number [0, 1] 

𝑐𝑐𝑖𝑖𝑖𝑖 Position of pbest particle i in dimension d 

𝑐𝑐𝑔𝑔𝑖𝑖 Position of gbest in dimension d 

𝑐𝑐𝑝𝑝 Acceleration factor of pbest 

𝑐𝑐𝑔𝑔 Acceleration factor of gbest 

𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛 The minimum value of position 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 The maximum value of position 

w Static weight 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) Velocity of ith particle in dimension d and repetition t 

𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) Position of ith particle in dimension d and repetition t 

𝑋𝑋𝑖𝑖 Vector of position  [xi1, xi2, … , xiD]  

Vi Vector of velocity  [vi1, vi2, … , viD] 

pi Vector of position of pbest [pi1, pi2, … , piD] 

pg Vector of position of gbest [pg1, pg2, … , pgD] 

z(xi) The competence of  Xi 

 

The proposed study uses the following to adjust the speed and the position for each particle. 
 

)5( 𝑣𝑣(𝑡𝑡 + 1) = 𝑤𝑤𝑣𝑣(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑢𝑢�𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + 𝑐𝑐𝑔𝑔𝑢𝑢�𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, 

)6( 𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥(𝑡𝑡) + 𝑣𝑣(𝑡𝑡 + 1). 
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PSO Algorithm 

Step 1. Initial values 

         Generate Xi in the interval [Xmin, Xmax], i=1,…, I 

         Set Pg = X1, Pi = Xi, Vi = 0   
Step 2. Obtain Z(Xi) for i=1,…, I 

Step 3. Update pbest, if z(xi) < z(pi) then Pi = Xi, i=1,…, I  

Step 4. Update gbest, if z(pi) < z(pi) then Pi = Pi, i=1,…, I  

Step 5. Update velocity and position of each particle according to Eq. (5) and Eq. (6) 
 

          If xid(t + 1) > Xmax then xid(t + 1) = Xmax and vid(t + 1) = 0 
 

          If xid(t + 1) < Xmin then xid(t + 1) = Xmin and vid(t + 1) = 0 
 

Step 6. If t=T Stop, otherwise t = t + 1 go to Step 2. 

The proposed PSO method of this paper uses a vector for x(t) with the length of 12 where the first cell 
contains a, the second to tenth cells are devoted to b1 to bm and the last two items are devoted to c and 
d, respectively. Similarly, v(t) is also a vector of 12 cells, which contains the speed of each particle. 
Xmin and Xmax are as follows, 
 

Xmin -10 0 0 0 0 0 0 0 0 0 0 0 
Xmax +10 1 1 1 1 1 1 1 1 1 5 0.1 

 

In our survey, I=50, T=100, w = 0.5, cp = cg =2. Training program in this study is a rolling horizon of 
60 days. In our survey, the ensemble system consists of 9 members, where each member contains 
weather temperature under various physical environments. For prediction, Weather Research and 
Forecasting (WRF) (Skamarock et al., 2005) model with initial Global forecast System (GFS) is used. 
The data is gathered from September, 4th, 2011 to February, 4th, 2012 leading us to have 160 data.  
 

3. The results 
 

In order to measure the performance of the proposed study, we compare the results with Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method (Fletcher, 1970). MAE and RMSE have been calculated 
for both mean of raw ensemble and mean of bias corrected ensemble and compared with MAE and 
RMSE of the mean of the normal probability density function.  

Table 1 
The summary of comparison of errors 
Description MAE RMSE 
Member 2 6.38 7.51 
Member 2 with the bias-corrected 4.07 5.04 
Member 8 3.61 4.42 
Member 8 with the bias-corrected 2.45 3.04 
Mean of ensemble system with raw data 3.97 4.38 
Mean of ensemble system with the bias-corrected 2.54 2.97 
Average normal probability density function 1.64 2.14 
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Ensemble members have been post processed by moving average method with a 15-day training period. 
Results show the minimum amounts obtained for the implementation of PSO on CRPS versus BFGS 
method are 1.19 and 1.21, respectively. 

Table 1 demonstrates the results of our survey when simple mean error is used for raw data and bias-
corrected data in the test period. As we can observe from the results of Table 1, the mean of the normal 
probability density function has MAE 59% less and RMSE 51% less.  
 

4. Conclusion 

This paper has presented a survey to forecast weather temperature using continuous ranked probability 
score (CRPS). The mean and standard deviation of normal density function were linear combination of 
the components of ensemble system. The resulted optimization model has been solved using particle 
swarm optimization (PSO) and the results are compared with BFGS method. The preliminary results 
indicate that the proposed PSO has provided better results in terms of CRPS deviation criteria than the 
alternative BFGS method. 
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