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 The main aim of the present paper is to analyze the stochastic behavior of a cold standby system 
with concept of preventive maintenance, priority and maximum repair time. For this purpose, 
a stochastic model is developed in which initially one unit is operative and other is kept as cold 
standby. There is a single server who visits the system immediately as and when required. The 
server takes the unit under preventive maintenance after a maximum operation time at normal 
mode if one standby unit is available for operation. If the repair of the failed unit is not possible 
up to a maximum repair time, failed unit is replaced by new one. The failure time, maximum 
operation time and maximum repair time distributions of the unit are considered as 
exponentially distributed while repair and maintenance time distributions are considered as 
arbitrary. All random variables are statistically independent and repairs are perfect. Various 
measures of system effectiveness are obtained by using the technique of semi-Markov process 
and RPT. To highlight the importance of the study numerical results are also obtained for 
MTSF, availability and profit function.  
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1. Introduction 

 
Economic growth of a country totally depends on its industrial and mechanical development and this 
growth gives emergence to new technologies. These advance technologies developed many complex 
industrial systems with the composition of many simultaneous components. Complexity of the system 
also affects its performance, cost and reliability. But, consumers expect highly reliable systems at 
minimum cost. Now, system designers and researchers face a great challenge to develop such systems 
which operate continually and increase their performance, reliability and safety. Many researchers such 
as Moghaddass et al. (2011), Zhang and Wang (2009) and Wu and Wu (2011) analysed reliability of 
repairable systems under different assumptions. Goel and Sharma (1989), Cao and Wu (1989), 
Chandrasekhar et al. (2004), Gopalan and Nagarwall (1985), Gopalan and Bhanu (1995), Chander 
(2005), Mahmoud and  Moshref (2010), Mokaddis et al. (2008) and Kumar and Malik (2012) discussed 
several stochastic model under common assumptions that after a maximum operation time unit 
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undergoes for preventive maintenance either standby unit available or not. Mokaddis et al. (2008) 
studied the effect of preventive maintenance on the systems of non-identical units. Jin et al. (2009) 
discussed option model for joint production and preventive maintenance. But, keeping in mind the 
economic aspects of the system sometimes this assumption is not practically feasible. It is also proved 
that preventive maintenance can slow the deterioration process of a repairable system and restore the 
system in a younger age or state. Malik and Nandal (2010) carried out the cost-benefit analysis of a 
stochastic model using the concept of preventive maintenance. Osaki and Asakura (1970) and Kapur 
and Kapoor (1974) developed reliability model for two-unit standby redundant system with repair and 
preventive maintenance. Thus, the method of preventive maintenance can be used to improve the 
reliability and profit of system. Nakagawa and Osaki (1975) analysed stochastic behaviour of a two- 
unit parallel redundant system with preventive maintenance.  
 
Further, it is a known fact that frequency of failure of standby systems can be reduced up to a desired 
extent by the method of redundancy. Therefore, keeping a system in cold standby has attracted the 
attention of many researchers. Barak and Malik (2014), Kumar and Malik (2015), Kumar et al. (2012) 
and Barak and Barak (2013) suggested some reliability models using the concept of redundancy. 
Recently, Malik  and  Munday (2014) developed stochastic model for a computer system by using the 
concept of hardware redundancy. 
 
Further, the reliability of a system can be increased by making replacement of the components by new 
one in case repair time is too long i.e., if it extends to a pre-specific time. Singh and Agrafiotis (1995), 
Malik and Gitanjali (2012) Malik and Kumar (2011) and Kumar and Malik (2014) analyzed 
stochastically two-unit cold standby systems subject to maximum operation and repair time.  
 
In view of the above importance and practical application of cold standby systems, a stochastic model 
is developed here by using the concept of preventive maintenance, priority and maximum repair time. 
For this purpose, a stochastic model is developed in which initially one unit is operative and other is 
kept as cold standby. There is a single server who visits the system immediately as and when required. 
The server takes the unit under preventive maintenance after a maximum operation time at normal 
mode if one standby unit is available for operation. If the repair of the failed unit is not possible up to 
a maximum repair time failed unit is replaced by new one. The failure time, maximum operation time 
and maximum repair time distributions of the unit are considered as exponentially distributed while 
repair and maintenance time distributions are considered as arbitrary. All random variables are 
statistically independent. Repairs are perfect. Various measures of system effectiveness such as 
transition probabilities, mean sojourn times, mean time to system failure, steady state availability, busy 
period of the server due to replacements, repair and preventive maintenance, expected number of 
repairs, replacements and preventive maintenance, expected number of visits by the server and expected 
profit earned by the system in (0, t) are obtained by using the technique of semi-Markov process and 
RPT. To highlight the importance of the study numerical results are also obtained for MTSF, 
availability and profit function. 
 
2. Model Description 
 
(i) Initially system consists of two identical units- one operative and other is kept as cold standby. 
(ii) Both units have three modes- normal, under repair due to failure and under preventive maintenance. 
(iii) The failed unit is replaced by new one if the repair of the unit is not possible up to a maximum 

repair time. 
(iv) The failure and maximum operation time distribution are exponentially distributed while repair and 

preventive maintenance times are distributed arbitrarily. 
(v) There is a single server who visits the system immediately as and when required. 
(vi) The switch devices, repairs and preventive maintenance are perfect. 
(vii)All random variables are statistically independent. 
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3. Notations 

O  The unit is operative and in normal mode, 
Cs  The unit is in cold standby, 
Λ  Constant failure rate of the unit, 
α0  Constant rate of Maximum Operation Time, 
β0  Constant rate of Maximum Repair Time, 
f(t)/F(t)  pdf / cdf of preventive maintenance of the unit after maximum operation time, 
h(t)/H(t)  pdf / cdf of replacement time of the unit, 
Pm/PM  The unit is under preventive Maintenance/ under preventive maintenance 

continuously from previous state, 
FUr/FUR  The unit is failed and is under repair / under repair continuously from 

previous state, 
FWr / FWR  The unit is failed and is waiting for repair/ waiting for repair from previous 

state, 
Furp/FURP  The unit is failed and is under replacement / under replacement continuously 

from previous state, 
g(t) / G(t)  pdf / cdf of repair time of the failed unit, 
qij(t)/ Qij(t)  pdf/cdf of direct transition time from a regenerative state i to a regenerative 

state j without visiting any other regenerative state, 
qij.k(t) / 
Qij.k(t) 

 pdf/cdf of first passage time from a regenerative  state i to a regenerative state   
j or to a failed state j visiting  state k once in (0,t], 

Mi(t)  Probability that the system is up initially in state iS E∈  is up at time ‘t’ without 
visiting to any other regenerative state, 

pdf / cdf  Probability density function/ Cumulative density function, 
Wi(t)  Probability  that  the  server  is busy in state Si up to time t without  making 

transition to any other regenerative state or returning to the same via one or 
more non  regenerative states, 

mij  Contribution to mean sojourn time in state Si when system transits directly to 
state Sj (Si ,Sj E ) so that i ij

j
mµ =∑  where *( )

ijij ijm tdQ t q= = −∫  and µi  is the 

mean sojourn time in state Si  E, 
iµ   The mean Sojourn time in state Si this is given by 

 
0

( ) ( )ii i ij
j

TE P T t dt mµ
∞

∑∫= = > = , where iT  is the sojourn time in state Si, 

Ⓢ / ©  Symbol for Stieltjes convolution / Laplace convolution, 
~ / *  Symbol for Laplace Stieltjes Transform (LST) / Laplace Transform (LT). 

 

In view of the above notations and assumptions the system may be in one of the following states: 
0 ( , )S O Cs=   , 1 ( , )S O Pm=  , 2 ( , )S O Fur=  , 3 ( , )S FUR Fwr=  , 4 ( , )S Furp FWR=   

5 ( , )S O Furp=  , 6 ( , )S FURP Fwr=  and 7 ( , )=S PM Fwr  
Up state are: 0 1 2 5, , ,S S S S                                    Down states are: 3 4 6 7, , ,S S S S   

Regenerative states: 0 1 2 5, , ,S S S S                       Non-regenerative states: 3 4 6 7, , ,S S S S  

4. Transition Probabilities and Mean Sojourn Times: 

Simple probabilistic considerations yield the following expressions for the non-zero elements 

∫
∞

=∞=
0

)()( dtqQp i ji ji j  (1) 
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It can be easily verified that 
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(4) 

 
5. Reliability and Mean Time to System Failure (MTSF)          
 

Let ( )iφ t be the cdf of first passage time from the regenerative state iS to a failed state. Regarding the 

failed state as absorbing state, we have the following recursive relations for ( )iφ t : 

( ) ( ) ( ) ( ),i i, j j i,k
j k

φ t = Q t ®φ t + Q t∑ ∑  (5) 

where jS  is an un-failed regenerative state to which the given regenerative state iS can transit and kS  

is a failed state to which the state iS  can transit directly. Taking LST of Eq. (5) and solving for 0 ( ),sφ
we have  

* 01( ) φ (s)R s
s

−
=

 . (6) 

The reliability of the system model can be obtained by taking inverse Laplace transform of Eq. (6).  
The mean time to system failure (MTSF) is given by 

MTSF = s
s

os

)(~1l i m 0φ−
→

= 
1

1

N
D  where 

(7) 

1 0 2 02 1 01 02 25 5N p p p pµ µ µ µ= + + +  and 1 02 02 50 25 02 01 101D p p p p p p p= − − −   
 
6. Steady State Availability  
 
Let Ai(t) be the probability that the system is in up-state at instant 't' given that the system entered 
regenerative state iS  at t = 0. The recursive relations for Ai (t) are given as  
 

( ) ( ) ( ) ( )( )
, ,n

i i ji j
j

A t M t q t A t= + ∑  (8) 



A. Kumar et al. / Decision Science Letters 4 (2015) 
 

573 

where jS  is any successive regenerative state to which the regenerative state iS can transit through  n 
transitions. Mi(t) is the probability that the system is up initially in state  iS E∈  up at time t without 
visiting to any other regenerative state, we have 
  

0
0

(λ+α )tM (t)= e− , 0
1

( ,λ+α )tM (t)= e F(t)− 0
2

( ) ,λ+α tM (t)= e H(t)− 0
4

( )λ+α tM (t)= e G(t)−

0
3

( )λ+α tM (t)= e M(t)−  

 
(9) 

            
Taking LT from Eqs. (8) and solving for *

0 ( ),A s  the steady state availability is given by  
*

0 00
( ) lim ( )

s
A sA s

→
∞ =  

2

2

N
D

=  , where 
(10) 

2 0 1 01 22.3.4 52.6 25 2 5 25 02 12.7 01[( )(1 )] [( )( )]N p p p p p p p pµ µ µ µ= + − − + + +  and 
' ' '

2 0 1 01 22.3.4 52.6 25 2 5 25 02 12.1 01[( )(1 )] [( )( )]D p p p p p p p pµ µ µ µ= + − − + + +  
 
7. Busy Period Analysis of the Server 
 

(a)  Due to Preventive Maintenance (PM) 

Let  P
iB (t) be the probability that the server is busy in preventive maintenance of the system (unit) at an 

instant ‘t’ given that the system entered state iS  at t = 0. The recursive relations for  P
iB (t)  are as follows: 

( ) ( ) ( ) ( )( )
, ,p n p

ii i j j
j

B t W t q t B t= + ∑  (11) 

where jS  is any successive regenerative state to which the regenerative state iS  can transit through n 
transitions.  Wi(t) be the probability that the server is busy in state Si due to preventive maintenance up 
to time t without making any transition to any other regenerative state or returning to the same via one 
or more non-regenerative states and so 
 

0 0 0( ) ( ) ( )
1 0( ) ( ) (  1)F( ) (  1) ( )t t tW t e F t e t e F tλ α λ α λ αα λ− + − + − += +  +    

 

(b) Due to Repair 
 

 

Let  R
iB (t) be the probability that the server is busy in repairing the unit due to failure at an instant ‘t’ 

given that the system entered state iS  at t = 0. The recursive relations for  R
iB (t)  are as follows:  

( ) ( ) ( ) ( )( )
, ,nR R

i i ji j
j

B t W t q t B t= + ∑   (12) 

where jS  is any successive regenerative state to which the regenerative state iS  can transit through n  
transitions. Wi(t) be the probability that the server is busy in state Si due to repair of the unit up to time 
t without making any transition to any other regenerative state or returning to the same via one or more 
non-regenerative states and so 
 

0 0 0( ) ( ) ( )
02 ( ) (  1) ( ) (  1) ( )− + − + − += + +  + t t tW e G t e G t e G tλ β λ β λ ββ λ   

 
(c) Due to Replacement 
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Let Rp
iB (t) be the probability that the server is busy in the replacement of the unit due to failure at an 

instant ‘t’ given that the system entered state iS  at t = 0. The recursive relations for Rp
iB (t)  are as 

follows:   

( ) ( ) ( ) ( )( )
,= + ∑Rp n Rp

ii i j j
j

B t W t q t B t , (13) 

where jS  is any successive regenerative state to which the regenerative state iS  can transit through n  
transitions. Wi(t) be the probability that the server is busy in state Si due to repair of the unit up to time 
t without making any transition to any other regenerative state or returning to the same via one or more 
non-regenerative states and so 
 

5 ( )−= tW e H tλ   

Taking LT of above relations and solving for P
B*

0 (s), R
B

*

0 (s) and 
Rp*

0B (s) . The time for which server 
is busy due to preventive maintenance, repair and replacement is 

* 3
0 0 2

lim ,
→

P
P P

0s

N
B = sB (s)=

D

R
R *R 3
0 0

s 0 2

N
B = lim sB (s) =

D→
 and 

Rp
Rp *Rp 3
0 0s 0 2

N
B = lim sB (s) =

D→
 

 

 
 
(14) 

where  

*
3 1 01 22.3.4 25 52.6(0)( )(1 )pN W p p p p= − − − , *

3 01 12.7 02(0)[ ]RN W p p p= + ,
*

3 2 5 25 02 01 127( (0) (0) )( )RP rpN W W p p p p= + +  and 2D  is already defined. 
 
8. Expected Number of Preventive Maintenances  
 

Let p
iR (t)  be the expected number of preventive maintenances conducted by the server in (0, t] given 

that the system entered the regenerative state iS  at t = 0. The recursive relations for p
iR (t)  are given as  

( ) ( ) ( )( )
, ,p n p

ji i j j
j

R t Q t R tδ =  +∑    
(15) 

where jS  is any regenerative state to which the given regenerative state iS  transits and δj =1, if jS  is 

the regenerative state where the server does job afresh, otherwise δj = 0. Taking LST of Eqs. (15) and 
solving for 0

pR (s) . The expected numbers of preventive maintenances per unit time are given by  

0 00
( ) lim ( )p p

s
R sR s

→
∞ =  = 4

2

pN
D

 
(16) 

where 4 01 12.7 01 22.3.4 25 52.6( )( )(1 )PN p p p p p p= + − − −  and 2D  is already mentioned. 

9. Expected Number of Repairs 
 

Let r
iR (t)  be the expected number of repairs by the server in (0, t] given that the system entered the 

regenerative state iS  at t = 0. The recursive relationships for r
iR (t)  are given as  

( ) ( ) ( )( )
, ,nr r

i j ji j
j

R t Q t R tδ =  +∑    
(17) 
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where jS  is any regenerative state to which the given regenerative state iS  transits and δj =1, if jS  is 

the regenerative state where the server does job afresh, otherwise δj = 0. Taking LST of Eqs. (17)  and 
solving for 0

rR (s) . The expected numbers of repairs per unit time are given by  

0 00
( ) lim ( )r r

s
R sR s

→
∞ =  = 4

2

rN
D

, 
(18) 

 where 4
RN = 20 22.3.4 01 12.7 02( )( )p p p p p+ +  and D2 is already mentioned. 

10. Expected Number of Visits by the Server  
 

Let ( )iN t  be the expected number of visits by the server in (0, t] given that the system entered the 
regenerative state iS  at t = 0. The recursive relations for ( )iN t are given as  

( ) ( ) ( )( )
, ,n

i j ii j
j

N t Q t N tδ =  +∑    (19) 

where jS  is any regenerative state to which the given regenerative state iS  transits and δj =1, if j is the 
regenerative state where the server does job afresh, otherwise δj = 0. Taking LST of Eqs. (19) and 
solving for 0

IR (s) , the expected numbers of replacements per unit time are given by  

0 00
( ) lim ( )

→
∞ = 

s
N sN s = 5

2

N
D

,                                                     
(20) 

 

where 0N = 01 02 22.3.4 25 52.6( )(1 )p p p p p+ − −  and D2 is already mentioned. 
 
11. Expected number of replacements 

Let rp
iR (t)  be the expected number of replacements by the server in (0, t] given that the system 

entered the regenerative state iS  at t = 0. The recursive relations for rp
iR (t)  are given as  

( ) ( ) ( )( )
, ,rp n rp

ji i j j
j

R t Q t R tδ =  +∑    (21) 

where jS  is any regenerative state to which the given regenerative state iS  transits and δj =1, if jS  is 

the regenerative state where the server does job afresh, otherwise δj = 0. Taking LST of Eqs. (21) and 
solving for 0

rR (s) , The expected numbers of repairs per unit time are given by 

0 00
( ) lim ( )r r

s
R sR s

→
∞ =  = 4

2

rN
D

     
(22) 

4 22.3.4 25 52.6 25 50 02 12.7 01( )( )RPN p p p p p p p p= + + +  and D2 is already mentioned. 

12. Profit Analysis 

The profit incurred to the system model in steady state can be obtained as 

0 1 0 2 0 3 0 4 0 5 0 6 00
R P R P RPP = K A K B K B K R K R K N K R− − − − − −  (23) 

where 
K0 = Revenue per unit up-time of the system K3 = Cost per unit time repair of the unit 
K1 = Cost per unit time for which server is busy 
due to repair 

K4 = Cost per unit time preventive maintenance 
of the unit 
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K2 = Cost per unit time for which server is busy 
due to preventive maintenance 

K5 = Cost per unit time visit by the server  
 

6K  = cost per unit time replacement of unit  
 

13. Conclusion 

The graphical results for various reliability measures are obtained in Figs. 1-3 by considering the 
particular case tetg θθ −=)( , th(t) = e−ββ  and tetf αα −=)(  with cost K0 = 5000, K1 = 250, K2 = 300, 
K3 = 200, K4 = 190, K5 = 210, K6 = 160 and K0 = 150. From Figs. 1-3, it is revealed that MTSF, profit 
and availability decrease with the increase of failure rate (λ ) and maximum operation time ( 0α ), but 
the value of steady state availability and MTSF increase with the increase of repair rate (θ ) and 
preventive maintenance rate (α ). The profit of the system declines with the increases of preventive 
maintenance rate (α ). Thus finally it is concluded that a cod standby system in which a maximum 
repair time is given to server for repair can be made more reliable and profitable to use 

(i) By taking one more unit in cold standby, 

(ii) By ignoring the concept of priority to operation over preventive maintenance, 

(iii) By increasing the repair rate, 

(iv) By increasing the maximum repair time. 

 

Fig. 1. MTSF vs. Failure Rate 
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Fig. 2. Availability vs. Failure Rate 

 

Fig. 3. Profit vs. Failure Rate 
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