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 Differential Search (DS) algorithm is a new meta-heuristic for solving real-valued 
numerical optimization. This paper introduces a new method based on DS for solving 
Resource Constrained Project Scheduling Problem (RCPSP). The RCPSP is aimed to 
schedule a set of activities at minimal duration subject to precedence constraints and 
the limited availability of resources. The proposed method is applied to PSPLIB case 
studies and its performance is evaluated in comparison with some of state of art 
methods. Experimental results show that the proposed method is effective. Also, it is 
among the best algorithms for solving RCPSP.  
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1. Introduction 

 
The resource constrained project scheduling problem (RCPSP) is an important problem in project 
management, manufacturing and resource optimization. The RCPSP occurs frequently in high scale 
projects management such as software development, construction of power plants, industrial projects, 
etc. (Hartmann & Kolisch, 2000; Kolisch & Hartmann, 2006). RCPSP can be separated in different 
classes such as single mode RCPSP and multi-mode RCPSP with non-regular objective functions, 
stochastic RCPSP, bin-packing-related RCPSP problems, and multi resource constrained project 
scheduling problem. A comprehensive study on different types of RCPSP has been presented by Yang 
et al. (2001). In single mode RCPSP, a project consisting of a set of activities with fixed durations and 
resource requirements is considered (Zeighami et al., 2013). In multi-mode RCPSP, each activity can 
be executed under different durations with renewable and non-renewable resources (Coelho & 
Vanhoucke, 2011). In stochastic RCPSP, activity durations are not deterministic because during the 
project implementation there may be a series of random factors affecting the duration of activities 
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(Zheng et al., 2014). In RCPSP with non-regular objective functions, the goal is to minimize the 
activities’ costs (Neumann & Zimmermann, 1999). In bin-packing-related RCPSP problems, the 
resource capacity represents the bin size, while a task’s resource consumption requirement represents an 
item size (Kumar, 2014). In multi-resource-constrained project scheduling problems, a job may require 
a set of operations, or a set of successive resources (Kumar, 2014).  
In this work, the basic single mode RCPSP is considered. This type of RCPSP is a difficult problem to 
solve. Limitation of resources and precedence constraint makes it difficult. The RCPSP consists of 
executing a group of activities limited by constraints. Processing every activity requires predefined 
amount of resources. Every project has its own precedence constraints, which means that each activity 
can be processed when all its predecessors are finished. Otherwise, an activity cannot start before the 
completion of all of its predecessors. In general, the purpose of project schedules is to minimize its 
completion time or makespan (𝑆𝑆𝑛𝑛+1), subject to precedence and resource constraints (Kolisch & 
Hartmann, 2006). In recent years, different types of algorithms (e.g. exact, heuristics, and meta-
heuristics) have been proposed to solve single-mode RCPSP. A comprehensive survey on project 
scheduling under resource constraint has been presented in (Orji & Wei, 2013). Like other NP-hard 
problems, exact methods are no efficient in solving large-sized RCPSP problems. The exact methods 
are suitable for small-sized RCPSP problems.  
To solve large-sized RCPSP, alternative methods are required and the meta-heuristic methods can be 
used (Hartmann & Kolisch, 2000; Kolisch & Hartmann, 2006; Kolisch & Hartmann, 1999; Kolisch & 
Padman, 2001). These methods have the ability to generate near-optimal solutions even for large-sized 
RCPSP problems. It is possible to categorize these methods in two classes. The first class includes 
methods that keep one solution during each iteration. For example tabu search (Baar et al., 1998) and 
simulated annealing (Bouleimen & Lecocq, 2003) set in this class. These methods start by single solution 
and try to improve the solution, iteration by iteration until the termination condition is met. The second 
class includes methods that keep a set of solution during each iteration and try to solve the problem with 
a population of individuals. In recent years, many population and swarm based optimization algorithms 
have been presented in literature that can be used to solve RCPSP. Most of representative methods in 
this field are based on genetic algorithms, particle swarm optimization and bee algorithms. Genetic 
algorithms have been used to solve RCPSP (Hartmann, 1998; Hartmann, 2002; Mendes et al., 2009; 
Ranjbar et al., 2008). These methods showed the efficiency in solving single mode RCPSP. A magnet 
based crossover operator was used by Zamani (2013) to improve the performance of genetic algorithm 
in solving RCPSP. Different variants of particle swarm optimization have been used to solve RCPSP 
(Jarboui et al., 2008; Luo et al. 2006; Zhang et al., 2008). Recently, a particle swarm optimization (PSO) 
based hyper-heuristic algorithm for solving RCPSP has been presented by Koulinas et al. (2014). The 
hyper-heuristic is aimed to work as an upper-level algorithm that controls several low-level heuristics 
which operates to the solution space. The multiple justification particle swarm optimization (MJPSO) 
using stacking justification for further improvement has been presented by Fahmy et al. (2014). A hybrid 
particle swarm optimization procedure to solve the preemptive RCPSP in which a maximum of one 
interruption per activity is allowed has been presented by Shou et al. (2015). A pseudo PSO (P-PSO) 
has been introduced by Nasiri (2012) to cope with the complexity of scheduling problem. In P-PSO, 
particles use the path relinking procedure to fly toward local and global best positions. The improved 
PSO presented by Jia and Seo (2013) uses particle swarm and employs a double justification and an 
operator for particle movement along with rank-priority-based representation, greedy random search, 
and serial scheduling scheme. 
Three variants of bee algorithms called Bees Algorithm (BA), Artificial Bee Colony (ABC), and Bee 
Swarm Optimization (BSO) have been used to solve RCPSP (Ziarati et al., 2011; Akbari et al., 2012). 
Also, the facility layout problem (FLP) concept and integration with the permutation-based artificial bee 
colony (PABC) algorithm has been used by Jia and Seo (2013) for RCPSP. Beyond the methods 
considered in above paragraphs, other meta-heuristic methods have been used to solve RCPSP. An 
Activity-List based Nested Partitions (ANLP) algorithm for solving RCPSP was presented by Xiao et 
al. (2014). This method partitions the feasible solution space which is formulated by activity-lists into 
sub-regions by the nested partitions approach. Ant colony optimization (Merkle et al., 2002) is another 
swarm-based optimization algorithm used to solve RCPSP. Firefly algorithm is known as another meta-
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heuristic methods which has been used by Sanaei et al. (2013) for scheduling problems. Generally, 
different types of meta-heuristics have been used to solve this type of RCPSP. DS is one of the most 
recently introduced meta-heuristics by Pinar Civicioglu (2012) to solve optimization problems. DS is 
based on simulation of Brownian-like random-walk movement used by an organism to migrate. The DS 
has been designed based on the superorganism migration. Using the migration aliving being such as 
superorganism can find food, protection, in new fertile position. Amount of fertility can be used to 
inspire an algorithm from the behaviors of superorganism migration. It seems that DS has the ability to 
solve complex engineering problems. This work is aimed to study the performance of DS algorithm in 
solving RCPSP problems. 
The remaining of this paper is organized as follows: the problem formulation is given in Section 2. In 
Section 3, the basic concepts of DS algorithm is presented. Section 4 presents the details of the proposed 
method for solving RCPSP problems. The experimental results are given in Section 5. Finally, section 
6 concludes this work. 
 
2. Problem formulation 
 
The single mode resource constrained project scheduling is a type of constrained optimization problems 
that can be defined as follows:  

Assume that we have a project 𝑃𝑃𝑃𝑃𝑃𝑃 which is shown as a directed acyclic Graph 𝐺𝐺 = (𝐴𝐴,𝐸𝐸) where 𝐴𝐴 
represents a set of activities of the project which are represented by nodes and 𝐸𝐸 shows the precedence 
relationships among the activities which are represented by edges of the graph. As an example, a project 
with nine activities is shown in Fig. 1. We assume that the project has 𝑛𝑛 + 1 activities and 𝐾𝐾 renewable 
resource type 𝑅𝑅 = {𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝐾𝐾} where 𝑅𝑅𝑖𝑖 is the finite capacity of resource type 𝑖𝑖. 𝐴𝐴 =
{𝐴𝐴0,𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛+1} is a set of 𝑛𝑛 + 1 activities. 𝐴𝐴0 and 𝐴𝐴𝑛𝑛+1 are dummy activities (e.g. activities 𝐴𝐴0 
and 𝐴𝐴10 in Figure 1). They specify start and end of the project. When all activities are processed, the 
project is completed. Each activity 𝐴𝐴𝑖𝑖 has fixed duration 𝑑𝑑𝑖𝑖. 𝐷𝐷 = {𝑑𝑑0,𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛+1} is a set of 
durations. For dummy activities 𝐴𝐴0 and 𝐴𝐴𝑛𝑛+1, duration is zero (𝑑𝑑0 = 𝑑𝑑𝑛𝑛+1 = 0). Each activity 𝐴𝐴𝑖𝑖 
requires 𝑃𝑃𝑖𝑖𝑖𝑖 units of resource 𝑅𝑅𝑖𝑖 during each period of its execution (Kolisch & Hartmann, 1999). The 
time and resource requirements of each activity in Figure 1 is given in Table 1. Here, we assume that 
each activity needs only one resource 𝑅𝑅1 with 7 instances. 

 
Fig. 1. A project with nine activities 

Dummy activities do not require any resources (𝑃𝑃0𝑖𝑖 = 𝑃𝑃𝑛𝑛+1,𝑖𝑖 = 0 where 𝑃𝑃 ∈ {1,2,3, … ,𝐾𝐾}). Precedence 
between activities (edges in Graph) are represented by 𝐸𝐸. Set of pairs such as �𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖� ∈ 𝐸𝐸 means that 
activity 𝐴𝐴𝑖𝑖 precedes activity 𝐴𝐴𝑖𝑖. 𝐴𝐴𝑖𝑖   is finished before 𝐴𝐴𝑖𝑖 is started. Considering the precedence 
limitation, we assume that 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑛𝑛+1} is a feasible schedule where 𝑆𝑆𝑖𝑖 is the start time of 
activity 𝐴𝐴𝑖𝑖. The objective is to find an ordering of the activities that minimizes the makespan of the 
schedule 𝑆𝑆𝑛𝑛+1 under resource and precedence constraints. The problem can be modeled as: 

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 (𝑆𝑆𝑛𝑛+1) (1) 

The resource limitation constraint is describe as:  
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� 𝑃𝑃𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑃𝑃(𝑡𝑡)

≤ 𝑅𝑅𝑖𝑖  𝑃𝑃 = 1,2, … ,𝐾𝐾  𝑀𝑀𝑛𝑛𝑑𝑑  0 ≤ 𝑡𝑡 ≤ 𝑆𝑆𝑛𝑛+1 (2) 

where 𝑃𝑃(𝑡𝑡) = {𝑖𝑖 ∈ 𝐴𝐴|𝑆𝑆𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑆𝑆𝑖𝑖 + 𝑑𝑑𝑖𝑖} and 𝑡𝑡 is the specified time. Set 𝑃𝑃 presents all the activities 
in time 𝑡𝑡 that can be processed. These activities were started but they were not finished. 
Precedence limitation can be described as: 

𝑆𝑆𝑖𝑖 + 𝑑𝑑𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖    𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆  𝑀𝑀𝑛𝑛𝑑𝑑  �𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖� ∈ 𝐸𝐸 (3) 

According to this equation, if 𝐴𝐴𝑖𝑖 precedes activity 𝐴𝐴𝑖𝑖  then 𝐴𝐴𝑖𝑖 starts when 𝐴𝐴𝑖𝑖 is completely executed. 
For given example, the minimum makespan is 11.  

Table 1 
The time and resource requirements of activities in Fig. 1 

Activity 𝐴𝐴1 𝐴𝐴𝟐𝟐 𝐴𝐴𝟑𝟑 𝐴𝐴𝟒𝟒 𝐴𝐴𝟓𝟓 𝐴𝐴𝟔𝟔 𝐴𝐴𝟕𝟕 𝐴𝐴𝟖𝟖 𝐴𝐴𝟗𝟗 
Time  2 3 3 3 2 1 5 3 2 

Resource 3 4 2 1 2 3 1 4 2 

3. Differential Search Algorithm  
 

Differential Search Algorithm is a new and effective evolutionary algorithm which was inspired by 
migration of superorganisms utilizing the concept of Brownian-like random-walk motion (Civicioglu, 
2012). In DS algorithm, it is assumed that random solution of the population is matching to the 
artificial-superorganism migration to optimum solution of the problem. During the movement, 
artificial-superorganism examines whether some randomly selected area are desirable and it is a fertile 
area. If the selected area during the migration is temporarily a good choice to stop over, the members 
of the artificial-superorganism decide to stay at this area. They repeatedly continue their movement 
from this area to find more suitable areas. Pseudo-code of DS algorithm is given in Appendix A. In this 
Pseudo-code, 𝑁𝑁 represents number of organisms in the superorganism and 𝐷𝐷 is the size of the respective 
problem. Artificial-organisms are shown by 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖,𝑖𝑖(𝑖𝑖 ∈ {1,2,3, …𝑁𝑁}  𝑀𝑀𝑛𝑛𝑑𝑑  𝑃𝑃 ∈ {1,2,3, …𝐷𝐷}) and 
artificial-superorganism is shown by 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑔𝑔 = [𝑋𝑋𝑖𝑖] (𝑆𝑆 ∈ {1,2,3, … ,𝑀𝑀𝑀𝑀𝑥𝑥𝑆𝑆𝑀𝑀𝑛𝑛}). An 
artificial-superorganism contains 𝑁𝑁 artificial-organisms as its elements. Artificial-organisms have 
members where each member is shown by 𝑥𝑥𝑖𝑖,𝑖𝑖(𝑃𝑃 ∈ {1,2,3, … ,𝐷𝐷}) and each 𝑥𝑥𝑖𝑖,𝑖𝑖 is initially defined by: 

𝑥𝑥𝑖𝑖,𝑖𝑖 = 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑 × �𝑆𝑆𝑀𝑀𝑖𝑖 − 𝑙𝑙𝑆𝑆𝑙𝑙𝑖𝑖� + 𝑙𝑙𝑆𝑆𝑙𝑙𝑖𝑖. (4) 

Randomly selected individuals of the artificial-organisms move in the direction of the targets of 
𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑃𝑃 = [𝑋𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛𝑔𝑔(𝑖𝑖)] in order to find stopover sites. 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑆𝑆𝑀𝑀_𝑀𝑀ℎ𝑆𝑆𝑢𝑢𝑢𝑢𝑙𝑙𝑖𝑖𝑛𝑛𝑆𝑆 is a function that 
randomly changes the order of the numbers of the members in the set of 𝑖𝑖 = {1,2,3, . . . ,𝑁𝑁}. Considering 
the DS Pseudo-code, scale variable (which is defined as 𝑆𝑆𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀 =  𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑆𝑆 [2 × 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑] ×
( 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑2 –  𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑3)) controls the size of the change occurred in the positions of the members of the 
artificial-organisms. 𝑅𝑅𝑀𝑀𝑛𝑛𝑑𝑑𝑔𝑔 that is a gamma random number generator and standard random function 
together make scale value. This is made that an artificial-superorganism direction is changed in the 
habitat. Members of the artificial-organisms take part in stopover site search by a random search. Lines 
8-29 from the DS Pseudo-code show this matter. Stopover site is generated using the following 
equation: 

𝑆𝑆𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡𝑀𝑀 =  𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀 × (𝑑𝑑𝑆𝑆𝑛𝑛𝑆𝑆𝑃𝑃 –  𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀 ) (5) 

In Lines 31-33, the stopover site is controlled to remain in determined search space range. In DS 
algorithm, the stopover site found by the search process is evaluated and if the new discovered stopover 
site of an artificial-organism has better quality than the current sources of that artificial-organism, it 
goes to that stopover site. While the artificial-organisms of a superorganism change site, that respective 
superorganism continues its movement in the direction of the global optimum. 
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4. DS algorithm for RCPSP 
 

This section presents the proposed DS algorithm for solving RCPSP problem in details. Considering 
the performance of the DS in optimization problems, it seems that the method could be effective to 
solve RCPSP problems. The flowchart of the proposed method is presented in Fig. 2. 

According to Fig. 2, DS for the RCPSP has four phases: 1) Input, 2) Initialization, 3) Update, 4) 
Terminate. The Input phase receives triples (𝑁𝑁,𝐷𝐷,𝐺𝐺) as input and transfer them to the initialization 
phase. The second phase places the organisms on the search space randomly using Eq. (4). In 
Initialization and Update phases, each artificial organism represents a schedule for the RCPSP problem. 
If the problem has 𝑁𝑁 activities, the artificialorganism will migrate in the search space with 𝑁𝑁 
dimensions. A position is represented as a priority list 𝑃𝑃�⃗ (𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑛𝑛) where each element of this list 
fixedly represents an activity and its corresponding value shows the priority of that activity (Akbari et 
al., 2012). Based on this representation, the position vector 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛) of artificial organism 
i represents the priority values of N activities. The lower and upper bounds of each priority value are 
set at 0 and 1, respectively. The priority values smaller than 0 are set to 0 and the priority values larger 
than 1 are set to 1 (Ziarati et al., 2011). 

The third phase receives the initial solutions as input and iteratively updates these solution until the 
termination condition is met. The solutions are based on the behavior of superorganism and its 
members. The member of an artificial-superorganism controls its migration by considering the amount 
of fertility of targets. Members of superorganism migrate to more fertile locations by considering the 
fertile intensity that associated with that location.  

 
Fig. 2. Flowchart of the proposed method 

Naturally, the fertile locations represent better solutions. The method needs to evaluate the fitness of 
the solutions proposed by each of the artificial organism. To evaluate the fitness, amount of fertility of 
area should be determined. For this purpose, the method needs to generate the schedule from the priority 
list. The stopover site is considered as the makespan of the schedule which is presented by an 
artificialorganism. Hence, we need to use a schedule generation scheme (SGS) such as Serial-SGS or 
Parallel-SGS (Kolisch, 1996). In this work both of the SGS methods are considered. For this purpose, 
a random number in range of [0,1] is generated in order to select the SGS which is used by the algorithm 

Update phase 

Receive inputs 

Initialize DS 

Start a cycle 

New population 

Return best schedule 

Stopping 

Cycle=cycle+1 

Serial-Parallel SGS 

No 
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to construct the schedule. If the random number is larger than 0.5, the Parallel-SGS is selected else the 
Serial-SGS is selected. The Serial-Parallel SGS provides the ability for DS algorithm to use advantage 
of both scheme. The Serial-Parallel SGS module in Fig. 2 performs this task. 

Next, the positions of the artificial organisms are updated using the migration pattern of the standard 
DS and a permutation method. The proposed method uses the permutation-based representation which 
was first introduced by Hong et al. (2005). After calculating the new position of the artificial organism 
𝑖𝑖, the permutation process is used by the algorithm to permute this new solution. Each of the artificial 
organisms 𝑖𝑖 represents feasible activity lists and their corresponding priority lists. The priority list of 
the artificial organisms 𝑖𝑖 is updated and a new priority list will be obtained. After that a random list is 
generated (Ziarati et al., 2011). Then, each priority value of the artificial organism 𝑖𝑖 is compared with 
its corresponding value in the random vector. If the random value is smaller than its corresponding 
priority value, then the corresponding activity will be swapped with its neighbor. After swapping the 
priority values and their corresponding activities, the obtained activity list is examined against the 
constraints according to Eq. (1) and Eq. (2). If the constraints satisfaction is violated, the infeasible 
activity list is resolved to the feasible one.  After moving to the new position, the fertile intensity of the 
new artificial organism is evaluated. If the better fertile site is obtained, the position of the artificial 
organism is updated. This comparison is accomplished for each artificial organisms. After the 
comparison, the artificial organisms are ranked based on the amount of fertility of their stopover site 
and the best solution found is updated. The fourth phase terminates the search process after the 
maximum number of generation 𝐺𝐺 is reached. It should be noted that the input parmeter 𝐺𝐺 is set in such 
a way that the maximum number of schedules defined in the experiment are produced. After 
termination, the best schedule (i.e. the schedule with minimum makespan) which is found by DS 
algorithm is returned as output. It seems that the proposed method is capable to solve RCPSP problem 
efficiently. The specifications of sample project described in Fig. 1 and Table 1 is given to the DS 
algorithm. The proposed algorithm has the ability to solve this problem successfully. The obtained 
result by DS algorithm is given in Fig. 3. As it can be seen, the minimum makespan for this project is 
given by DS methods under resource and precedence constraints in Table 1 and Fig. 1. 

 
Fig. 3. The scheduling obtained by DS algorithm for sample given in Fig. 1 

5. Experiments 
This section presents the performance of the proposed DS method on the single mode test cases in 
PSPLIB library (Project Scheduling Problem Library) in terms of success rate and the deviation from 
the optimal solution. The performance of the proposed method is considered under the following 
configurations. Two types of experiments are conducted: the first experiments study the effect of SGS 
and the second experiments show the comparative performance. 

The population size (N) is set at 30. Different number of schedules are used here as the termination 
condition of the DS method. The numbers of schedules are set at 1000, 5000, and 50000 to evaluate 
the effect of SGS and 1000, and 5000 for the comparison study. The success rates of the DS method 
are obtained over the j30, j60, and j120 case studies from the PSPLIB. Similarly, for the comparison 
study, j30, j60, and j120 are used. For both of the experiments, the average results of 10 independent 
runs are reported. 
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5.1. The effect of SGS 
The social behaviors in DS method provide the ability to use it for scheduling problem successfully. 
The effect of SGS on the performance of the proposed method in terms of success rate and average 
deviation is considered here.  

Table 2 
The effect of SGS on the average deviation of DS 

 SGS 1000 5000 50000 
J30 parallel 0.32 0.22 0.07 

serial 0.29 0.19 0.04 
both 0.20 0.11 0.02 

J60 parallel 12.41 11.85 11.35 
serial 12.35 11.65 11.20 
both 11.75 11.10 10.90 

J120 parallel 36.50 35.51 34.86 
serial 35.84 35.13 34.55 
both 35.14 33.67 33.14 

 

Table 2 shows the effects of SGS on the average deviation. It can be seen that the best results are 
obtained when both schemes are used. Also, using serial-SGS provides the ability for the DS method 
to obtain better performance compared with parallel-SGS. The results show that the type of SGS has 
positive effect on the performance of DS method. The success rate shows the number of instances in a 
case study which are successfully solved by DS method. Table 3 shows the success rates of the 
proposed algorithm. From the results, it can be seen that the DS method obtains better performance 
when it uses both serial and parallel SGS. Based on this experiment, both of the SGS are used by DS 
method in comparison study given in the next section. 

Table 3 
The effect of SGS on the success rate of DS 

 SGS 1000 5000 50000 
J30 parallel 85.41% 90.62% 96.87% 

serial 87.92% 91.45% 97.50% 
both 88.96% 93.96% 98.33% 

J60 parallel 72.30% 73.54% 77.70% 
serial 72.50% 74.16% 78.13% 
both 72.91% 74.58% 78.75% 

J120 parallel 29.84% 31.33% 33.33% 
serial 30.00% 31.66% 34.16% 
both 30.33% 32.66% 35.00% 

 

5.2. Comparative study 
The success rates and average deviations obtained in the previous experiment showed that DS method 
had efficiency in solving RCPSP problem. In this section, the best results obtained by the proposed 
algorithm are compared with a set of state of art methods. DJ in the proposed method DS-DJ is related 
to double justification which is used for generating better schedules (Akbari et al., 2012). In DJ, the 
right and left justifications are used to adjust the start time of each activity in scheduling. Better 
performance may be obtained by DJ used in DS algorithm. Due to the large number of methods 
presented in recent years for RCPSP, only a subset of these methods are selected for comparison. 
However, we tried to select different types of meta-heuristics for this comparison. 

The average deviations and success rates of the proposed method in comparison with the other state-
of-art methods over the j30 case study after 1000 and 5000 schedule generation are given in Table 4. 
The results of the other methods reported in Tables 4, 5 and 6 are directly obtained from their 
corresponding papers. In some papers, average deviation and success rate of their presented methods 
for one of the experiments (i.e. 1000 and 5000 schedule generation) have not been reported. In such 
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cases “-” sign is used to show the unavailability of the results. The results show that the proposed 
method obtains the first rank after 1000 schedule generations and obtains the fourth rank after 5000 
schedule generation. DS method has the best success rates after 1000 and 5000 schedules. It seems that 
the proposed method has competitive performance and produce comparable results in comparison with 
the other methods.  

The performance of the proposed DS method over the j60 case study after 1000 and 5000 schedule 
generation is given in Table 5. Due to the larger number of activities in this case study, the proposed 
method and the other ones have more difficulty to solve. The success rates decrease compared to J30 
case study as well as the algorithms have more deviation. The second rank is obtained by the proposed 
DS method after 1000 schedule generation. However, the proposed method surpass the other methods 
after 5000 schedule generation. The investigated method has more difficulty in solving j120 case study 
and their performance decrease drastically. Table 6 shows the results obtained over the j120 case study. 
The results show that the DS algorithm had good and competitive performance compared with other 
methods. The first and the second rank is obtained by the proposed method after 1000 and 5000 
schedule generation, respectively. The best success rates after 1000 and 5000 schedules are obtained 
by DS algorithm. 

Table 4 
Average deviation and success rates over J30 

 J30 Average Deviation:opt Success Rate 
Approach Reference 1000 5000 1000 5000 

DS-DJ The propsoed study 0.20 0.11 88.96 93.96 
MJPSO Fahmy et al., 2014 0.22 0.05 - - 
PSO-HH Koulinas et al., 2014 0.26 0.04 - - 
FA-DJ Sanaei et al., 2013 - 0.12 - 93.75 
P-PSO Nasiri, 2012 0.30 0.10   
PABC Qiong & Seo, 2013 0.34 0.17 86.60 91.74 
ABC Akbari et al., 2012 0.35 0.12 -  

BA-DJ Ziarati et al., 2011 0.42 0.19 83.96 91.05 
BSO-DJ Ziarati et al., 2011 0.45 0.22 83.55 90.21 
ABC-DJ Ziarati et al., 2011 0.47 0.28 82.50 90.00 

Improved PSO Jia & Seo, 2013 0.49 - - - 
BA Ziarati et al., 2011 0.63 0.33 78.54 86.25 

BSO Ziarati et al., 2011 0.65 0.36 77.30 85.63 
ABC Ziarati et al., 2011 0.98 0.57 72.71 83.84 
GA Alcaraz & Maroto, 2001 0.33 0.12 - – 

GA-DJ Valls et al., 2005 0.34 0.20 - – 
GA Hartmann, 2002 0.38 0.22 - – 
SA Bouleimen & Lecocq, 2003 0.38 0.23 - - 
TS Nonobe & Ibaraki, 2002 0.46 0.16 - - 
GA Hartmann, 1998 0.54 0.25 81.50 - 
PSO Chen et al., 2010 0.54 - -  
AS Schirmer, 2000 0.65 0.44 -  

PSO Zhang, 2005 0.69 0.42 - - 
GA Hartmann, 1998 1.38 1.22 70.60 - 

ACO Chen et al., 2010 1.57 - -  

In general, based on the results obtained for PSPIB scheduling problems, the proposed DS method 
provides well in solving single-mode RCPSP problems. 
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Table 5 
Average deviation and success rates over J60 

J60 Average Deviation:lb Success Rate 
Approach Reference 1000 5000 1000 5000 
PSO-HH Koulinas et al., 2014 11.74 11.13   
DS-DJ This study 11.75 11.10 72.91 74.58 
MJPSO Fahmy et al., 2014 11.86 11.19 - - 
FA-DJ Sanaei et al., 2013 - 11.20 - 74.37 
P-PSO Nasiri, 2012 12.02 11.33 - - 

Improved PSO Jia & Seo, 2013 12.12 - - - 
PABC Qiong & Seo, 2013 12.35 11.96 72.50 74.03 
BA-DJ Akbari et al., 2012 12.55 12.04 72.30 73.96 

BSO-DJ Ziarati et al., 2011 12.58 12.29 72.08 73.34 
ABC-DJ Ziarati et al., 2011 12.61 12.24 71.67 73.34 

ABC Ziarati et al., 2011 12.75 11.48 - - 
BA Ziarati et al., 2011 13.35 12.83 66.25 68.34 

BSO Ziarati et al., 2011 13.67 12.70 64.38 70.63 
ABC Ziarati et al., 2011 14.57 13.12 61.88 67.09 
GA Hartmann, 2002 12.21 11.70 - - 

B & B Dorndorf et al., 2000 12.50 - - 76.20 
GA Hartmann, 1998 12.68 11.89 - - 
GA Hartmann, 1998 12.74 12.74 - - 

GA-DJ Valls et al., 2005 12.21 11.27 - - 
GA Alcaraz & Maroto, 2001 12.57 11.86 - - 
SA Bouleimen & Lecocq, 2003 12.75 11.90 - - 
AS Schirmer, 2000 12.94 12.58 - - 
TS Nonobe & Ibaraki, 2002 12.97 12.18 - - 

 
Table 5 
Average deviation and success rates over J120 

J120 Average Deviation:lb Success Rate 
Approach Reference 1000 5000 1000 5000 

DS-DJ The propsoed study 35.15 33.67 30.33 32.66 
PSO-HH Koulinas et al., 2014 35.20 32.59 - - 
MJPSO Fahmy et al., 2014 35.60 33.78 - - 
FA-DJ Sanaei et al., 2013 - 34.07 - 32.16 
PABC Qiong & Seo, 2013 36.84 35.79 29.50 31.20 
P-PSO Nasiri, 2012 36.77 35.16 - - 
ABC Akbari et al., 2012 36.29 34.18 - - 

Improved PSO Jia & Seo, 2013 37.22 - - - 
BA-DJ Ziarati et al., 2011 37.72 36.76 29.84 31.17 

BSO-DJ Ziarati et al., 2011 37.84 36.51 29.17 30.84 
ABC-DJ Ziarati et al., 2011 37.85 36.82 29.34 30.34 
ALNP Xiao et al., 2014 37.49 36.74 - - 

BA Ziarati et al., 2011 40.38 38.12 17.84 20.84 
BSO Ziarati et al., 2011 41.18 37.86 17.00 22.50 
ABC Ziarati et al., 2011 43.24 39.87 15.34 18.17 

p-ACO Herbots et al., 2004 - 36.01 - 19.00 
ACO Herbots et al., 2004 - 37.85 - 29.33 
ACO Merkle et al., 2002 - 38.02 - 26.50 

s-ACO Merkle et al., 2002 - 39.82 - 26.70 
GA-DJ Valls et al., 2005 35.39 33.24 - - 

GA Hartmann, 2002 37.19 35.39 - - 
GA Alcaraz & Maroto, 2001 39.36 36.57 - - 
GA Hartmann, 1998 39.37 36.74 - - 
AS Schirmer, 2000 39.85 38.70 - - 
GA Hartmann, 1998 39.93 38.49 - - 
TS Nonobe & Ibaraki, 2002 40.86 37.88 - - 
SA Bouleimen & Lecocq, 2003 42.81 37.68 - - 
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6. Conclusion and future works 
 

In recent years, different types of meta-heuristics have been presented by researchers to cope with 
complex problems. Differential Search Algorithm which is one of the most recently introduced methods 
of this type which was originally proposed for solving real-valued numerical optimization problems. In 
this work a new method based on DS for solving resource-constrained project scheduling problem was 
proposed. The proposed method gives a set of initial schedules and tries to improve them using the 
migration behavior of the superorganism. For this purpose, the DS method is adapted to obtain an 
arrangement of the activities which results the best schedule. The comparative study of the well-known 
PSPLIB benchmarks showed that the proposed DS algorithm had the ability to produce competitive 
results compared to the other metaheuristic methods. In addition, the proposed DS method has high 
efficiency in solving RCPSP problems. It seems that this method has high potential to incorporate 
different types of heuristics, local search, and constraint handling approaches, etc. in order to improve 
its performances. Also, hybridization of the DS method with other heuristic or meta-heuristics may 
provide a way to improve their efficiency.  
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Appendix A  
Pseudocode of the proposed DS method for RCPSP (Civicioglu, 2012) 
________________________________________________________________________________ 
Input (𝑵𝑵,𝑫𝑫,𝑮𝑮): 
 

N: The size of the population, where i={1,2,3,…,N} 
D: The dimension of the problem. 
G:Number of maximum generation. 

 
Initialization: 

1:    Superorganism=initialize(), where Superorganism=[ArtificialOrganismi] 
2:     yi=Evaluate(ArtificialOrganismi) 

 
Update: 

3:     for cycle= 1:G  do 
4:              donor=  SuperorganismRandom_shuffling(i) 
5:               Scale= randg [2.rand].( rand2 – rand3) 
6:               StopoverSite= Superorganism + Scale . (donor – Superorganism )  
7:               p1= 0.3 .rand4 and p2= 0.3.rand5 
8:               if rand6< rand7 then 
9 :                       if rand8< p1 then 
10:                          r= rand(N,D) 
11:                          for  Counter1= 1: N do 
12:                                   r(Counter1,:) = r(Counter1,:) <rand9 

13:                            endfor 
14:                      else 
15:                      r = ones(N,D) 
16:                             for  Counter2= 1: N  do 
17:                                        r(Counter2, randi(D) ) = r(Counter2, randi(D))<rand10 
18:                              endfor 
19:                      endif 
20:              else 
21:                       r = ones(N,D) 
22:                       for  Counter3= 1:N  do 
23:                                  𝑑𝑑 = 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑𝑖𝑖(𝐷𝐷, 1, ⌈𝑃𝑃2 ∙ 𝑃𝑃𝑀𝑀𝑛𝑛𝑑𝑑 ∙ 𝐷𝐷⌉) 
24:                                  for   Counter4= 1: size(d)  do 
25:                                                r( Counter3, d(Counter4))=0 
26:                                   endfor 
27:                         endfor 
28:               endif 
29:               𝑖𝑖𝑛𝑛𝑑𝑑𝑖𝑖𝑆𝑆𝑖𝑖𝑑𝑑𝑆𝑆𝑀𝑀𝑙𝑙𝑀𝑀𝐼𝐼,𝐽𝐽 ← 𝑃𝑃𝐼𝐼,𝐽𝐽 > 0|𝐼𝐼 ∈ 𝑖𝑖 , 𝐽𝐽 ∈ [1,𝐷𝐷] 
30:               StopoverSite(individuals I,J) := Superorganism(individuals I,J) 
31:               if (StopoverSitei,j<  lowi,j   or StopoverSitei,j> upi,j) then 
32:                      StopoverSitei,j :=rand. (upj – lowj)+lowj 
33:               endif 
34:               yStopoverSite;i = evaluate(StopoverSitei) 
35                if �𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖 < 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖 � then 
36                       𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟,𝑖𝑖 ≔ 𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖  
37                 else 
38                       𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖: = 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖      
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39                 endif 
40                 if �𝑦𝑦𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆;𝑖𝑖 < 𝑦𝑦𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟;𝑖𝑖 � then 
41                       𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖 ≔ 𝑆𝑆𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃𝑆𝑆𝑖𝑖𝑡𝑡𝑀𝑀𝑖𝑖  
42                 else 
43                       𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖 ≔ 𝐴𝐴𝑃𝑃𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑖𝑖𝑀𝑀𝑙𝑙𝐴𝐴𝑃𝑃𝑆𝑆𝑀𝑀𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖      
44                 endif 
45       endfor 
 
Terminate 
46       Return 𝑏𝑏𝑀𝑀𝑀𝑀𝑡𝑡 𝑀𝑀𝑡𝑡𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃 𝑀𝑀𝑖𝑖𝑡𝑡𝑀𝑀 
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