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 From a wide variety of queuing models, the finite-capacity queuing models are the most 
commonly used, where arrival and service rates follow an exponential distribution. Based on 
two criteria of system cost and expected degree of customer satisfaction, the present study 
defines a new productivity rate index and evaluates the optimization of a queuing model with 
finite capacity. In queuing models, obviously, as the number of servers increases, the length of 
waiting lines decreases, the expected degree of customer satisfaction enhances, and obviously 
the system cost increases. This study deals with the mathematical relationships involved in the 
computations of these two criteria, and proposes a novel approach to determine an optimal 
number of servers by considering a decision-maker's priority and establishing a trade-off 
between criteria.  
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1. Introduction 
 

In basic queuing models, unit arrivals are assumed to follow a Poisson distribution and service times 
are exponential. Some models have infinite capacity, while others are with finite capacity queues. 
Queuing models with finite capacities have been widely used for the real setting and, hence, they are 
of great importance. Such models deal with systems of finite capacity; meaning that the units involved 
in any system could not be exceeded by a given number, and if the system is at full capacity, the arrival 
of a new unit would not be authorized and it will be lost. Finite-capacity queuing models play an 
important role with many practical applications. To name a few studies, Balsamo et al. (2003) studied 
queuing network models to estimate the performance of software architecture. Takagi and Yoshino 
(2005) investigated the system capacity calculation for wireless systems. Moreover, Heragu and 
Srinivasan (2011), Smith (2003), Bocharov and Viskova (2005), Jain (2005), Gupta and Sikdar (2006), 
and Thomas (2006) provided practical researches in queuing models with finite-capacity.  
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Many studies have been conducted on the optimization of finite-capacity queuing models. Through the 
introduction of a multi-agent based bank queuing model, Zhang (2012) sought on optimization 
problem. Lariviere and Porteus (2001) presented an analysis of price-only contracts for a special case 
of the newsvendor problem. Zhao et al. (2014) proposed a group of optimization models that aim at 
determining the number of servers, which is needed for net jobs with random process times and then 
they have achieved the optimal total expected costs for each model.  Ziya et al. (2006) developed a 
lower bound to determine the optimal price for each service in blocking systems, and proved how 
optimal prices alter with changes in the size of waiting room or the system capacity. In this field and 
for optimal pricing policies, worthy efforts have also been made by Paschalidis and Liu (2002), 
Paschalidis and Tsitsiklis (2000), and Sumita et al. (2001). 

Additionally, for the optimization of queuing models with finite-capacity, Ke and Wang (2002), and 
Wang and Ke (2000) applied a recursive method for, respectively, the study of N policy and the optimal 
control of an M/G/1 queuing system with finite capacity. Here, the N-policy means that when one 
customer is found in a system, then the server will stop its operations until N customer (N>1) will enter 
the system. Chen (2007) proposed a mixed-integer nonlinear programming method for queuing 
problems and, then, applied it to calculate a proper service rate. Wesołek et al. (2006) optimized 
queuing models by using a mutli-objective approach, in which the objective was to increase the level 
of customer satisfaction and minimize the number of servers. Sindal and Tokekar (2012) interested in 
analyzing of two queuing based call admission control schemes with a fuzzy based call admission 
controller model. The models developed were based on channel reservation scheme for handoff calls. 
Finite queuing scheme for handoff call was implemented in the first model whereas finite queuing for 
both handoff as well as new call was taken into account for the second model. The fuzzy call admission 
controller was used based on Mamdani inference scheme taking relative mobility of user and number 
of reserved channels for handoff calls as input parameters. 

Prado and La Fuente (2007, 2008, and 2009) dealt with the optimization of queuing models, by 
considering priorities, selection of service rates, and profit. Also, for the optimized selection of the 
number of servers in finite-capacity queuing models, Prado and La Fuente (2008) developed a novel 
technique based on the expected degree of customer satisfaction. Note that the method proposed here 
has great limitations, since it relies only on the expected degree of customer satisfaction, thereby 
restricting its applications. Through the study of the optimization of finite capacity queuing systems, 
the current research provides an alternative approach to determine the optimal number of servers by 
considering two criteria, including the level of customer satisfaction and the total cost in a queuing 
system. It should be noted that this is more simple, comprehensive, and applicable method, from a 
practical viewpoint. The paper is presented as following:  

Section 2 deals with a finite-capacity queuing model, describing the calculations for the probabilities 
of steady states. Section 3 explains how to determine the optimal number of servers. Next, Section 4 
provides a numerical example, and ultimately, Section 5 draws the conclusion.  

2. Finite-Capacity Queuing Model (M/M/m/K) 

A finite-capacity queuing model (M� /M� /m/K) is composed of m servers, where all servers have the same 
service rate, equal to µ, and independent from the system status – i.e. the number of units involved in 
the system. In fact, intervals between the arrival and service times follow an exponential distribution 
with parameters λ and µ, respectively. An additional assumption is that when the number of units 
present in a queuing system equals the capacity of the system (denoted by K), then the arrival of a new 
unit will be impossible since the system is at full capacity, and it will be considered as a missing unit. 
The exit rate for this model is different from the arrival pattern; to put it differently, if the number of 
units is less than m, the exit rate is equal to nµ. However, when the number of units in the system is 
more than m, the exit rate equals mµ. Hence, we have:  
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The relations given in Eq. (2) were introduced by Taha (2003) to compute the probabilities of steady 
states and performance indicators in a queuing model:  
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where (π0) represents the probability of a null system, while (πn) represents the probability of involving 
n units in the system, shown as below:  
The average queue length (Lq) and the average waiting time in the queue (Wq) are computed as follows, 
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The average number of units (L) and the average waiting time in the system (W) are as follows, 
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W =  
L

λ(1 − πn)
.  

3. Determination of Optimal Number of Servers 

The present study aims to determine the optimal number of servers with regards to two criteria; namely, 
the expected degree of customer satisfaction and the total cost of utilization of the server. Hence, we 
will first discuss the methodology for calculating these two criteria. Next, two criteria will be used to 
develop a method in order to determine the optimal number of servers.  

3.1 Expected Degree of Customer Satisfaction  

The underlying idea for the degree of customer satisfaction is that when the number of units waiting in 
a queue or system is low at the arrival time, the degree of customer satisfaction is high, and vice versa. 
Prado and La Fuente (2008) proposed a novel method to obtain the degree of customer satisfaction, 
where it is determined based on the queue length seen by an arriving customer. In this case, the arriving 
customers show higher levels of satisfaction when they see short queues, a normal satisfaction for 
moderate length of the queue, and lower levels of satisfaction for long queues. These terms “short”, 
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“moderate” and “long” used to describe the queue length have comparative and theological concepts, 
so the authors defined the queue by using the fuzzy set theory as the following fuzzy states:  

𝐴̃𝐴   = Short Queue, 𝐵𝐵�= Moderate Queue, 𝐶̃𝐶= Long Queue. 

𝐴̃𝐴, 𝐵𝐵� , and 𝐶̃𝐶 represent the fuzzy states for the fuzzy partition X = (X0, X1, …), where Xi  shows an state 
of i customers involved in the system. Based on the principles of Zadeh Extension (Zadeh, 1965, 1971, 
1973, 1974, 1975, 1983, 1997), the fuzzy states of 𝐴̃𝐴, 𝐵𝐵� , and 𝐶̃𝐶 are defined as below: 

𝐴̃𝐴= {(0, µ𝐴𝐴�(0)), (1, µ𝐴𝐴�(1)) … (K, µ𝐴𝐴�(K))} 

𝐵𝐵�  = {(0, µ𝐵𝐵� (0)), (1, µ𝐵𝐵� (1)) … (K, µ𝐵𝐵� (K))} 

𝐶̃𝐶 = {(0, µ𝐶̃𝐶(0)), (1, µ𝐶̃𝐶(1)) … (K, µ𝐶̃𝐶(K))} 

where, µ𝐴𝐴�, µ𝐵𝐵� , and µ𝐶̃𝐶 represent the membership functions for the fuzzy states 𝐴̃𝐴, 𝐵𝐵� , and 𝐶̃𝐶, respectively 
(Zimmermann, 1978, 1984, 1985, 2001). Hence, µ𝐴𝐴�(i) shows the degree of possibility for 𝐴̃𝐴 (the short 
queue) when there are i customers in the system. According to the rules of fuzzy partitions, the 
following relation is to be met for definitions of short, moderate, and long queues: 

µ𝐴𝐴�(i) + µ𝐵𝐵� (i) + µ𝐶̃𝐶(i) = 1, i = 1, 2… K (5) 

where π𝐴𝐴�, π𝐵𝐵� , and π𝐶̃𝐶  denote the chance of arriving in a short, moderate and long queue for a new 
customer. Prado and La Fuente (2007) presented the following formula to calculate the probabilities of 
fuzzy states: 

πA�  =  ∑ πn. µA�(n)K
n=0   

πB�  =  ∑ πn. µB�(n)K
n=0  (6) 

πC� =  ∑ πn. µC�(n)K
n=0   

Finally, they defined the utility values of u1, u2, and u3 as to represent the degrees of customer 
satisfaction with – respectively - short, moderate, and long queues. Also, the relation below was 
provided to calculate the expected degree of customer satisfaction: 

EDCS = (u1.𝜋𝜋𝐴𝐴�) + (u2.𝜋𝜋𝐵𝐵� ) + (u3.𝜋𝜋𝐶̃𝐶) (7) 

3.2 Total Cost of Server Utilization  

Obviously, increasing the number of servers leads to reducing the number of waiting units in the 
queuing system, and thereby increasing system costs. Selecting an optimal number of servers without 
taking the cost into consideration will not necessarily result in accurate and applicable outcomes, as 
this criterion is among the most important parameters which affect decisions. This paper proposes the 
following relation to compute the cost of server utilization: 

Total cost = Fixed cost + Variable cost + Opportunity cost (8) 

The “fixed cost” reflects the cost which is not directly dependent to the number of servers; it is defined 
per all servers or some by the system manager. However, the variable cost is the cost with exactly a 
linear relationship to the number of servers. As stated before, when the system is at full capacity, no 
new arrival is allowed and this charges the system with a lost opportunity cost. Here, the following 
relation is suggested to compute the variable and lost opportunity costs:  
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Variable Cost = m × Y1  , Opportunity Cost = λ × πk × Y2 (9) 

where, Y1 is the cost of server utilization per hour, and Y2 is the average opportunity cost per customer.  

In the real world, note that it is not quite simple to estimate total costs, and sometimes impossible by 
using this relation. Through describing the criterion of total costs, the purpose is not to develop Eq. (8) 
to estimate the cost of server utilization; rather, this study seeks to introduce a methodology to obtain 
an optimal number of servers by estimating the expected degrees of customer satisfaction and total 
costs per different numbers.  

3.3 Optimal Number of Servers  

The queuing model presented here has a finite capacity; i.e. the optimal number of servers can take the 
values 1, 2, 3, up to K (the size of system capacity) and no constraint is allowed. The values of expected 
degree of customer satisfaction are estimated per different numbers of servers in order to obtain an 
optimal number of servers. Next, the products are normalized. To do this, the values are divided by the 
largest number calculated. Hence, the number of servers with greatest degree of customer satisfaction 
is found the highest value; it is 1.  

Then, the system costs are estimated in terms of various numbers of servers (from 1 to K) and the 
results are normalized. In this case, the smallest cost value obtained in the calculations per different 
number of servers is divided by each value of the system costs. So, the number with lowest system 
costs is given the highest value; it is 1. These two criteria are, indeed, normalized so that the normalized 
criteria would be given the highest value when the system cost is contributed to the lowest rate and the 
customer satisfaction is at the greatest level.  

In order to determine the optimal number of servers, the current study applies two criteria of normalized 
system cost and normalized degree of customer satisfaction to present the productivity rate (PR) as a 
decision-making index as below: 

Productivity Rate = (W1 × Normalized EDCS) + ( W2 × Normalized SC) (10) 

where, W1 and W2 denote the weights of the expected degree of satisfaction and the system cost.  

The PR index shows a direct relationship with both normalized criteria. It means that higher degrees of 
customer satisfaction and lower system costs will result in a greater value for this decision-making 
index. Therefore, the optimal number of servers is a definite number and it is equal to the number per 
which the ER index receives the largest value. Moreover, according to Eq. (10), it is clear that we can 
assume different weights for customer satisfaction and system costs criteria as to obtain an optimal 
number of servers. 
 
4. Numerical Example with Sensitivity Analysis 
 
This section presents a numerical example to further explain how the optimal number of servers is 
determined, discussing the exact steps. Then, the sensitivity analysis is proposed to determine the 
parameters affecting greatly the model. Consider the M/M/m/10 finite-capacity queuing model, where 
the arrival and service rates are 40 and 10 units per hour, respectively. The system has a limited capacity 
by 10 units. The cost of server utilization is equal to 2000 monetary units per hour, the lost opportunity 
cost is equal to 15 monetary units per hour, and the fixed cost of server utilization is defined as below:   
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Also, suppose the utility values of u1 = 0.95, u2 = 0.5, and u3= 0.05. The fuzzy states of 𝐴̃𝐴, ،𝐵𝐵� , and 𝐶̃𝐶 
are defined as the following fuzzy partitions:  

𝐴̃𝐴 = {(0,1), (1,1), (2, 1), (3,0.7), (4, 0.3)}, 𝐵𝐵�  = {(3,0.3), (4,0.7), (5,1), (6,1), (7,0.6), (8,0.2)} 
𝐶̃𝐶 = {(7, 0.4), (8, 0.8), (9, 1), (10, 1)} 

Moreover, the decision maker intends to allocate the weighting values of 0.4 for the expected degree 
of customer satisfaction, and of 0.6 for the system cost. The data are summarized as below: 

= 0.6. 20.4 and W = 1= 0.05, W 3= 0.5, u 2= 0.95, u 1= 200, Y2= 15, u1λ = 40, µ = 10, K = 10, Y 

To obtain the optimal number of servers, it is necessary to estimate the probabilities of steady states 
(π0, π1… π10) per all serves by Eq. (2). Table 1 shows the computational results.  

 
Table 1 
Limiting Probabilities of System per Multiple Servers 

 
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 

0π 0.0000 0.0002 0.0033 0.0102 0.0152 0.0173 0.0181 0.0183 0.0184 0.0184 
1π 0.0000 0.0010 0.0133 0.0407 0.0608 0.0693 0.0723 0.0732 0.0734 0.0735 
2π 0.0000 0.0020 0.0266 0.0814 0.1216 0.1387 0.1446 0.1464 0.1469 0.1469 
3π 0.0000 0.0039 0.0355 0.1085 0.1621 0.1849 0.1928 0.1952 0.1958 0.1959 
4π 0.0002 0.0078 0.0473 0.1085 0.1621 0.1849 0.1928 0.1952 0.1958 0.1959 
5π 0.0007 0.0156 0.0631 0.1085 0.1297 0.1479 0.1542 0.1561 0.1566 0.1567 
6π 0.0029 0.0313 0.0841 0.1085 0.1037 0.0986 0.1028 0.1041 0.1044 0.1045 
7π 0.0117 0.0625 0.1121 0.1085 0.0830 0.0657 0.0588 0.0595 0.0597 0.0597 
8π 0.0469 0.1251 0.1495 0.1085 0.0664 0.0438 0.0336 0.0297 0.0298 0.0299 
9π 0.1875 0.2502 0.1993 0.1085 0.0531 0.0292 0.0192 0.0149 0.0133 0.0133 

10π 0.7500 0.5004 0.2658 0.1085 0.0425 0.0195 0.0110 0.0074 0.0059 0.0053 

Then, π𝐴𝐴�, π𝐵𝐵� , and π𝐶̃𝐶 are calculated by using Eq. (6), and Eq. (8) is used to determine and normalize 
the expected degrees of customer satisfaction in terms of m = 1, …, m servers. Table 2 shows the 
summarized data of the estimations.  

Table 2   
Values of π𝐴𝐴�, π𝐵𝐵� , and π𝐶̃𝐶, and Normalized Degrees of Customer Satisfaction 

 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 
πA�  0.0001 0.0083 0.0823 0.2407 0.3596 0.4103 0.4277 0.4331 0.4344 0.4347 
πB�  0.0202 0.1161 0.2881 0.4122 0.4585 0.4797 0.4918 0.4971 0.4987 0.4990 
πC� 0.9797 0.8756 0.6296 0.3471 0.1819 0.1101 0.0805 0.0699 0.0669 0.0663 

EDCS 0.0592 0.1097 0.2537 0.4521 0.5800 0.6351 0.6562 0.6634 0.6654 0.6658 
N EDCS 0.0889 0.1647 0.3811 0.6791 0.8711 0.9539 0.9857 0.9965 0.9995 1.0000 

According to Table 2, N EDCS represents the normalized values for the expected degrees of customer 
satisfaction. Now, the system costs are to be determined per all servers by using Eq. (15) and Eq. (16). 
Table 3 provides the results.   

Table 3 
Normalized Values of System Cost 

 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 
 Fixed cost 5000 5000 5000 5000 5500 5500 5500 5500 7000 7000 

Variable cost 200 400 600 800 1000 1200 1400 1600 1800 2000 
Opportunity 

 
450.00 300.22 159.48 65.08 25.49 11.69 6.58 4.46 3.54 3.18 

Total cost 5650.0
 

5700.2
 

5759.4
 

5865.0
 

6525.4
 

6711.6
 

6906.5
 

7104.4
 

8803.5
 

9003.1
 N total cost 1.0000 0.9912 0.9810 0.9633 0.8658 0.8418 0.8181 0.7953 0.6418 0.6276 
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Table 4  
PR Index for All Numbers of Servers with Equal Weights 

 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 
PR Index 0.6356 0.6606 0.7410 0.8496 0.8680 0.8867 0.8851 0.8758 0.7849 0.7765 

 

Finally, the productivity rate is estimated for all numbers of servers.  As seen from Table 4, the optimal 
number of servers is equal to 6, because this value results in the highest PR index (0.8867).  Also, 
according to Table 1, the rate of missing customers per six servers (π10) is 1.95 percent, which is an 
acceptable rate. Meanwhile, the performance indicators for the optimal model M/M/6/10 include; 
 

Lq = 0.3190, L = 4.2411, Wq= 0.081 and W = 0.2163. 
 

Now, in order to carry out the sensitivity analysis and to determine sensitive parameters, we change 
the parameters of the arrival rate, service rate, and variable cost separately in the range of 10 to 50 
percent, and estimate again the optimal number of servers. As seen from Table 5, the more sensitive 
parameters include the service and arrival rates; with 50% change of two criteria, the number of 
servers changes by 2 units. 

 
Table 5 
Sensitivity Analysis for Arrival Rate, Service Rate, and Variable Cost 

Percentage change µ ONS λ ONS 1Y ONS 2Y ONS 
50%- 5 8 20 4 100 7 7.5 6 
40%- 6 8 24 4 120 7 9 6 
30%- 7 8 28 4 140 7 10.5 6 
20%- 8 7 32 4 160 7 12 6 
10%- 9 7 36 6 180 6 13.5 6 
0% 10 6 40 6 200 6 15 6 
10% 11 6 44 7 220 6 16.5 6 
20% 12 4 48 7 240 6 18 6 
30% 13 4 52 7 260 6 19.5 6 
40% 14 4 56 8 280 6 21 6 
50% 15 4 60 8 300 6 22.5 6 

 
Fig. 1 shows the optimal number of servers per 0 to 50 % changes in the arrival and service rates.  

 

Fig. 1. Sensitivity Analysis of Arrival and Service Rates 
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It should be noted that the model demonstrated no sensitivity to changes in the variable and lost 
opportunity costs per customer, since the number of servers is just increased by 1 unit for almost 50% 
changes in the variable cost. Moreover, 50 % changes in the lost opportunity cost requires no changes 
in the number of servers. 

5. Conclusion 

The present study has aimed to determine an optimal number of servers with simultaneous regarding 
the system cost and degree of customer satisfaction. To this end, the productivity rate index was 
introduced which demonstrated a direct relationship with the normalized values of these two criteria. 
In order to normalize the values, these criteria are assigned greater values (max. 1) with decreased 
system costs and increased customer satisfaction. Further, in the relation proposed to estimate the PR 
index, unequal values can be allocated to the criteria, and this is considered as an advantage for the 
current methodology. In fact, to improve the flexibility and adaptability of the proposed method with 
thoughts of a decision maker, the decision maker is responsible to select weighting values (relative 
significance) for the criteria. Finally, the study provided the sensitivity analysis for the queuing system 
in order to determine which parameters were sensitive. The results indicated that the arrival and service 
rates were the most sensitive parameters, while the rest showed almost equal, albeit not effective, 
impact on the queuing system.  

As a final note, this study provided several advantages, including: investigating two criteria of system 
cost and expected degree of customer satisfaction at the same time, allocation of unequal weights for 
decision criteria, and introducing the PR index.  
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