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 The present work deals with the comparison of four multi response optimization methods, viz. 
multiple response signal-to-noise (MRSN) ratio, weighted signal-to-noise (WSN) ratio, Grey 
relational analysis (GRA), and VIKOR (VlseKriterijumska Optimizacija I Kompromisno 
Resenje in Serbian) methods taking a case study in turning mild steel specimen using HSS 
cutting tool. The various factors like cutting speed, feed rate, depth of cut and coolant flow rate 
are considered as the input process variables, while the material removal rate (MRR), surface 
roughness (SR) and specific energy consumption (SEC) are considered as various performance 
characteristics. One set of experimental data is analyzed using the standardized procedures. 
The optimization performances of these four methods are compared. The results show that 
MRSN ratio method proves to be the best optimization method. It is found that the feed rate 
has a highest impact on the overall performance as compared to other process parameters.  
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1. Introduction 
 

Improvement of productivity maintaining quality is the general goal of every organization. Automated 
and flexible manufacturing systems are therefore being employed for this purpose which are capable 
of achieving high accuracy at low processing time. Besides, process optimization is another technique 
employed to achieve this objective with the existing process or operation. Turning operation is the most 
common method used for machining and finishing of various parts. Nowadays, optimization of 
machining parameters is important while producing any product with desired quality. Optimization is 
the act of obtaining the best result under the given working conditions. It maximizes the desired benefits 
and minimizes the required input. The turning operation is controlled by tool geometry and process 
parameters. Several researchers have studied the influence of various process parameters such as 
cutting velocity, feed rate, depth of cut as well as the cutting fluid used on material removal rate (MRR) 
and other machining qualities like the surface roughness, circularity and dimensional deviations of the 
product in a turning operation (Kalpakjian & Schmid, 2001). Generally MRR is directly related to the 
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productivity of the process which ultimately leads to the growth or development of the organization. 
Similarly, improvement of surface finish is highly essential for improvement of working performance 
of different parts. Sahin and Motorcu (2008) employed the response surface methodology to minimize 
the surface roughness of AISI 1050 hardened steel bars using CBN and TiC cutting tools. Suhail et al. 
(2012) investigated the influence of cutting speed, feed rate and depth of cut on surface roughness using 
Grey Relational Analysis (GRA) technique. Gunay and Yucel (2013) used orthogonal array and 
analysis of variance (ANOVA) to evaluate the effect of cutting parameters on average surface 
roughness in turning high alloy white cast iron. Nian et al. (1999) took the significant cutting parameters 
(cutting speed, feed rate and depth of cut) into consideration and used multi response signal-to-noise 
(MRSN) ratio technique to study the effect of these parameters on tool life, cutting force and surface 
finish. Davim (2003) studied the influence of cutting conditions like cutting velocity, feed rate and 
cutting time on turning metal matrix composites using orthogonal array and analysis of variance to 
investigate the cutting characteristics of flank wear (VB), power required (Pm) and surface roughness 
(Ra). Sardinas et al. (2006) used a genetic algorithm based on multi objective optimization technique 
to optimize the cutting parameters in turning operation. However, very few researchers have studied 
the effect of cutting fluids (Kalpakjian & Schmid, 2001; Baradie, 1996).  
 
Effective application of cutting fluids can increase productivity, tool life, and dimensional accuracy 
and decrease the surface roughness and amount of power consumed. Jeyapaul et al. (2006) presented a 
case study to illustrate the potential of the integrated approach of Taguchi method and genetic algorithm 
for tackling multiple response optimization problems. Hascalik and Caydas (2008) employed the 
Taguchi’s method to optimize the cutting parameters in turning commercial Ti-6Al-4V alloy using 
CNMG 120408-883 insert cutting tools. The results showed that the cutting speed and feed rate were 
the most influential factors on the surface roughness and tool life. Tong et al. (2007) proposed two case 
studies of plasma enhanced chemical vapor deposition and copper chemical mechanical polishing using 
VIKOR method, which was a compromise ranking approach used for multi-criteria decision making 
(MCDM), for optimizing multiple responses. Lin et al. (2009) proposed the Grey Relational Analysis 
technique to optimize the CNC turning operation parameters for SKD11 (JIS). The depth of cut was 
found to have most impact on the average roughness and the cutting speed was the most influential 
factor for the roughness and the roundness. Liao (2006) proposed a weighted principal component 
(WPC) analysis method, which took into account the possible correlations among various responses. 
Rao et al. (2013) adopted Taguchi’s technique to study the influence of speed, feed and depth of cut on 
cutting force and surface roughness in turning AISI 1050 steel using ceramic tool. Shiau (1990) and 
Tai et al. (1992) determined the optimal parametric settings of different processes by optimizing the 
weighted signal-to-noise (WSN) ratio value. 
 
Based on the exhaustive study of the past research works, it is observed that four multi response 
optimization techniques, e.g. MRSN ratio method (Nian et al., 1999), WSN ratio method (Shiau, 1990; 
Tai et al., 1992), GRA method (Lin et al., 2009), and VIKOR method (Tong et al., 2007) are quite 
simpler/robust in accordance to their computational procedures. There are some other multiresponse 
optimization techniques (Sahin & Motorcu, 2008; Sardinas et al., 2006; Jeyapaul et al., 2006; Liao, 
2006), which use complex mathematical/statistical tools and are, therefore, inconvenient to be used by 
the industrial personnel with little background in statistics and knowledge of software. Because of the 
computational simplicity, the above four multi response optimization techniques are chosen for the 
current study. The aim of this paper is to compare the above four optimization techniques using a set 
of experimental data from turning operation and to report for a suitable technique for this operation. 
 
2. Multiresponse optimization technique 

 

In the domain of advanced manufacturing technology, the only aim of all the engineers is to obtain the 
best process performance. Therefore, optimization has become the major quantitative tool in industrial 
decision making process. The main objective behind this is the minimization of production cost, 
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maximization of production rate and maximization of profit rate. A number of researchers have 
proposed various techniques for optimizing single objective function as well as multi objective 
functions that reflect the machining performance. In single objective optimization technique, only one 
quality attribute is optimized which may lead to quality losses of other performance characteristics 
which may not be accepted by the customers. That is why, from engineering view point, multiresponse 
optimization techniques are more suitable. From an engineer’s perspective, it is very important to know 
that out of various alternatives which method can lead to the best overall optimization performance for 
his/her process. Furthermore, a statistical analysis of variance (ANOVA) is performed to see which 
process parameters are statistically significant. Finally, a confirmatory experiment is conducted to 
verify the optimal process parameters. 
 

2.1 The MRSN, WSN, GRA, and VIKOR methods 
 

According to Taguchi (Kackar, 1985; Phadke, 1989) based methodology, the response variables are 
categorized into three types, e.g. the smaller the better, the larger the better and nominal the best. In 
this Taguchi’s robust design of experimentation, let there are m experimental trials, and in each trial, 
quality losses of a set of p response variables are measured. The formulae for computing the quality 
loss (Lij) for jth response corresponding to ith trial (i = 1,2,....m ; j = 1,2,....p) are different for different 
types of response variables and are given as follows: 
For smaller the better, 𝐿𝐿𝑖𝑖𝑖𝑖 = 1

𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖2𝑛𝑛
𝑖𝑖=1

, (1) 

For larger the better, 𝐿𝐿𝑖𝑖𝑖𝑖 = 1
𝑛𝑛
∑ 1

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1

, (2) 

For nominal the best, 𝐿𝐿𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖𝑖𝑖
2

𝑦𝑦�𝑖𝑖𝑖𝑖
2 , (3) 

where, 𝑦𝑦�𝑖𝑖𝑖𝑖 = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ,  𝑆𝑆𝑖𝑖𝑖𝑖2 = 1

𝑛𝑛−1
∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1  and n represent the number of repeated 

experiments, yijk represents the experimental value of the jth response variable in ith trial at kth 
replication, and Lij is the computed quality loss for jth response in ith trial. For the analysis of all the 
four multi-response optimization methods, the following three common steps are followed: 

Step 1: Conversion of the multiple responses into a single process performance index (PPI) for 
optimization. 

Step 2: Determination of the significant factors and then, obtaining the optimal level combination. 

Step 3: Validation of the optimal factor/level combination using confirmatory experiment. 

2.1 Determination of single process performance index (PPI) value 

2.1.1 MRSN ratio method 
 

In MRSN method, the multi-response S/N ratio is taken as the PPI, which can be obtained using the 
following steps: 

Step 1: Calculation of scaled quality loss (Sij) for each response in each trial as follows, 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖 𝐿𝐿�𝑖𝑖⁄ ,  (4) 
where, Sij is the scaled quality loss for jth response in ith trial, L�j = 1

m
∑ Lijm
i=1  is the average quality loss 

for the jth response. 

Step 2: Calculation of total loss function (TLi) for ith trial using the following formula. 

𝑇𝑇𝐿𝐿𝑖𝑖 =  �𝑤𝑤𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, 
(5) 
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where, 𝑤𝑤𝑖𝑖 is the weight for the jth response, chosen by the analyzer, and  ∑ 𝑤𝑤𝑖𝑖 = 1𝑝𝑝
𝑖𝑖=1 . 

Step 3: Determination of multi-response S/N (MRSN) ratio for the ith trial, using the following formula. 

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀𝑖𝑖 = −10 log10(𝑇𝑇𝐿𝐿𝑖𝑖). (6) 
 
2.1.2 WSN method 
 

In this method, the WSN ratio is considered as the PPI value. The computational procedure for WSN 
ratio is as follows: 

Step 1: The S/N ratio values (𝜂𝜂𝑖𝑖𝑖𝑖) for all the responses for all the trials are first obtained as follows: 

𝜂𝜂𝑖𝑖𝑖𝑖 = −10 log10 𝐿𝐿𝑖𝑖𝑖𝑖 (7) 
 

Step 2: Computation of normalized S/N ratio values for all the responses for all the trials as follows: 

For larger the better: 𝑌𝑌𝑖𝑖𝑖𝑖 =
𝜂𝜂𝑖𝑖𝑖𝑖−𝜂𝜂𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚

𝜂𝜂𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝜂𝜂𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚, 
(8) 

For smaller the better: 𝑌𝑌𝑖𝑖𝑖𝑖 =
𝜂𝜂𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝜂𝜂𝑖𝑖𝑖𝑖

𝜂𝜂𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝜂𝜂𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚, (9) 

where, Yij is the normalized S/N ratio or scaled S/N ratio value for jth (j= 1, 2 ...p) response in ith trial, 
𝜂𝜂𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 = min {η1j, η2j ..... ηmj} and 𝜂𝜂𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = max {η1j, η2j ..... ηmj}. By using Eq. (8) and Eq. (9), the S/N 
ratio values of a response variable are scaled into (0, 1) interval. 

 Step 3: Determination of the WSN value for the ith trial using the following equation: 

𝑊𝑊𝑆𝑆𝑀𝑀𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 
(10) 

where, wj is the assigned weight for the jth response, and ∑ 𝑤𝑤𝑖𝑖 = 1𝑝𝑝
𝑖𝑖=1 . 

2.1.3 GRA method 
 

Grey relational grade is considered as the PPI, which can be obtained using the following steps: 

Step 1: Computation of the S/N ratio values for all the responses for all the trials, ηij using Eq. (7) 

Step 2: Determination of the scaled S/N ratio values for all the responses for all the trials, Yij using Eq. 
(8) and Eq. (9) (as applicable). 

Step 3: Computation of the grey relational coefficients, 𝛾𝛾𝑖𝑖𝑖𝑖 i.e. 

𝛾𝛾𝑖𝑖𝑖𝑖 =
Δ𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 + 𝜉𝜉Δ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

Δ𝑖𝑖𝑖𝑖 + 𝜉𝜉Δ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  , 
(11) 

 

where, Δ𝑖𝑖𝑖𝑖 = �1 − 𝑌𝑌𝑖𝑖𝑖𝑖�, Δ𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 = min{ Δ1𝑖𝑖 , Δ2𝑖𝑖,.... , Δ𝑚𝑚𝑖𝑖}, Δ𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = max{Δ1𝑖𝑖 , Δ2𝑖𝑖,.... , Δ𝑚𝑚𝑖𝑖} and 𝜉𝜉 is the 
distinguishing coefficient (𝜉𝜉∈[0,1]). The purpose of distinguishing coefficient is to expand or compress 
the range of the grey relational coefficient and usually, its value is taken as 0.5. 

 Step 4: Calculation of the grey relational grade (GRGi) for ith trial, i.e. 

𝐺𝐺𝑀𝑀𝐺𝐺𝑖𝑖 = �𝑤𝑤𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

, 
(12) 

where, 𝑤𝑤𝑖𝑖 is the weight for the jth response, and ∑ 𝑤𝑤𝑖𝑖 = 1𝑝𝑝
𝑖𝑖=1 . 
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2.1.4 VIKOR method 

In the VIKOR method, the VIKOR index is taken as the PPI. The VIKOR index value for a trial can 
be computed using the following steps: 

Step 1: Computation of the S/N ratio values for all the responses for all the trials, ηij using Eq. (7) 

Step 2: Determination of the scaled S/N ratio values for all the responses for all the trials, Yij using Eq. 
(8) 

Step 3: Determination of the ideal and negative ideal solutions. 

       The ideal solution (𝐴𝐴∗) and the negative ideal solution (𝐴𝐴−) are determined as follows: 

𝐴𝐴∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑌𝑌𝑖𝑖𝑖𝑖�𝑖𝑖 = 1,2, … . ,𝑚𝑚� = �𝑌𝑌1∗,𝑌𝑌2∗, … . . ,𝑌𝑌𝑝𝑝∗� (13) 
𝐴𝐴− = 𝑚𝑚𝑖𝑖𝑚𝑚�𝑌𝑌𝑖𝑖𝑖𝑖�𝑖𝑖 = 1,2, … . ,𝑚𝑚� = �𝑌𝑌1−,𝑌𝑌2−, … . . ,𝑌𝑌𝑝𝑝−� (14) 

Step 4: Calculation of the utility and regret measure for each experimental trial, i.e. 

𝑆𝑆𝑖𝑖 = �𝑤𝑤𝑖𝑖 �𝑌𝑌𝑖𝑖∗ − 𝑌𝑌𝑖𝑖𝑖𝑖� �𝑌𝑌𝑖𝑖∗ − 𝑌𝑌𝑖𝑖−��
𝑛𝑛

𝑖𝑖=1

 , 
(15) 

𝑀𝑀𝑖𝑖 = max
𝑖𝑖
�𝑤𝑤𝑖𝑖 �𝑌𝑌𝑖𝑖∗ − 𝑌𝑌𝑖𝑖𝑖𝑖� �𝑌𝑌𝑖𝑖∗ − 𝑌𝑌𝑖𝑖−�� � , (16) 

where, 𝑤𝑤𝑖𝑖 is the weight for the jth response, assigned by the analyzer, and ∑ 𝑤𝑤𝑖𝑖 = 1𝑝𝑝
𝑖𝑖=1 . 

Step 5: Calculation of the VIKOR index for the ith experimental trial, i.e. 

𝑄𝑄𝑖𝑖 = 𝑣𝑣 �
𝑆𝑆𝑖𝑖 − 𝑆𝑆∗

𝑆𝑆− − 𝑆𝑆∗
� + (1 − 𝑣𝑣) �

𝑀𝑀𝑖𝑖 − 𝑀𝑀∗

𝑀𝑀− − 𝑀𝑀∗
� ; 𝑖𝑖 = 1,2, … . . ,𝑚𝑚 

(17) 

where, 𝑆𝑆∗ = min
𝑖𝑖
𝑆𝑆𝑖𝑖 ,𝑆𝑆− = max

𝑖𝑖
𝑆𝑆𝑖𝑖, R∗ = min

𝑖𝑖
𝑀𝑀𝑖𝑖, 𝑀𝑀− = max

𝑖𝑖
𝑀𝑀𝑖𝑖 and 𝑣𝑣 is the weight of the maximum 

group utility and usually, it is set to 0.5. 

3. Selection of a suitable multiresponse optimization technique using a case study 
 

In order to obtain the best multiresponse optimization technique out of the four given techniques, a case 
study on turning operation was performed by conducting a series of experiments. All the responses were 
well analyzed by the four different methods and the suitable parametric combination for the best 
technique was reported for the given turning operation. 

3.1. Experimental details 

3.1.1Workpiece Material, and Machine tool 

In this experiment, a round bar of mild steel (MS) having diameter of 32mm and length of 500mm was 
machined on a Turret Lathe. A high speed steel (HSS) cutting tool was used for this purpose. The 
chemical composition and mechanical properties of the workpiece are shown in Tab. 1 and Tab. 2, 
respectively. The work material was cut, centered, and cleaned by removing a layer of material from 
the outside surface, prior to the actual machining.  

 
Table 1   
Chemical composition of workpiece material (MS) 

Element C Si Mn S P Fe 
Percentage (%) 0.16 0.4 0.8 0.040 0.040 98 
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Table 2  
Workpiece material properties 

Workpiece material Mild Steel 
Hardness (HRB) 68.5 

 Melting Point (⁰C) 
 

1350-1530 
Density (g/mm3) 7.85 x 10-3 
Ultimate tensile strength (MPa) 1110 
Yield strength (MPa) 951 
Modulus of elasticity (GPa) 210 

 

3.1.2. Selection of cutting parameters  
 
The variables that affect the performance of turning operation are identified based on experience and 
survey of past research works. Accordingly four machining parameters i.e. cutting speed, feed rate, 
depth of cut, and coolant flow rate, that affect the material removal rate, surface roughness, and specific 
energy consumption were selected. Each parameter has three levels, denoted by 1, 2, and 3 as low, 
medium, and high level respectively. Table 3 indicates the factors and their levels. The degrees of 
freedom for each parameter was obviously two. Experiments were conducted according to Taguchi’s 
L9 orthogonal array, which is shown in Table 4. 
 
Table 3 
Machining parameters and their levels 
Sl. No. Parameter Unit Symbol Level 1 Level 2 Level 3 
1 Cutting speed    m/min A 24.85 49.70 79.87 
2 Feed rate mm/rev B 0.09 0.18 0.25 
3 Depth of cut mm C 0.25 0.35 0.5 
4 Coolant flow rate ml/sec D 12 33 56 

 
Table 4  
Layout of L9 orthogonal array 
Experiment number A B C D 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

 

3.1.3. Experimental procedure 
 
Fig. 1 represents the present experimental set up. A mild steel bar of 28mm diameter, length 450mm 
(machining length 50mm) was prepared and taken for conducting the experiment. The weight of the 
specimen was measured repeatedly each time before and after the experiment with the help of a high 
precision digital balance. Using different levels of the process parameters, nine experiments were 
conducted in the turret lathe. 
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Fig. 1. Experimental set up 

Machining time for each trial has been measured using a stop watch. In this experiment, the responses 
measured are material removal rate (MRR), surface roughness (Ra), and specific energy consumption 
(SEC). The MRR (mm3/sec) and SEC (J/mm3) were calculated using the Eq. 17 and Eq. 18, 
respectively. While the surface roughness (Ra) was measured using a 2D portable surface profilometer 
(Make: Taylor Hobson, Model: Talysurf, Surtronic 3+) as shown in Fig. 2. The cut-off length and 
assessment length were taken to be 0.8mm and 4mm, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 2. Talysurf, Surtronic 3+ 

Material removal rate, 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑓𝑓
𝜌𝜌𝜌𝜌

 𝑚𝑚𝑚𝑚3/ sec, (18) 

where, 𝑤𝑤𝑖𝑖 is the weight of the specimen before machining, 𝑤𝑤𝑓𝑓 is the weight of the specimen after 
machining measured on an digital balance, 𝜌𝜌 is the density of the work material i.e. 7.85x 10-3g/mm3), 
and t is the machining time. 

Specific energy consumption, 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀×𝑡𝑡

 𝐽𝐽 𝑚𝑚𝑚𝑚3⁄ , (19) 
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where, P  is the energy meter reading taken during the experiment, and t  is the machining time. The 
experimental results are presented in Table 5. 

Table 5 
Experimental results 

Expt. No. 
 
Speed 
(m/min) 

 
Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

Coolant 
flow rate 
(ml/sec) 

MRR 
(mm3/sec) 

Ra (μm) SEC 
(J/mm3) Ra1 Ra2 Ra3 

1 24.85 0.09 0.25 12 5.587 6.44 5.88 6.52 282.611 
2 24.85 0.18 0.35 33 25.478 7.08 6.96 6.62 47.099 
3 24.85 0.25 0.5 56 43.312 7.96 7.92 7.54 33.247 
4 49.70 0.09 0.35 56 32.970 6.72 6.26 6.00 80.742 
5 49.70 0.18 0.5 12 75.406 5.62 5.06 5.48 17.662 
6 49.70 0.25 0.25 33 63.496 6.20 5.88 6.30 35.325 
7 79.87 0.09 0.5 33 11.560 3.34 3.54 3.24 188.407 
8 79.87 0.18 0.25 56 63.405 4.28 4.16 3.96 35.225 
9 79.87 0.25 0.35 12 34.723 6.40 5.86 6.14 188.402 

 

3.2. Results and Discussion 
 

In this section, the experimental data given in Table 5 are analyzed by the four different multi response 
optimization techniques which are described earlier. An analysis of variance (ANOVA) is applied to 
estimate the effect of various machining parameters on optimization of multiple performance 
characteristics of the turning process. Based on the results of process performance index (PPI) values 
and ANOVA results, optimal machining parameters with the consideration of multiple performance 
characteristics have been obtained and verified. 

3.2.1. Analysis of the experimental data 
 

In this present study, the larger the better, and the smaller the better principles are considered to 
maximize the material removal rate (MRR) and to minimize the surface roughness (Ra), and specific 
energy consumption (SEC), respectively. The first step in data analysis is to calculate the quality losses 
of a set of p response variables. The loss function for MRR was calculated using Eq. (2). Similarly Eq. 
1 was applied to calculate the loss function for surface roughness and specific energy consumption. In 
this study, all the responses are given equal priority. The PPI values for the four multi response 
optimization techniques obtained by using the standard formulas stated earlier are given in Table 6. 

Table 6  
PPI values for MRSN, WSN, GRA, and VIKOR method 

Expt. No. PPI value 
MRSN WSN GRG VIKOR index 

1 -6.0398 0.5805 0.6641 0.5000 
2 2.2944 0.5958 0.5838 0.6569 
3 2.0294 0.6717 0.6981 0.7979 
4 2.5383 0.6602 0.6012 0.5913 
5 5.3835 0.5195 0.6214 0.7056 
6 4.0782 0.6317 0.6391 0.7002 
7 -1.0322 0.3777 0.5055 0.6698 
8 6.9940 0.4751 0.5599 0.2440 
9 -0.2530 0.7562 0.6785 0.6034 

  

Since the experimental design is orthogonal, it is possible to separate out the effect of each machining 
parameter at different factor levels. The calculated mean MRSN ratio, WSN ratio, GRG, and VIKOR 
index of each machining parameter at different factor levels are presented in Tables 7. The optimal 
factor/level combination can be easily determined by examining the level averages of the various 
factors. Larger values of MRSN, WSN, and GRG (boldfaced in the respective table) signify better 
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quality. However, in the VIKOR method a higher value of VIKOR index is not desirable (Tong et al., 
2007). Because, a smaller value of VIKOR index requires less compromise for ensuring small variation 
in S/N ratios among the responses along with a large overall S/N ratio, which is preferable. 

The optimal combination for the factors A, B, C and D with respect to MRSN, WSN, GRG, and VIKOR 
index can be set as A2B2C3D3, A1B3C2D1, A1B3C2D1, and A3B2C1D3 respectively. It may be noted here 
that both the WSN ratio and GRG methods lead to the same optimal condition, whereas, the optimal 
parameter combination obtained for the VIKOR method is A3B2C1D1. 

Table 7  
Level averages of the factors on different PPI values 

Factors MRSN WSN GRG VIKOR index 
Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 

Level 
 A -

 
4.000 1.9029 0.6160 0.6038 0.5363 0.6487 0.6206 0.5813 0.6516 0.6657 0.5057 

B -
 

4.8906 1.9515 0.5395 0.5301 0.6865 0.5903 0.5884 0.6719 0.5870 0.5355 0.7005 
C 1.6775 1.5266 2.1269 0.5624 0.6707 0.5230 0.6210 0.6212 0.6083 0.4814 0.6172 0.7244 
D -

 
1.7801 3.8539 0.6187 0.5351 0.6023 0.6547 0.5761 0.6197 0.6030 0.6756 0.6444 

 
3.2.2. Analysis of variance 
 

After calculating the mean PPI value for each experiment, the next step in the data analysis is to estimate 
the effect of each machining parameter on the responses and to perform the analysis of variance 
(ANOVA). ANOVA is a well established method (Montgomery, 2001) that can identify the 
significant/influencing factors most efficiently in relation to the error variance. In ANOVA analysis, to 
identify the significant effect of each process parameter on the performance characteristics, the F-test 
is conducted. The F value for a factor is obtained as the ratio of mean square (SSm) due to the factor 
and error. When SSm is equal to the sum of squared deviation (SS) divided by the number of degrees of 
freedom associated with the process parameter. The computed F value is very useful in understanding 
the relative influence of different factors on a process parameter. According to Taguchi (Phadke, 1989), 
a value of F ratio greater than 2 means the factor effect is not quite small, and larger than 4 means the 
factor effect is quite large, whereas a value of F ratio less than 1 means the factor effect is smaller than 
the error. Figs. (3-6) represent the various factor effects on the PPI values, e.g., MRSN ratio, WSN ratio, 
GRG, and VIKOR index, respectively. 

 

Fig. 3. Response graph of MRSN ratio 
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Fig. 4. Response graph of WSN ratio 

 

Fig. 5. Response graph of grey relational grade (GRG) 

 

Fig. 6. Response graph of VIKOR index 
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The analysis of variance is carried out separately for all the four types of PPIs. Table 8 shows the 
ANOVA results for MRSN, WSN, and Table 9 shows the ANOVA results for GRG, and VIKOR index. 

Table 8 
Results of ANOVA for MRSN, and WSN 
Sources 
of 
variance 

MRSN  WSN 

SS DF SSm F P (%) SS DF SSm F P (%) 

A 31.4261 2 15.7130 53.7196 26.29 0.0111 2 0.0055 1 10.59 
B 61.6116 2 30.8058 105.3190 51.54 0.0461 2 0.0230 4.1818 44.32 
C 0.5851 2 0.2925 1 0.49 0.0351 2 0.0175 3.1818 33.72 
D 25.9210 2 12.9605 44.3094 21.68 0.0118 2 0.0059 1.0727 11.37 
Error C - - - - A - - - - 

Total 119.5438 8 - - 100 0.1041 8 - - 100 
 

Table 9  
Results of ANOVA for GRG, and VIKOR 
Sources 
of 
variance 

GRG  VIKOR 

SS DF SSm F P (%) SS DF SSm F P (%) 

A 0.0069 2 0.0034 22.6667 22.59 0.0471 2 0.0235 1.8217 22.99 

B 0.0136 2 0.0068 45.3333 45.18 0.0427 2 0.0213 1.6512 20.84 

C 0.0003 2 0.00015 1 1.00 0.0890 2 0.0445 3.4496 43.54 

D 0.0093 2 0.0047 31.3333 31.23 0.0259 2 0.0129 1 12.63 
Error C - - - - D - - - - 
Total 0.0301 8 - - 100 0.2047 8 - - 100 

 

It is observed from Tab. 8 and 9 that factor B is the most influencing one with respect to MRSN, WSN, 
and GRG values, and, factor C is significant with respect to the VIKOR index value only.  

3.2.3. Verification of the experiments 
 

After selecting the optimal level of the process parameters, the final step is to predict and verify the 
improvement of the performance characteristics with the selected optimal process parameters. The 
predicted optimal values of the S/N ratios (ηopt) using the optimum level of process parameters can be 
calculated as: 

𝜂𝜂𝑜𝑜𝑝𝑝𝑡𝑡 = 𝜂𝜂𝑚𝑚 + ∑ (𝜂𝜂𝚤𝚤� − 𝜂𝜂𝑚𝑚)𝑞𝑞
𝑖𝑖=1                                                                                                                (20) 

where, 𝜂𝜂𝑚𝑚 is the grand mean of PPI values, 𝜂𝜂𝚤𝚤�  is the mean PPI value at the optimum level, and q is the 
number of the machining parameters that significantly affect the multiple response characteristics. For 
the better understanding of the correlation between the input parameters and output responses, the 
prediction models for MRR, SR and SEC has been obtained using multiple regression analysis. The 
input parameters are cutting speed (Vc), feed rate (f), depth of cut (d) and coolant flow rate (Q) 
respectively. The following equations are obtained using the regression analysis: 

𝑀𝑀𝑀𝑀𝑀𝑀 = −4.8 + 0.182𝑉𝑉𝑐𝑐 + 170𝑓𝑓 + 3.8𝑑𝑑 + 0.188𝑄𝑄                                                                         (21) 
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𝑆𝑆𝑀𝑀 = 7.03 − 0.0424𝑉𝑉𝑐𝑐 + 5.45𝑓𝑓 + 0.05𝑑𝑑 + 0.0039𝑄𝑄                                                                       (22) 

𝑆𝑆𝑆𝑆𝑆𝑆 = 315 + 0.40𝑉𝑉𝑐𝑐 − 575𝑓𝑓 − 153𝑑𝑑 − 2.56𝑄𝑄                                                                               (23)  

Table 10, 11, 12, and 13 show the comparison of estimated PPI value with the actual PPI value   obtained 
in the confirmatory experiments using the optimal cutting parameters. Based on the experimental 
confirmation, the material removal rate is increased by 7.52%, the surface roughness is decreased by 
10.53%, and the specific energy consumption is increased by 9.38% for the MRSN ratio method. 
Similarly, for the WSN ratio method and the GRA method, MRR is increased by 13.01%, the Ra value 
is decreased by 10.94%, and the SEC is increased by 10.99%. In case of VIKOR method, MRR value 
is increased by 9.2%, the Ra value is increased by 9.54% and the SEC value is increased by 12.85%.  It 
is evident that, out of the four prospective methods, good improvement of MRR, SR, and SEC has been 
obtained by the MRSN ratio method. As well as, good approximation also exists between the predicted 
value (9.5404) and the experimental value (9.9524) of the mean MRSN ratio. 

Table 10 
Results of the confirmatory experiment for MRSN ratio method 

 Initial factor setting Optimal cutting parameters 
Prediction Experiment 

Level A1B1C1D1 A2B2C3D3 A2B2C3D3 
MRR (mm3/sec) 5.587 47.273 50.828 
SR (μm) 6.28 6.147 5.5 
SEC (J/mm3) 282.611 11.52 12.601 
MRSN ratio -6.0398 9.5404 9.9524 
Improvement in MRSN ratio= 15.9922 

 

Table 11  
Results of the confirmatory experiment for WSN ratio method 

 Initial factor setting Optimal cutting parameters 
Prediction Experiment 

Level A1B1C1D1 A1B3C2D1 A1B3C2D1 
MRR (mm3/sec) 5.587 45.8087 51.764 
SR (μm) 6.28 7.40 6.59 
SEC (J/mm3) 282.611 96.92 107.58 
WSN ratio 0.5805 0.8357 0.7687 
Improvement in WSN ratio= 0.1882 

 

Table 12  
Results of the confirmatory experiment for GRA  method 

 Initial factor setting Optimal cutting parameters 
Prediction Experiment 

Level A1B1C1D1 A1B3C2D1 A1B3C2D1 
 MRR (mm3/sec) 5.587 45.8087 51.764 
SR (μm) 6.28 7.40 6.59 
SEC (J/mm3) 282.611 96.92 107.58 
GRG 0.6641 0.7458 0.6928 
Improvement in GRG= 0.0287 

 
Table 13  
Results of the confirmatory experiment for VIKOR  method 

 Initial factor setting Optimal cutting parameters 
Prediction Experiment 

Level A1B1C1D1 A3B2C1D1 A3B2C1D1 
MRR (mm3/sec) 5.587 43.542 47.548 
SR (μm) 6.28 4.683 5.13 
SEC (J/mm3) 282.611 174.478 196.905 
VIKOR index 0.5000 0.3026 0.6867 
Improvement in VIKOR index= 0.1867 
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4. Conclusion 
 

In the present paper, four prospective multi objective optimization techniques, e.g., MRSN ratio, WSN 
ratio, GRA, and VIKOR methods, have been used to obtain the optimal turning parameters that lead to 
maximum material removal rate, minimum surface roughness and specific energy consumption value. 
The results obtained from the analysis are summarized as follows: 

1. From the confirmation test, it is found that no method can give better overall quality than that resulted 
under the optimal condition derived using the MRSN ratio method as the percentage error is very 
low. Since, the maximization of material removal rate, and minimization of surface roughness and 
specific energy consumption are simultaneously considered, a cutting speed of 49.70 m/min, feed 
rate of 0.18 mm/rev, depth of cut of 0.5 mm, and the coolant flow rate of 56 ml/sec, are recommended 
as the optimal cutting parameters for the turning operation. 

2. From the ANOVA analysis, the importance of the controllable cutting parameters is found to be in 
the sequence of, feed rate, cutting speed, coolant flow rate, and depth of cut. The feed rate is 
identified as the most significant controlled factor as it has the maximum percentage of contribution 
(51.54%) towards the turning operation. On the other hand depth of cut has the least effect on the 
turning operation. 
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