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 In many quality control applications, the quality of a process or product is explained by the 
relationship between response variable and one or more explanatory variables, called a profile. 
In this paper, a new fuzzy EWMA control chart for phase II fuzzy profile monitoring is 
proposed. To this end, we extend EWMA control charts to its equivalent Fuzzy type and then 
implement fuzzy ranking methods to determine whether the process fuzzy profile is under or 
out of control. The proposed method is capable of identifying small changes in process under 
condition of process profile explaining parameters vagueness, roughness and uncertainty. 
Determining the source of changes, this method provides us with the possibility of recognizing 
the causes of process transition from stable mode, removing these causes and restoring the 
process stable mode.  
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1. Introduction 
 

Quality of manufacturing products and services is the primary key factor for the success and 
competitiveness of organizations and there are literally different definitions of quality. Based on the 
definition of Montgomery (2009), quality is characterized as “inversely proportional to variability”. 
This definition of quality is rooted in the belief that an increase in the variability of key characteristics 
of a product or service results in a reduction in its quality. Hence, quality control techniques, especially 
Statistical Process Control (SPC), have absorbed significant amount of attention as an effective tool in 
reducing variability of processes and improving quality. Although it is usually assumed that the quality 
of a process can be characterized by one or more quality characteristics and controlled by means of 
univariate or multivariate control charts, in many applications, the quality of a product or service is 
better characterized by a functional relationship between a dependent variable and one or more 
independent ones. The relationship between independent and dependent variables is known as a 
“Profile”. Monitoring profiles, like other process control methods, consists of two phases. The main 
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goal of the first phase is to evaluate the stability of the process using historical data, and having 
excluded out-of-control data, to estimate unknown parameters of the profile. In phase II, however, the 
goal is to promptly identify changes in the process’s profile and to discern the underlying reasons 
responsible for the profile to get out of control. Due to the presence of vagueness, roughness, and 
uncertainty in real-world applications, the need for methods with which such vagueness can be modeled 
is obvious. Fuzzy sets theory is a powerful tool in handling real-world uncertainty. There has been a 
wide range of research regarding phase I and phase II crisp profile monitoring. In this section, 
researches in phase II linear profiles are reviewed. Proposed solutions in phase II linear profile 
monitoring can be divided into two categories: Omnibus Control Charts and Individual Control Charts 
(Noorossana et al., 2011). 

The first group of methods monitors the simultaneous changes in profile parameters. Croarkin and 
Varner (1982) proposed a method based on the principle of inverse calibration, which is now a part of 
“Linear Calibration using Reference Material” standard (ISO 5725-6 1994). Kang and Albin (2000) 
suggested two types of control charts for phase II monitoring, one based on T2 statistic and the other 
based on Exponential Weighted Moving Average (EWMA). 
 
Noorossana et al. (2004) suggested the simultaneous use of MCUSUM, for monitoring the combination 
of slope and intercept of profile, and R, for monitoring standard deviation. Zou et al. (2006) used 
Change Point method assuming that model parameters are unknown, but historical in-control data is 
available for parameter estimation. They applied Likelihood Ratio statistic to investigate the changes 
in model parameters. Niaki et al. (2007) suggested the use of Generalized Linear Test (GLT) along 
with R control charts. Zou et al. (2007) applied self-starting control chart approach to monitor phase II 
profiles. Zhang et al. (2009) presented Likelihood Ratio-based control charts by integrating the EWMA 
procedure to determine shifts in the intercept, slope, or standard deviation. Li et al. (2010) proposed 
Variable Sampling Interval (VSI) EWMA method. Noorossana et al. (2010) extended the Kang and 
Albin’s method (2000) to apply under multivariate simple linear profile. Eyvazian et al. (2011) 
proposed four methods based on likelihood ratio method to monitor multivariate multiple linear profiles 
in Phase II. Hosseinifard et al. (2011) suggested the use of neural networks for linear profile monitoring. 
They proposed three methods, including ANN1 and ANN-a in Omnibus control charts, and 3ANN for 
the second type of methods. 
 

Methods of the second category use individual control charts to monitor profile parameters. All these 
methods are based on the methods proposed by Kim et al. (2003). They showed that by coding values 
of independent variables, it is possible to determine independent estimators for profile parameters. 
Then, they suggested individual EWMA control charts for each parameter. Saghaie et al. (2009) 
suggested that in Kim et al. (2003) model, instead of EWMA, CUSUM statistic can be used. The use 
of fuzzy inference systems and adaptive neural networks in monitoring phase II profiles was proposed 
by Fazel Zarandi and Alaeddini (2010).  

In all above mentioned researches on phase II profile monitoring, the primary assumption is that the 
process’s profile is known or can be estimated by means of in-control data from phase I. In both 
categories, profile parameters are assumed to be crisp and their real nature, which is vague and 
uncertain, is disregarded. The vagueness of parameters, however, makes the assumption of crisp 
parameters unrealistic. Uncertainty, roughness, and vagueness of data, which are the bases of analysis 
of profiles in phase I and phase II, should be included in modeling and analysis. Fuzzy sets theory is 
an effective tool in bringing vagueness and uncertainty into analyses. Few studies have already been 
published in the field of fuzzy linear profiles, two studies in phase I and one study in phase II. 
Noghondarian and Ghobadi (2012) proposed a univariate approach for monitoring phase I fuzzy quality 
profiles. Ghobadi et al. (2012) proposed a multivariate approach for monitoring process/product fuzzy 
quality profiles in phase I. Moghadam et al. (2015) developed two methods based on fuzzy T2 Hotelling 
and fuzzy EWMA control charts for phase II fuzzy linear profiles. They assumed that the values of 
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dependent variable are fuzzy. In this paper, a new method of phase II profile monitoring is proposed. 
It is assumed in the proposed model that the functional relationship between independent and dependent 
variables of the process profile is vague and defined by linear fuzzy regression. Fuzzy EWMA statistics 
are used in order to monitor each one of the profile parameters. 

The organization of the paper is as follows: in section 2, basic concepts of fuzzy set theory are briefly 
reviewed. In section 3, fuzzy linear profiles, their assumptions, and the fuzzy regression model for 
identifying fuzzy profiles of samples are described. In section 4, fuzzy EWMA statistics and their 
calculations are defined and the proposed method for drawing and analyzing control charts based on 
these statistics are discussed. Section 5, demonstrates an example in which the proposed method is 
employed and its efficiency is studied. In the end, conclusions and possible future researches are 
provided. 

2. Preliminary concepts 

Definition 2.1. A fuzzy number �̃�𝐴 = (𝑎𝑎, 𝜆𝜆,𝛽𝛽) is called an asymmetrical triangular fuzzy number with 
center 𝑎𝑎, left spread 𝜆𝜆 and right spread 𝛽𝛽 if its membership function can be shown as follows: 

 

𝜇𝜇𝐴𝐴�(𝑥𝑥) =

⎩
⎨

⎧
𝑥𝑥−(𝑎𝑎−𝜆𝜆)

𝜆𝜆
𝑎𝑎 − 𝜆𝜆 < 𝑥𝑥 ≤ 𝑎𝑎

(𝑎𝑎+𝛽𝛽)−𝑥𝑥
𝛽𝛽

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑎𝑎 + 𝛽𝛽

0 OtherWise

  (1) 

If right and left spreads of the triangular fuzzy number are given as (𝜆𝜆 = 𝛽𝛽 = 𝑆𝑆), the triangular fuzzy 
number is called symmetric and shown as (𝑎𝑎, 𝑠𝑠) where 𝑎𝑎 is the number's center and 𝑠𝑠 is its spread. A 
typical triangular fuzzy number is shown in Fig. 1. 

Definition 2.2. α -Cut of fuzzy set A� is a crisp set including elements from reference set X with 
membership degree in fuzzy set A� of at least as big as 𝛼𝛼 (0 < 𝛼𝛼 ≤  1). We denoted the α -Cut of fuzzy 
set �̃�𝐴 by  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴�.,  

 
 (2) 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴� = {𝑥𝑥 ∈ 𝑋𝑋| 𝜇𝜇𝐴𝐴�(𝑥𝑥) ≥ 𝛼𝛼}  

 
If A� is an asymmetrical triangular fuzzy number, 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴� is: 
 

 (3) 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴� = [(𝛼𝛼 − 1)𝜆𝜆 + 𝑎𝑎 , (1 − 𝛼𝛼)𝛽𝛽 + 𝑎𝑎] = [𝑎𝑎𝐿𝐿(𝛼𝛼),𝑎𝑎𝑅𝑅(𝛼𝛼)]  

 
 

 

 

 

 

 

Fig. 1. Triangular fuzzy number 
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3. Fuzzy linear profiles 

In phase II study of linear fuzzy profiles, online data, acquired from the examination of the process, are 
analyzed. The purpose of this phase is to promptly determine if the parameters of the profile are out of 
control. It is assumed in this phase that profile parameters are known or can be estimated by means of 
in-control historical data set. Due to the fact that in real-world cases, information is incomplete, vague 
or approximate, we introduce fuzzy linear profile monitoring in phase II and assume that the parameters 
of the process’s profile are triangular fuzzy numbers. In this section, first the assumptions of fuzzy 
linear profile are described, and then the fuzzy regression model for identifying fuzzy linear profile of 
samples is explained. 

3.1.Assumptions 

Assume that the j th random sample acquired over time is demonstrated by � 𝑥𝑥𝑖𝑖′ ,𝑦𝑦𝑖𝑖𝑖𝑖�  𝑖𝑖 = 1,2, … ,𝑛𝑛   𝑗𝑗 =
1,2, … ,𝑚𝑚. If the process is in-control, the fuzzy linear profile that relates dependent variable 𝑌𝑌 to 
independent variable 𝑋𝑋′ is: 

𝑌𝑌�𝑖𝑖𝑖𝑖 = 𝐵𝐵�0 + 𝐵𝐵�1𝑋𝑋𝑖𝑖′    𝑖𝑖 = 1,2, … ,𝑛𝑛  , 𝑗𝑗 = 1,2, … ,𝑚𝑚 (4) 

In Eq. (4), it is assumed that independent variable 𝑋𝑋𝑖𝑖′ has non-fuzzy and fixed values from one sample 
to another.  In phase II profile monitoring, it is assumed that in-control values of the parameters, 
𝐵𝐵�0,𝐵𝐵�1 are either known numbers or can be estimated by means of in control historical data. 𝐵𝐵�0 and  𝐵𝐵�1 
are triangular fuzzy numbers. In our proposed method, values of independent variable (𝑋𝑋𝑖𝑖′) are coded 
in a way that the average of coded variables is zero. This will make the analysis easier, as the coding 
turns parameter estimators of profiles into mutually independent estimators (Kim et al., 2003. Coding 
is performed by Eq. (5). In Eq. (5), 𝑋𝑋� is the average of independent variable’s values. 
 
𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖′ − 𝑋𝑋�  (5) 

 
As a result, the linear regression model will be: 
 

Y�ij = A�0 + �̃�𝐴1𝑋𝑋𝑖𝑖     𝑖𝑖 = 1,2, … ,𝑛𝑛, 𝑗𝑗 = 1,2, … ,𝑚𝑚    (6) 
where  �̃�𝐴0 = 𝐵𝐵�0 + 𝐵𝐵�1𝑋𝑋� , �̃�𝐴1 = 𝐵𝐵�1.  

3.2. Determining profile of samples using  fuzzy linear regression 

The first step in our phase II profile monitoring method, is to calculate profile parameters of m random 
samples. Afterwards, a procedure should be developed in order to examine the state of the profile 
(whether it is in control or out of control).  In this paper, fuzzy regression model in (Bucklly, 2006) is 
used in order to calculate the profile of each random sample. In this method, α-cut and interval algebra 
are employed to specify fuzzy membership functions of the parameters of linear regression. The α-cut 
of the fuzzy membership function of each parameter of linear regression is assumed to be conformant 
with (1 − 𝛼𝛼)100% confidence interval of that parameter. Base on this method, the estimated value of 
the fuzzy parameters of model (6), are defined by Eq. (7) to Eq. (13). (All the parameters which are 
shown by � � � symbol are deterministic estimators, while parameters depicted by ( )�  symbol are fuzzy 
estimators.) 

3.2.1. Error variance membership function at α-level: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝜎𝜎�𝑖𝑖2� = �𝜎𝜎𝑖𝑖𝐿𝐿2 (𝛼𝛼),𝜎𝜎𝑖𝑖𝑅𝑅2 (𝛼𝛼)� = �
𝑛𝑛𝜎𝜎�𝑗𝑗

2

𝐿𝐿(𝜆𝜆)
,
𝑛𝑛𝜎𝜎�𝑗𝑗

2

𝑅𝑅(𝜆𝜆)
� , (7) 

where  𝐿𝐿(𝜆𝜆) = (1 − 𝜆𝜆)𝜒𝜒𝑅𝑅,0.005
2 + 𝜆𝜆𝑛𝑛  and  𝑅𝑅(𝜆𝜆) = (1 − 𝜆𝜆)𝜒𝜒𝐿𝐿,0.005

2 + 𝜆𝜆𝑛𝑛.   0 ≤ 𝜆𝜆 ≤ 1.  
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and  𝑙𝑙 = ∫ 𝜒𝜒2𝑅𝑅(𝜆𝜆)
0 𝑑𝑑𝑥𝑥    and  𝑟𝑟 = ∫ 𝜒𝜒2∞

𝐿𝐿(𝜆𝜆) 𝑑𝑑𝑥𝑥  𝑎𝑎𝑛𝑛𝑑𝑑   𝛼𝛼 = 𝑙𝑙 + 𝑟𝑟.  

and  𝜎𝜎�𝑖𝑖2 = �1
𝑛𝑛
�∑ �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑎𝑎�j − 𝑏𝑏�j�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖��

2
.𝑛𝑛

𝑖𝑖=1    

In the above mentioned equations, 𝜒𝜒𝑅𝑅,0.005
2  and 𝜒𝜒𝐿𝐿,0.005

2  are, respectively, points on the right side and the 
the left side of the χ2 distribution with (𝑛𝑛 − 2) degrees of freedom, which satisfy the following equation: 

𝑝𝑝 �𝑋𝑋 ≥ 𝜒𝜒𝑅𝑅,𝛼𝛼2

2 � = 𝑝𝑝 �𝑋𝑋 ≤ 𝜒𝜒𝐿𝐿,𝛼𝛼2

2 � = 𝛼𝛼
2
  (8) 

3.2.2. Membership function of intercept  at α-level: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑎𝑎�0𝑖𝑖� = �𝑎𝑎0𝑖𝑖𝐿𝐿(𝛼𝛼),𝑎𝑎0𝑖𝑖𝑅𝑅(𝛼𝛼)� = �𝑎𝑎�0𝑖𝑖 − 𝐶𝐶𝛼𝛼
2
� 𝜎𝜎�𝑗𝑗

2

(𝑛𝑛−2)
, 𝑎𝑎�0𝑖𝑖 + 𝐶𝐶𝛼𝛼

2
� 𝜎𝜎�𝑗𝑗

2

(𝑛𝑛−2)�  (9) 

where  𝑎𝑎�0𝑖𝑖 = 𝑦𝑦�𝑖𝑖 .   

In the above mentioned equations, tα
2
 is a point in the t-Student distribution with (n − 2) degrees of 

freedom, which satisfies the following equation, 
𝑝𝑝 �𝑋𝑋 ≤ 𝐶𝐶𝛼𝛼

2
� = 𝛼𝛼

2
 .  

(10) 
3.2.3. Membership function of intercept variance at α-level: 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼 �𝜎𝜎�𝑎𝑎0𝑗𝑗

2 � = �𝜎𝜎𝑎𝑎0𝑗𝑗𝐿𝐿
2 (𝛼𝛼),𝜎𝜎𝑎𝑎0𝑗𝑗𝑅𝑅

2 (𝛼𝛼)� = �𝑛𝑛𝜎𝜎�𝑖𝑖2 (𝑛𝑛 − 2)𝐿𝐿(𝜆𝜆)⁄ ,𝑛𝑛𝜎𝜎�𝑖𝑖2 (𝑛𝑛 − 2)𝑅𝑅(𝜆𝜆)⁄ � . (11) 

3.2.4. Membership function of slop at α-level: 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑎𝑎�1𝑖𝑖� = �𝑎𝑎1𝑖𝑖𝐿𝐿(𝛼𝛼),𝑎𝑎1𝑖𝑖𝑅𝑅(𝛼𝛼)� = �𝑎𝑎�1𝑖𝑖 − 𝐶𝐶𝛼𝛼
2
�𝐶𝐶1
𝐶𝐶2

,𝑎𝑎�1𝑖𝑖 + 𝐶𝐶𝛼𝛼
2
�𝐶𝐶1
𝐶𝐶2
� , (12) 

where    𝐶𝐶1 = 𝑛𝑛𝜎𝜎�2    , 𝐶𝐶2 = (𝑛𝑛 − 2)∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑛𝑛
𝑖𝑖=1  and  𝑎𝑎�1𝑖𝑖 =

∑ 𝑦𝑦𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖�𝑛𝑛
𝑖𝑖=1 ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1� . 

 

3.2.4. Membership function of slop variance at α-level: 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼 �𝜎𝜎�𝑎𝑎1𝑗𝑗
2 � = �𝜎𝜎𝑎𝑎1𝑗𝑗𝐿𝐿

2 (𝛼𝛼),𝜎𝜎𝑎𝑎1𝑗𝑗𝑅𝑅
2 (𝛼𝛼)� = �𝑛𝑛𝜎𝜎�𝑖𝑖2 𝐶𝐶2𝐿𝐿(𝜆𝜆)⁄ ,𝑛𝑛𝜎𝜎�𝑖𝑖2 𝐶𝐶2𝑅𝑅(𝜆𝜆)⁄ �. (13) 

4. Monitoring fuzzy linear profiles in phase II 

Having defined a fuzzy profile for every instance of m random samples, we need to decide on 
performance mode of the process. Is the process profile in correspondence with the under control mode 
or does ensuring quality of products depend on applying changes and new settings in the process? There 
are several statistical methods available for monitoring crisp profiles in phase II. Kim et al. (2003) 
proposed the use of EWMA control charts in order to monitor the parameters of crisp profiles. In this 
research, we extended this method to fuzzy profiles. Fuzzy Exponentially Weighted Moving Average 
�FEWMA�  � statistic is the fuzzy triangular number that is developed for this purpose. In this section, 
firstly the method of creating FEWMA�  control charts are described, and secondly, the method of analysis 
is discussed. 



 124 

4.1. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴�   fuzzy control charts 

After coding X values, every profile has 3 independent fuzzy parameters. Therefore, each of the profile 
parameters can be monitored on a separate control chart based on fuzzy EWMA statistic. 

4.1.1. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼  statistic for monitoring intercept of fuzzy linear profile 

Assuming that A�0 , A�1 and 𝜎𝜎�0 are the values of intercept, slop and standard deviation of the process 
profile in the under control mode and �𝑎𝑎�0𝑖𝑖 ,𝑎𝑎�1𝑖𝑖 ,𝜎𝜎�𝑖𝑖�   𝑗𝑗 = 1,2, … ,𝑚𝑚 are the equivalent estimator of them 
respectively. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼 statistics is defined to monitor the intercept of regression line as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼(𝑖𝑖) = 𝜃𝜃𝑍𝑍�𝑖𝑖 + (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼(𝑖𝑖−1)  
(14) 

In the above equation, 0 < θ ≤ 1 is a smoothing constant, 𝑎𝑎�0𝑖𝑖 is the estimated value of intercept from 
the jth profile and FEWMA� I(0) = 0� . The parameter θ is selected so that the control chart produces a 
particular ARL in control mode. In order to calculate and plot FEWMA�  statistics, α-cut and interval 
algebra is used. If  𝐼𝐼𝑖𝑖 and  𝑍𝑍�𝑎𝑎𝑖𝑖 are defined by Eq. (15) to Eq. (18), α-cut of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼 statistic is defined 
by Eq. (19). 

𝐼𝐼𝑖𝑖 = 𝑎𝑎�0𝑖𝑖 − �̃�𝐴0    𝑎𝑎𝑛𝑛𝑑𝑑  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝐼𝐼𝑖𝑖� = �𝐼𝐼𝐿𝐿𝑖𝑖(𝛼𝛼) , 𝐼𝐼𝑅𝑅𝑖𝑖(𝛼𝛼)�,  (15) 

where  𝐼𝐼Lj(𝛼𝛼) = 𝑎𝑎0𝑖𝑖𝐿𝐿(𝛼𝛼) − 𝑎𝑎0𝑅𝑅(𝛼𝛼) and  𝐼𝐼Rj(𝛼𝛼) = 𝑎𝑎0𝑖𝑖𝑅𝑅(𝛼𝛼) − 𝑎𝑎0𝐿𝐿(𝛼𝛼).  

and  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑎𝑎�0𝑖𝑖� = �𝑎𝑎0𝑖𝑖𝐿𝐿(𝛼𝛼),𝑎𝑎0𝑖𝑖𝑅𝑅(𝛼𝛼)� and  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑎𝑎�0) = [𝑎𝑎0𝐿𝐿(𝛼𝛼), 𝑎𝑎0𝑅𝑅(𝛼𝛼)].  

If �𝐼𝐼𝐿𝐿𝑖𝑖(𝛼𝛼) > 0 , 𝐼𝐼𝑅𝑅𝑖𝑖(𝛼𝛼) > 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼� 𝑍𝑍�𝑎𝑎𝑖𝑖� = �𝑍𝑍𝑎𝑎𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑎𝑎𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝐼𝐼𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝑅𝑅
2 (𝛼𝛼)

, 𝐼𝐼𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

� (16) 

If �𝐼𝐼𝐿𝐿𝑖𝑖(𝛼𝛼) < 0 , 𝐼𝐼𝑅𝑅𝑖𝑖(𝛼𝛼) > 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑍𝑍�𝑎𝑎𝑖𝑖� = �𝑍𝑍𝑎𝑎𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑎𝑎𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝐼𝐼𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

, 𝐼𝐼𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

� (17) 

If �𝐼𝐼𝐿𝐿𝑖𝑖(𝛼𝛼) < 0 , 𝐼𝐼𝑅𝑅𝑖𝑖(𝛼𝛼) < 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑍𝑍�𝑎𝑎𝑖𝑖� = �𝑍𝑍𝑎𝑎𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑎𝑎𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝐼𝐼𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

, 𝐼𝐼𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑎𝑎𝑗𝑗𝑅𝑅
2 (𝛼𝛼)

� 
(18) 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� I(j)� = �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴IL(j)(𝛼𝛼),𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴IR(j)(𝛼𝛼)� (19) 

where  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴IL(j)(𝛼𝛼) = 𝜃𝜃𝑍𝑍𝑎𝑎𝑖𝑖𝐿𝐿(𝛼𝛼) + (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴IL(j−1)(α)  

and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐼𝐼𝑅𝑅(𝑖𝑖)(𝛼𝛼) = 𝜃𝜃𝑍𝑍𝑎𝑎𝑖𝑖𝑅𝑅(𝛼𝛼)  +  (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐼𝐼𝑅𝑅(𝑖𝑖−1)(𝛼𝛼).  

The control chart would be out of control if 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� I(j) > ℎ�𝐼𝐼 or 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� I(j) < −ℎ�𝐼𝐼 holds. ℎ�𝐼𝐼 (the 
control limit of the chart) is a fuzzy triangular number and is defined as follows: 

ℎ�𝐼𝐼 = 𝜎𝜎�02𝐿𝐿𝐼𝐼�𝜃𝜃 𝑛𝑛(2 − 𝜃𝜃)⁄   (20) 

Parameters θ , L should be selected for the result to be in a specific in-control ARL. 

4.1.2. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝑆𝑆  statistic for monitoring slop of fuzzy linear profile  

FEWMA� S statistic, which is being used to monitor the slope of the regression line, is defined similar to 
FEWMA� I by Eq. (21) to Eq. (25). 
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�̃�𝑆𝑖𝑖 = 𝑎𝑎�1𝑖𝑖 − �̃�𝐴1  , 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝑆𝑖𝑖� = �𝑆𝑆𝐿𝐿𝑖𝑖(𝛼𝛼) , 𝑆𝑆𝑅𝑅𝑖𝑖(𝛼𝛼)�,  (21) 

where 𝑆𝑆𝐿𝐿𝑖𝑖(𝛼𝛼) = 𝑎𝑎1𝑖𝑖𝐿𝐿(𝛼𝛼) − 𝑎𝑎1𝑅𝑅(𝛼𝛼) and  𝑆𝑆𝑅𝑅𝑖𝑖(𝛼𝛼) = 𝑎𝑎1𝑖𝑖𝑅𝑅(𝛼𝛼) − 𝑎𝑎1𝐿𝐿(𝛼𝛼).  

and  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑎𝑎�1𝑖𝑖� = �𝑎𝑎1𝑖𝑖𝐿𝐿(𝛼𝛼), 𝑎𝑎1𝑖𝑖𝑅𝑅(𝛼𝛼)� and  𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝑎𝑎�1) = [𝑎𝑎1𝐿𝐿(𝛼𝛼),𝑎𝑎1𝑅𝑅(𝛼𝛼)].  

If �𝑆𝑆𝐿𝐿𝑖𝑖(𝛼𝛼) > 0 , 𝑆𝑆𝑅𝑅𝑖𝑖(𝛼𝛼) > 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼� 𝑍𝑍�𝑏𝑏𝑖𝑖� = �𝑍𝑍𝑏𝑏𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑏𝑏𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝑆𝑆𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝑅𝑅
2 (𝛼𝛼)

, 𝑆𝑆𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

� (22) 

If �𝑆𝑆𝐿𝐿𝑖𝑖(𝛼𝛼) < 0 , 𝑆𝑆𝑅𝑅𝑖𝑖(𝛼𝛼) > 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑍𝑍�𝑏𝑏𝑖𝑖� = �𝑍𝑍𝑏𝑏𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑏𝑏𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝑆𝑆𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

, 𝑆𝑆𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

� (23) 

If �𝑆𝑆𝐿𝐿𝑖𝑖(𝛼𝛼) < 0 , 𝑆𝑆𝑅𝑅𝑖𝑖(𝛼𝛼) < 0� then 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝑍𝑍�𝑖𝑖� = �𝑍𝑍𝑏𝑏𝑖𝑖𝐿𝐿(𝛼𝛼),𝑍𝑍𝑏𝑏𝑖𝑖𝑅𝑅(𝛼𝛼)� = � 𝑆𝑆𝐿𝐿𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝐿𝐿
2 (𝛼𝛼)

, 𝑆𝑆𝑅𝑅𝑗𝑗(𝛼𝛼)

�𝜎𝜎𝑏𝑏𝑗𝑗𝑅𝑅
2 (𝛼𝛼)

� 
(24) 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝑆𝑆(𝑖𝑖)� = �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝐿𝐿(𝑖𝑖)(𝛼𝛼),𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝑅𝑅(𝑖𝑖)(𝛼𝛼)�  (25) 

where  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝐿𝐿(𝑖𝑖)(𝛼𝛼) = 𝜃𝜃𝑍𝑍𝑏𝑏𝑖𝑖𝐿𝐿(𝛼𝛼) + (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝐿𝐿(𝑖𝑖−1)(𝛼𝛼)  

and  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝑅𝑅(𝑖𝑖)(𝛼𝛼) = 𝜃𝜃𝑍𝑍𝑏𝑏𝑖𝑖𝑅𝑅(𝛼𝛼) + (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝑆𝑆𝑅𝑅(𝑖𝑖−1)(𝛼𝛼)  
 

The upper and lower control limit of the control chart based on FEWMA� S are ±ℎ�𝑆𝑆 . ℎ�𝑆𝑆  are fuzzy 
triangular numbers and they are defined as follows: 
 

ℎ�𝑆𝑆 = 𝜎𝜎�02𝐿𝐿𝑆𝑆�𝜃𝜃 𝑛𝑛(2 − 𝜃𝜃)⁄  , (26) 
 

where LS > 0 is chosen to give a specified in-control ARL. 

4.1.3. 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸(𝑖𝑖) statistic for monitoring error variance 

In order to monitor the error variance of the profile, a fuzzy statistic is defined as in Eq. (27): 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸(𝑖𝑖) = 𝐹𝐹𝑎𝑎𝑥𝑥 �𝜃𝜃 �𝐿𝐿𝑛𝑛�𝜎𝜎�𝑖𝑖2�� +    (1 − 𝜃𝜃)𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸(𝑖𝑖−1), 𝐿𝐿𝑛𝑛𝜎𝜎�02� (27) 

where  𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸(0) =  𝐿𝐿𝑛𝑛𝜎𝜎�02. Upper control limit for monitoring an increase in the variance of the 
process is defined based on the following equation: 

𝑈𝑈𝐶𝐶𝐿𝐿� = 𝐿𝐿𝑛𝑛𝜎𝜎�02 + 𝑙𝑙𝐸𝐸(𝜃𝜃 (2 − 𝜃𝜃)⁄ )
1
2 , (28) 

where 𝑙𝑙𝐸𝐸 = � 2
𝑛𝑛−2

+ 2
(𝑛𝑛−2)2

+ 4
3(𝑛𝑛−2)3

− 16
15(𝑛𝑛−2)5

� × 𝐿𝐿𝐸𝐸 . 
 

In these equations, parameters 𝐿𝐿𝐸𝐸 and θ are chosen in a way that a specific in-control ARL is produced 
and 𝜎𝜎�02 is the in-control value of 𝜎𝜎�2. By means of the method of fuzzy ranking described in the next 
section, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸  and upper control limit of the control chart can be calculated. 

4.2. Triangular  fuzzy  numbers’ ranking 

In order to be able to assess the state of the profile (whether it is in control or not) and also for calculating 
FEWMA� E(j), triangular fuzzy numbers should be compared and ranked. Many methods have been 
proposed for ranking triangular fuzzy numbers, and in this paper, Bucklly’s method (2006) is selected 
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because of its simplicity and efficiency. Bucklly (2006) defined ≤ 0F

1 between the fuzzy numbers M�  and 
N� as follows: 

𝜐𝜐�𝐹𝐹� ≤  𝑁𝑁�� = 𝑚𝑚𝑎𝑎𝑥𝑥 �𝑚𝑚𝑖𝑖𝑛𝑛 �𝐹𝐹�(𝑥𝑥),𝑁𝑁�(𝑦𝑦)�  | 𝑥𝑥 ≤ 𝑦𝑦� , (29) 

which measures how much M�  is less than or equal to N�. N� is less than M� , if υ�N� ≤  M�� = 1 but 
υ�M� ≤  N�� < 𝜂𝜂, where η is some fixed fraction in [0,1] and M� ≈  N� (M�  is approximately equal to N� ) 
when both M� <  N� and M� >  N� are false. 
 
When control chart is drawn, we need to decide on the status of the process profile. The test value �Z�� 
should be compared with control limits �UCL� , LCL� �. Each time the comparison is done, in fact, the 
statistical hypothesis of  H0: “the profile is in control” is tested against the hypothesis H1: “the profile is 
out of control”. 
 
Our final decision (reject, Do not reject) depends on the relationship between Z� and the UCL� �LCL� �. In 
comparing Z� and the UCL� , the result is: Z� > UCL�  ( reject 𝐻𝐻0), or Z� ≈ UCL�  ( no decision) , or Z� < UCL�  ( 
Do not reject). Similar results are expected when comparing Z� and the LCL� . The final decision based on 
the result of comparisons between Z� and UCL� �LCL� �, may be one of the following: 
 

1) The final decision is “reject  𝐻𝐻0”, if  𝐻𝐻0 is rejected based on at least one of the comparisons.  
2) The final decision is “Do not reject  𝐻𝐻0”, if the result of the both comparisons is “Do not reject”. 
3) The final decision is “no decision”, if at least one of the comparison results is “no decision”. 

 
The interesting aspect of this fuzzy hypothesis testing is that, the result can be “no decision”. This is 
because of the fuzzy numbers, which incorporate all the uncertainty in the confidence intervals, that 
make M� ≈  N� possible for two different fuzzy numbers M�  and N�. 

5. Numerical Example 

For the purpose of illustrating the application of FEWMA�  charts in phase II profile monitoring, the 
simulated data set in (Kang & Albin, 2000) is used (Table 1). This set includes 20 in-control simulated 
profiles and 9 out of control ones, by increasing the slope of the regression line from 2 to 2.4. Analysis 
is carried out assuming that the parameters of the in-control fuzzy profile meet Eq. (30) to Eq. (32). 
Smoothing coefficient is also set to θ = 0.2 and 𝐿𝐿𝑆𝑆 = 𝐿𝐿𝐼𝐼 = 3. The results of the analysis based on 
FEWMA�  control charts are depicted in Figs. (4-6). 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴0� = [12.95 + 0.05𝛼𝛼, 13.05 − 0.05𝛼𝛼]  (30) 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼��̃�𝐴1� = [1.95 + 0.05𝛼𝛼, 2.05 − 0.05𝛼𝛼]  (31) 
𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼(𝜎𝜎�02) = [0.7 + 0.3𝛼𝛼, 1.3 − 0.3𝛼𝛼]  (32) 

Calculations and drawing graphs of fuzzy profile parameters and also fuzzy statistics of control charts 
are done by means of MATLAB software. Figs. (2-4) show the plots of triangular fuzzy numbers for 
intercept, slope, and error variance of profiles 1 to 5. In these figures, 𝑃𝑃𝑖𝑖 𝑖𝑖 = 1,2, … ,5  shows profile 
number i. In Figs. (4-6), red triangular fuzzy numbers show the control limits. Based on Fig. 5, it can be 
inferred that in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐼𝐼 no out of control signal is observed. In Fig. 6, it is clear that in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝑆𝑆 
control chart, there are out of control signals for profiles 27 and up. Fig. 7 shows that there is no out of 
control signal in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴� 𝐸𝐸 plot. The triple control charts show that it is not possible to make decision 
based on available information from sample number 22 up to 26. 

1. means “ less than or equal” 
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Table 1 
Data Set and results of analysis 

     Final decision 
Row    -3    -1      1     3 Slop     Intercept Error variance Final decision 
1 6.818 12.644 12.919 19.402 Do not reject Do not reject Do not reject Do not reject 
2 7.723 11.33 16.987 20.322 Do not reject Do not reject Do not reject Do not reject 
3 5.017 10.612 13.934 20.381 Do not reject Do not reject Do not reject Do not reject 
4 7.433 10.399 16.386 17.029 Do not reject Do not reject Do not reject Do not reject 
5 6.834 11.428 16.192 19.11 Do not reject Do not reject Do not reject Do not reject 
6 7.068 12.108 14.919 19.478 Do not reject Do not reject Do not reject Do not reject 
7 8.209 11.732 14.901 19.149 Do not reject Do not reject Do not reject Do not reject 
8 8.515 10.986 15.451 18.639 Do not reject Do not reject Do not reject Do not reject 
9 8.005 9.51 15.926 18.891 Do not reject Do not reject Do not reject Do not reject 
10 6.705 11.311 14.496 17.244 Do not reject Do not reject Do not reject Do not reject 
11 6.327 9.925 14.647 20.649 Do not reject Do not reject Do not reject Do not reject 
12 6.057 9.075 14.573 18.61 Do not reject Do not reject Do not reject Do not reject 
13 9.106 10.037 17.018 18.398 Do not reject Do not reject Do not reject Do not reject 
14 7.616 11.159 15.734 18.687 Do not reject Do not reject Do not reject Do not reject 
15 6.355 10.176 13.908 19.772 Do not reject Do not reject Do not reject Do not reject 
16 6.967 12.525 14.753 17.461 Do not reject Do not reject Do not reject Do not reject 
17 9.686 11.626 15.456 17.735 Do not reject Do not reject Do not reject Do not reject 
18 5.266 12.292 16.461 18.732 Do not reject Do not reject Do not reject Do not reject 
19 7.014 9.93 15.485 18.634 Do not reject Do not reject Do not reject Do not reject 
20 5.912 10.017 13.494 17.924 Do not reject No decision Do not reject No decision 
21 6.313 10.788 14.682 20.432 Do not reject Do not reject Do not reject Do not reject 
22 7.156 10.523 15.29 21.125 Do not reject No decision Do not reject No decision 
23 5.498 9.941 15.313 20.957 No decision Do not reject Do not reject No decision 
24 5.675 10.688 15.865 18.78 No decision Do not reject Do not reject No decision 
25 5.002 9.833 16.039 20.619 No decision Do not reject Do not reject No decision 
26 4.009 10.267 17.464 19.556 No decision Do not reject Do not reject No decision 
27 4.326 10.245 16.378 21.058 Reject Do not reject Do not reject Reject 
28 5.488 11.946 16.957 20.617 Reject Do not reject Do not reject Reject 
29 4.361 11.675 16.583 20.282 Reject Do not reject Do not reject Reject 

 

   
Fig. 2. Triangular fuzzy numbers of 
the intercepts of profiles 1 to 5 

Fig. 3. Triangular fuzzy numbers of 
the slopes of profiles 1 to 5 

Fig. 4. Triangular fuzzy numbers of 
the variances of profiles 1 to 5 

   
Fig. 5. FEWMA control chart for 
intercepts 

Fig. 6. FEWMA control chart for 
slopes 

Fig. 7. FEWMA control chart for 
variance 

From sample number 27 to the end, the hypothesis of being in control, is rejected. The almost long 
sequence of “no decision” result, is a warning signal about the necessity of more checking. So from 
sample 22 to the end, there is a warning of probable exit of slop control chart from in control status 
which requires more accurate check. It can be argued that data analysis based on the proposed fuzzy 
quality control charts lead to better and more accurate results, because of its ability of covering the 
uncertainty of parameter estimation. 
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6. Conclusion and Further Research 

Due to the fact that in many real-world problems, data are vague and uncertain, the assumption of crisp 
profiles for processes is not realistic. Fuzzy set theory is an efficient tool to address this shortcoming. In 
this paper, a new method of identifying small changes of process profile has been proposed in which 
profile parameters were assumed fuzzy and vague. For this purpose, we have developed Fuzzy EWMA 
control charts and discussed the efficiency of proposed method by solving an example. The results have 
shown that this method was highly efficient in discovering assignable causes in profiles. For further 
research, fuzzy profiles in more complex structures, e.g. polynomial, nonlinear, extended linear, etc., in 
phase I and phase II are to be addressed 
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