# A novel approach for risk evaluation and risk response planning in a geothermal drilling project using DEMATEL and fuzzy ANP 


#### Abstract

Alireza Ghassemi ${ }^{\text {a }}$ and Ayoub Darvishpour ${ }^{\text {a }}$ ${ }^{a}$ School of Industrial and Systems Engineering, College of Engineering, University of Tehran, Iran ${ }^{b}$ Department of Mining Engineering, Isfahan University of Technology, Iran

\section*{CHRONICLE <br> ABSTRACT}

Article history: Received August 16, 2017 Received in revised format: August 20, 2017 Accepted October 18, 2017 Available online October 19, 2017 Keywords: Risk response planning Risk evaluation Project risk management Geothermal drilling project Fuzzy MCDM

Risk response planning is a widely concerned issue. Project managers usually struggle to control different kinds of risks. In project risk management, after evaluating risks, the final process relates to choosing desirable responses to the risks. In this paper, a comprehensive framework confronts the issue in three main phases. In the first phase, all the risks, responses and their relations in a geothermal drilling project are detected. These relations imply there are inner dependent and outer dependent relations. In the second phase, ANP, DEMATEL and fuzzy theory play important roles in weighting risks and responses. In the third phase, to enable a more realistic solution, a zero-one integer programming reflects a budget constraint and other required constraints. After obtaining the optimal responses, the effect of budget is analyzed. In addition, the influences of risks on each other are discussed more deeply. Collectively, this study offers a new perspective on how to handle project risks and choose their responses. © 2018 Growing Science Ltd. All rights reserved.


## 1. Introduction

Success of projects significantly depends on effective project risk management through risk response planning (Mousavi et al,. 2011). Actually, a project as a temporary endeavor to create unique deliverable item is faced with various unexpected barriers (Zhang \& Fan, 2014). Multiple issues, such as complex technical design, different stakeholders, poor management, various resources, and changing economic/political environments may initiate uncertain conditions and events for projects that their occurrences affect project performance criteria negatively (Dey, 2002; Fan et al., 2008; Sadjadi \& SadiNezhad, 2017; Project Management Institute, 2013). Thus, project risk management has become a prominent topic for practitioners and researchers.

Project risk management process involves three major steps: identifying, assessing and response planning. In the first step, risks are discovered and recorded. Then, they are evaluated according on

[^0]their main characteristics like likelihood and impact of risky events (Zhang \& Fan, 2014; Nagar \& Raj, 2012). Risk evaluation is a challenging job under vast uncertainty involved in the project (Shariati, 2014). In order to prevent undesirable occurrences, the decision makers select and implement adequate actions as risk responses (Zhang \& Fan, 2014). In addition, only an organized manner from the project planning phase through the end of the project is able to resolve concerns about risks (Ebrahimnejad et al., 2012). In a sense, project risk identification and assessment are useless without developing, selecting and implementing responses. The main concern is how to select the most favorable response actions among a pool of various response plans (Gonen, 2012).

According to Ward and Chapman (2003), responses are categorized into four types: avoidance, transference (to the third party), mitigation and acceptance. Except avoidance, the other types of response strategies are costly and require money to be implemented. In contrast, the allocated budget to risk management is limited. Hence, decision makers must choose the proper risks to be handled and the optimal responses to be planned that will not cross budget limit (Gonen, 2012).

In practice, the interactions and synergies between risk responses play important roles in the risk response planning. However, most studies have not paid attention to this issue (Soofifard \& Bafruei, 2016). Concerning distinct characteristics of risks in risk management, earlier attempts to deal with this problem have usually assumed the risks independently. But, project risks often depend on each other and reciprocally affect (Zhang, 2016; Ackermann et al., 2007; Kwan \& Leung, 2011).

Due to difficulty and various aspects of impacts in risk management structure, application of multicriteria decision making to catch the best strategies and move forward into project success is helpful. The structure establishes a network and should be handled by Analytical Network Process (ANP) approach. Also, interdependencies between factors (risks or responses) lead us to utilize related tools such as Decision-making trial and evaluation laboratory (DEMATEL). Further, because of inaccurate expert opinion, fuzzy concepts could improve the transparency in data collection (Soltannezhad Dizaji et al., 2018).

The aim of this paper is to construct a model for responding to a geothermal drilling project risks. The model includes three phases: in the first phases, risks and their responses will be evaluated in a network structure, and the second phase will choose the best actions based on response weights achieved from the previous phase.

In the following, related papers are investigated to analyze gaps among previous findings of the authors. The next section will provide comprehensive descriptions about applying decision making methods, then the mathematical model will be introduced. We examine a real case study in the fifth section to verify the model performance. The paper finishes with a conclusion and some suggestions for further researches.

## 2. Related Literature

Since four decades ago, risk management studies have tried to understand how to respond the risks threatening projects. Responding to project risks has been addressed by Chapman (1979) for the first time. After introducing a systematic approach to analyzing, evaluating and responding to risks by Chapman (1979), researchers utilized response strategies by qualitative methods, without using mathematical models. However, in recent years, new investigations used mathematical models for solving the problem. In Table 1, most comprehensive and important studies are summarized.

Based on the number of criteria, three main groups of papers are more frequent: (I:) cost-based approaches, (II:) models concerning project performance criteria (cost, time, quality and etc.) and (III:) qualitative methods which generally do not tackle the problem from criteria view, or they reflect unlimited number of criteria.

Table 1
Literature Review

| Authors | Main focus | Criteria |
| :--- | :--- | :--- | :--- |
| (Ben-David et <br> al., 2002) | Representation of a mathematical model which allows the overlapping effects of <br> multiple response actions and considers the impacts of secondary risk events | Cost |
| (Kujawski, | Viewing the issue as a portfolio theory problem and generating efficient set of <br> responses by trade-off between project cost vs. probability of success | Cost |
| 2002) | Proposing a conceptual framework that defines the quantitative relationship <br> between risk-handling strategy (prevention and adaptation) and relevant project <br> characteristics (e.g., project size, slack, or technical complexity) | Cost |
| (Fan et al., 2008) |  |  |

In the first group, models are emphasizing on minimizing cost or maximizing profit or both. These models are implementing the actions to lessen the total cost of project risks. Costs include the deterministic costs and the expected costs (Raz, 2001), that after applying response actions, the deterministic costs decrease and the expected costs increase. Project costs could prevent the occurrence of a risk and cut its probability, or adapt with the risk and diminish its impact, or in the third application, reduce the probability and the impact simultaneously by a combined strategy (Fan et al., 2008). If the objective functions do not focus on the cost or profit, budget constraint could be useful (Kayis et al., 2007).

In the second group, there are some models which lean on the performance criteria of the project. These criteria could place beside each other to form a multi-objective problem, then by weighting each objective, efficient solutions set will be achieved (Rezaee Nik et al., 2011). Although, the performance criteria may not be seen in objectives and be considered in constraints instead (Zhang \& Fan, 2014).

The third group is models which do not have limitation in number of criteria. In addition to the mentioned criteria, customer satisfaction and other factors are suggested in the (Kuchta \& Skorupka, 2014) model as indexed variables which each index belongs to a criterion.

Previous papers have not considered interdependencies between risks. Another major gap is about involving every four types of responses. Also, secondary risks have not attracted much attention in earlier studies. In this paper, we develop an integrated model to fill these gaps.

## 3. Preliminaries

### 3.1. Fuzzy PCM

Decision makers always deal with qualitative evaluations between factors. The importance of factors should be compared with each other by multi criteria decision making techniques. The primary tool for interpreting data is pairwise comparison matrix (PCM). A PCM is formed to compare a pair or more pairs of factors with respect to a reference factor. Meanwhile, obtained data from decision makers are often uncertain, subjective and imprecise. This challenge creates a complex condition in decision making process which leads managers to handle uncertain data by means of fuzzy theory (Deng, 1999). Fuzzy theory concept confronts subjectivity in judgements by converting linguistic data to fuzzy numbers (triangular, trapezoidal and etc.). In this paper, the conversion scale for converting linguistic judgments to triangular fuzzy numbers (TFN) is prepared for six assessment grades, shown in Table 2.

Table 2
Triangular fuzzy conversion scale (Chang 1996)

| Linguistic scale | Triangular fuzzy conversion scale | Triangular fuzzy reciprocal scale |
| :--- | :--- | :--- |
| Just Equal | $(1,1,1)$ | $(1,1,1)$ |
| Equally Important | $(2 / 3,1,2)$ | $(1 / 2,1,3 / 2)$ |
| Weakly More Important | $(1 / 2,2 / 3,1)$ | $(1,3 / 2,2)$ |
| Moderately More Important | $(2 / 5,1 / 2,2 / 3)$ | $(3 / 2,2,5 / 2)$ |
| Strongly More Important | $(1 / 3,2 / 5,1 / 2)$ | $(2,5 / 2,3)$ |
| Extremely More Important | $(2 / 7,1 / 3,2 / 5)$ | $(5 / 2,3,7 / 2)$ |

After performing comparisons and capturing data, TFNs are prepared in the square and symmetrical fuzzy comparison matrices as follows:

$$
\tilde{A}=\left(\tilde{a}_{i j}\right)_{n \times n}=\left[\begin{array}{cccc}
(1,1,1) & \left(l_{12}, m_{12}, u_{12}\right) & \cdots & \left(l_{1 n}, m_{1 n}, u_{1 n}\right)  \tag{1}\\
\left(l_{21}, m_{21}, u_{21}\right) & (1,1,1) & \cdots & \left(l_{2 n}, m_{2 n}, u_{2 n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\left(l_{n 1}, m_{n 1}, u_{n 1}\right) & \left(l_{n 2}, m_{n 2}, u_{n 2}\right) & \cdots & (1,1,1)
\end{array}\right]
$$

where:

$$
\begin{equation*}
\tilde{a}_{i j}=\left(l_{i j}, m_{i j}, u_{i j}\right)=\tilde{a}_{j i}^{-1}=\left(\frac{1}{u_{j i}}, \frac{1}{m_{j i}}, \frac{1}{l_{j i}}\right) \quad \forall i, j \tag{2}
\end{equation*}
$$

stands for the importance of the item $i$ to the item $j$ with respect to an objective. For instance, $\tilde{a}_{i j}=\left(l_{i j}, m_{i j}, u_{i j}\right)=(2 / 5,1 / 2,2 / 3)$ means item $i$ is Moderately More Important than item $j$ with respect to their reference factor. At this stage, the weights of each factor with respect to the upper level are estimated (local weights). Therefore, the (Calabrese et al., 2013) procedure is adapted for single decision maker. Accordingly, checking the consistency has to be done. Defuzzification equation for adjusting crisp entries in comparison matrices is as follows (Wang \& Elhag, 2007);

$$
\begin{equation*}
a_{i j}\left(\tilde{a}_{i j}\right)=\frac{l_{i j}+m_{i j}+u_{i j}}{3} \quad \forall i \tag{3}
\end{equation*}
$$

The largest eigenvalue of the comparison matrix is denoted as $\lambda_{\text {max }}$. Also, $n$ is the dimension of the PCM and $\operatorname{RI}(n)$ is a random index depending on $n$ as shown in Table 3. So the consistency index ( $C I)$ and the consistency ratio ( $C R$ ) are reflecting by next formulas:

$$
\begin{align*}
& C I=\frac{\lambda_{\max }-n}{n-1}  \tag{4}\\
& C R=\frac{C I}{R I(n)} \tag{5}
\end{align*}
$$

If $C R \leq 0.1$, the consistency of the matrix is satisfactory. Otherwise, the decision maker should try to revise matrix until the consistency is reached.

Table 3
Consistency indices for a randomly generated matrix (Saaty 1990)

| $n$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R I(n)$ | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |

After obtaining consistency, the relative row sum for PCM is calculated:

$$
\begin{equation*}
\widetilde{R S}_{i}=\sum_{j=1}^{n} \tilde{a}_{i j}=\left(\sum_{j=1}^{n} l_{i j}, \sum_{j=1}^{n} m_{i j}, \sum_{j=1}^{n} u_{i j}\right) \quad \forall i \tag{6}
\end{equation*}
$$

Then, the normalized row sum $\widetilde{S}_{i}$ is possible to compute (Wang \& Elhag 2006):

$$
\begin{equation*}
\widetilde{S}_{i}=\frac{\widetilde{R S}_{i}}{\sum_{j=1}^{n} \widetilde{R S}_{j}}=\left(\frac{\sum_{j=1}^{n} l_{i j}}{\sum_{j=1}^{n} l_{i j}+\sum_{k=1, k \neq i}^{n} \Sigma_{j=1}^{n} u_{k j}}, \frac{\sum_{j=1}^{n} m_{i j}}{\sum_{k=1, k \neq i}^{n} \sum_{j=1}^{n} m_{k j}}, \frac{\sum_{j=1}^{n} u_{i j}}{\sum_{j=1}^{n} u_{i j}+\sum_{k=1, k \neq i}^{n} \Sigma_{j=1}^{n} l_{k j}}\right)=\left(l_{i}, m_{i}, u_{i}\right) \tag{7}
\end{equation*}
$$

Ultimately, by converting fuzzy weights to the crisp weights, the local weights are indicated by the following expressions (Calabrese et al., 2013):

$$
\begin{align*}
& S_{i}\left(\tilde{S}_{i}\right)=\frac{l_{i}+m_{i}+u_{i}}{3} \quad \forall i  \tag{8}\\
& w_{i}=\frac{S_{i}}{\sum_{i=1}^{n} S_{i}} \quad \forall i \tag{9}
\end{align*}
$$

### 3.2. DEMATEL

DEMATEL was introduced in 1972 for the first time in order to quantitative processing of people's opinions. This method is able to identify the interdependencies between the factors of the same level in a decision making network structure, using cause-and-effect relations between the factors (Wu \& Tsai, 2011; Durán et al., 2018).
First, the decision maker assigns an integer score rating in range [0,4] to address the direct influence of factor $i$ on factor $j$, which is denoted by $b_{i j}$. Number 0 represents "no influence" and number 4 represents "very high influence". Respectively, 1,2 and 3 represent "low influence", "medium influence" and "high influence" (Yang et al., 2008). The initial influence matrix $B$ is stated in the next equation (Naturally, all principal diagonal entries are equal to zero):

$$
B=\left[b_{i j}\right]_{m \times m}=\left\{\begin{array}{lllll}
0 & \cdots & b_{12} & \cdots & b_{1 m}  \tag{10}\\
b_{21} & \cdots & 0 & \cdots & b_{2 m} \\
\vdots & & \vdots & & \vdots \\
b_{m 1} & \cdots & b_{m 2} & \cdots & 0
\end{array}\right\}
$$

After normalizing matrix $B$ by following equations, the initial direct influence matrix $M$ is obtained:

$$
\begin{align*}
& M=k . B  \tag{11}\\
& k=\operatorname{Min}\left(\frac{1}{\max _{1 \leq i \leq m} \sum_{j=1}^{m} b_{i j}}, \frac{1}{\max _{1 \leq j \leq m} \sum_{i=1}^{m} b_{i j}}\right) \tag{12}
\end{align*}
$$

The total-influence matrix $T$ captures every direct/indirect influence between factors:

$$
\begin{align*}
& T=M+M^{2}+M^{3}+\ldots=\sum_{i=1}^{\infty} M^{i}=M(I-M)^{-1}  \tag{13}\\
& T=\left[t_{i j}\right]_{m \times m} \tag{14}
\end{align*}
$$

The sum of factor $i$ effects on the other factors, and also the sum of effects that factor $j$ receives from the other factors are denoted by $D_{i}$ and $R_{j}$ :

$$
\begin{align*}
D_{i} & =\sum_{j=1}^{m} t_{i j}  \tag{15}\\
R_{j} & =\sum_{i=1}^{m} t_{i j} \tag{16}
\end{align*} \forall i
$$

For computing local weights, we used (Büyüközkan \& Öztürkcan 2010) approach:

$$
\begin{equation*}
w_{i j}=\frac{t_{i j}}{\sum_{k=1}^{m} t_{k j}} \quad \forall i, j \tag{17}
\end{equation*}
$$

### 3.3. Limit Supermatrix

According to ANP, once local priorities are determined, the global priorities have to be measured. By entering local priority vectors into the specific columns of a larger matrix, a supermatrix is formed. As below, a supermatrix contains $N^{*} N$ segments which each segment represents a relationship between two clusters of factors. I denote each cluster by $C_{k}, k=1, \ldots, \mathrm{~N}$ that cluster $k$ contains $m_{k}$ factors. The obtained local weight vectors are placed in the proper locations. The effect of the $k$ th cluster on the $j$ th cluster ( $m_{k}=l$ and $m_{j}=u$ ) by means of local weights is as follows:

$$
W_{k j}=\left[\begin{array}{cccc}
w_{k l, \mathrm{j} 1} & w_{k 1, \mathrm{j} 2} & \cdots & w_{k l, \mathrm{ju}}  \tag{18}\\
w_{k 2, \mathrm{j} 1} & w_{k 2, \mathrm{j} 2} & \cdots & w_{k 2, \mathrm{ju}} \\
\vdots & \vdots & \vdots & \vdots \\
w_{k l, \mathrm{j} 1} & w_{k l, \mathrm{j} 2} & \cdots & w_{k l, \mathrm{ju}}
\end{array}\right]
$$

For instance, $w_{k 3, j 4}$ shows the normalized weight of $3^{\text {rd }}$ factor of the cluster $k$ respect to $4^{\text {th }}$ factor of the cluster $j$. Thus, the supermatrix is formed (Chang et al., 2007):

$$
W=\left[\begin{array}{lllll}
W_{11} & \cdots & W_{1 j} & \cdots & W_{1 N}  \tag{19}\\
\vdots & & \vdots & & \vdots \\
W_{k 1} & \cdots & W_{k j} & \cdots & W_{k N} \\
\vdots & & \vdots & & \\
W_{N 1} & \cdots & W_{N j} & \cdots & W_{N N}
\end{array}\right]
$$

As we know, the sum of entries in each local weight vector is equal one. Consequently, bringing them to the supermatrix may make the sum of each column bigger than one. This means the supermatrix is unweighted and two factors from two different clusters were not compared rationally with respect to another particular factor. Saaty and Vargas (2013) suggest another matrix labeled cluster matrix in order to be multiplied in the supermatrix entries. The new matrix shows the normalized weights associated with clusters (not factors):

$$
C C=\left[\begin{array}{lllll}
C_{11} & \cdots & C_{1 j} & \cdots & C_{1 N}  \tag{20}\\
\vdots & & \vdots & & \vdots \\
C_{k 1} & \cdots & C_{k j} & \cdots & C_{k N} \\
\vdots & & \vdots & & \\
C_{N 1} & \cdots & C_{N j} & \cdots & C_{N N}
\end{array}\right]
$$

where $C_{k j}$ is the weight of cluster $k$ respect to cluster $j$. After multiplying every single entries of $W_{k j}$ in $C_{k j}$, the weighted supermatrix will be achieved. To reflect indirect effects of the factors on each other, the supermatrix raised to the infinite power in order to the convergence of weights take place. The resulted supermatrix is called the limit supermatrix (Saaty, 1990, 1996). Each column at the limit supermatrix consists of the global weights respect to corresponding factor which reveal whole direct and indirect relations between factors.

## 4. Proposed Framework

### 4.1. Network structure of the problem

Once project risks are identified, their response strategies need to be discovered. Meanwhile, a pool of potential actions is available and decision makers choose the best ones which maximize the utility function, subject to the constraints.


Fig. 1. Nonlinear network structure of the problem

Note that responses to a particular risk could decrease/increase the severity of the other risks, too. In addition, if actions do not be performed correctly against risks, meeting the desirable performance of the project would be problematic. Moreover, there are some interdependencies between risks which make the problem more complicated.

### 4.2. Mathematical Model Formulation

Obtained weights from ANP will be put in the following mathematical programming model:

$$
\begin{equation*}
\max f=\sum_{j \in J} v_{j} x_{j} \tag{21}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \sum_{j \in J}\left(a c_{j}+p_{j}^{\prime \prime} c_{j}^{\prime \prime}\right) x_{j}+\sum_{i \in I} \sum_{j \in J} p_{i j}^{\prime} c_{i j}^{\prime} x_{j}+\sum_{i \in I} p_{i} r c_{i}\left(1-z_{i}\right) \leq b u d  \tag{22}\\
& \sum_{j \in J_{i}} x_{j} \leq M z_{i} \quad \forall i \in I  \tag{23}\\
& \sum_{j \in J_{i}} x_{j} \geq z_{i} \quad \forall i \in I  \tag{24}\\
& x_{j} \in\{0,1\} \quad \forall j \in J \quad \text { and } \quad z_{i} \in\{0,1\} \quad \forall i \in I \tag{25}
\end{align*}
$$

In the above model, $I$ is the set of risks threatening the project, $J$ is the set of corresponding response actions and $J_{i}$ s are the sets of actions responding risk event $i$. Therefore, $x_{j}$ is a binary decision variable which is equal to one, if action $j$ is selected; otherwise, it is equal to zero. $v_{j}$ is the value of action $j$ which is obtained from the limit supermatrix in the previous section. $p_{i}$ and $r c_{i}$ are probability and cost of risk event $i$, respectively. The cost of implementing action $j$ is denoted by $a c_{j}$. Also, $p_{i j}^{\prime}$ and $c_{i j}^{\prime}$ are the reduced probability and cost of risk $i$ after implementing action $j$, respectively. $p_{j}^{\prime \prime}$ and $c_{j}^{\prime \prime}$ are probability and cost of secondary risks which consequently may happen after implementing action $j$. If risk $i$ receives at least one response, then $z_{i}$ as an auxiliary decision variable is equal to one; otherwise, it is equal to zero. $M$ is a parameter that is chosen sufficiently large to simplify modelling. bud is the reserved budget, which provides support only for responding to risks. The suggested model is a zero-one integer programming that take into account a budget constraint.

### 4.3. Proposed process for risk evaluation and response planning

The decision-making framework consists of three main phases. In the first phase, all risks and responses are identified and the corresponding structure (linear or non-linear) is conducted. In the second phase, the relations between all elements are investigated and their global scores are adjusted. In the last phase, the capability of handling risks based upon resource budget is surveyed. The whole process is shown in Fig. 2.

If the responses do not satisfy managers, then the structure would be revised and solving the problem continues until the most appropriate responses be achieved.


Fig. 2. The flow diagram of the proposed framework

## 5. An Empirical Study

Geothermal energy is the heat from the Earth. It's clean and green. To access the reservoir of geothermal energy, wells are drilled into underground. They often go down in the hundreds of meters. This is a complicated process, since it deals with breaking the ground and removing the rock extracts from it. Accessing adequate resource for exploitation is the final purpose of the geothermal drilling project. National Iranian Drilling Company (NIDC) and Renewable Energy and Energy Efficiency Organization (SATBA) are responsible for implementing geothermal drilling projects in Iran. A group of actors of these organizations was asked to set risks, responses and corresponding parameters for a particular drilling project in the northwest of Iran. The set of threatening risks is shown in Table 4.

Table 4
Set of risks for a geothermal drilling project (the third column refers to costs may caused by risk events)

| Risk Name | Description | Estimated Cost | Probability |
| :---: | :---: | :---: | :---: |
| R1 | Bureaucratic government system | 300 | 0.7 |
| R2 | Collapsed casing | 1250 | 0.3 |
| R3 | Delay in equipment delivery to the site | 430 | 0.5 |
| R4 | Dissolved gas in formation water | 730 | 0.4 |
| R5 | Drill string breakdown | 920 | 0.2 |
| R6 | Equipment lost or stuck in hole | 1070 | 0.15 |
| R7 | Extreme weather conditions | 350 | 0.35 |
| R8 | High salinity in formation water | 785 | 0.1 |
| R9 | Lost circulation | 1340 | 0.1 |
| R10 | Non-productive well | 1760 | 0.05 |
| R11 | Overpressure of the formation | 1950 | 0.25 |
| R12 | Toxic gases (like H2S) released from well | 835 | 0.1 |

Also, the most important associated responses are in Table 5. These response actions may cause other risks with particular impact and probability which are also show in Table 5:

Table 5
Set of risk response actions for a geothermal drilling project (the third column refers to implementation cost of actions)

| Response Name | Description | Estimated <br> Cost | Secondary <br> Risk Cost | Secondary <br> Risk <br> Prob. |
| :---: | :---: | :---: | :---: | :---: |
| A1 | Controlling injection pressure limit | 230 | 45 | 0.08 |
| A2 | Adding inhititors | 170 | 0 | 0 |
| A3 | Improving casing design | 370 | 30 | 0.03 |
| A4 | Drilling a sidetrack | 360 | 0 | 0 |
| A5 | Further exploration of field before the developments | 570 | 180 | 0.2 |
| A6 | Hiring careful, experienced and skillful site labor | 240 | 0 | 0 |
| A7 | Improving engineering of the wellhead systems | 280 | 0 | 0 |
| A8 | Improving hole cleaning by chemicals | 430 | 0 | 0 |
| A9 | Improving HSE conditions | 200 | 50 | 0.1 |
| A10 | Keeping the bottomhole pressure low | 160 | 0 | 0 |
| A11 | Making good relationship with government and NGOs | 220 | 25 | 0.15 |
| A12 | Modifying construction procedures based on local weather | 350 | 60 | 0.1 |
| A13 | Preparing a comprehensive training | 100 | 0.35 |  |
| A14 | Providing rotary steerable systems | 190 | 0 | 0 |
| A15 | Purchasing insurance or guarantee fund | 680 | 80 | 0.1 |
| A16 | Tracking the orders more precisely | 320 | 0 | 0 |
| A17 | Using a degasser | 140 | 0 | 0 |
| A18 | Using water and chemicals to dissolve salts | 215 | 30 | 0.06 |
| A19 |  | 250 | 20 | 0.04 |

As we discussed before, there is a network of relations involving risks, their responses, criteria, objectives and etc. The proposed network for our problem consists of four clusters. The first cluster is project performance, including one factor as the goal. Second cluster contains three distinct risk types, called technical risks, management risks and natural risks. Third cluster includes twelve risks described in Table 4. And finally, fourth cluster includes nineteen available responses to risks described in Table 5. Outer dependence (dependency between factors of two clusters) and inner dependence (interdependency between elements of a cluster) are shown in Fig.3, Fig.4, Fig. 5 and Fig.6.


Fig. 3. Relations of risk types with respect to goal (cluster b respect to cluster a)


Fig. 4. Relations of risks with respect to risk types (cluster c respect to cluster b)


Fig. 5. Relations of response actions with respect to risks (cluster d respect to cluster c)


Fig. 6. Effects of risks on each other (cluster c respect to itself)


Fig. 7. The impact-diagraph-map of total relation for risks
Clearly, all four categories of responses are held in above relations. For instance, to handle R5 (drill string breakdown), A16 (purchasing insurance or guarantee fund) seeks transference strategy and A7 (hiring careful, experienced and skillful site labor) seeks mitigation strategy. Further, to respond to R7 (extreme weather conditions), A13 (modifying construction procedures based on local weather conditions) is an avoidance strategy. If none of the responses are selected, then the acceptance strategy is applied automatically.

After collecting comparisons, testing consistency, and capturing inner dependent relations; the local weights are calculated. The inner dependencies between risks are shown in Fig. 6. With regard to (15) and (16), $D_{i}+R_{j}$ represent the strength of influences given and received. On the other hand, $D_{i}-R_{j}$ is another advantageous indicator. If $D_{i}-R_{j}$ is positive, then factor $i$ is affecting other factors (cause), and if $D_{i}-R_{j}$ is negative, then factor $i$ is being influenced by other factors (effect) (Yang et al. 2008).

Based on these assumptions, the impact-diagraph-map of total relation for some risks (cluster c) is illustrated in Fig.7.

As can be seen from Fig.7, R11 is a risk with most influence on others. By contrast, R10 receives most influence from others. Meanwhile, SuperDecision software computes global weights and represents them within the limit supermatrix (Appendix). Global weights of risks are shown in Table 6.

Table 6
Global weights of risks

| Risk Name | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Global Weight | 0.033 | 0.073 | 0.008 | 0.012 | 0.011 | 0.017 | 0.006 | 0.009 | 0.054 | 0.020 | 0.085 | 0.009 |

The higher weights of R2 and R11 reveal their importance. Impact-diagraph-map and global weight tool, both evaluated R11 as the most threatening risk. These tools complement each other in order to present a novel method for risk evaluation.

Now, using captured global weights of actions, we run the zero-one mathematical model. Suggesting by actors, three more constraints are added to the model:

$$
\begin{align*}
& x_{8} \leq 1-x_{18}  \tag{26}\\
& x_{7} \leq 1-x_{17}  \tag{27}\\
& x_{7} \leq 1-x_{14} \tag{28}
\end{align*}
$$

These constraints show the interdependencies between response actions. According to (26), if A8 is performed, there is no need to perform A18. Two next constraints are based on the same rationale. The model, with objective function (21) and system of constraints (28)-(28) is coded in GAMS software, using CPLEX as MIP solver. Considering 3200 units budget which is reserved as a part of project cost, the model is implemented. After running, among nineteen response actions, eight response actions are selected: A2, A4, A6, A7, A11, A12, A16, A18. Also, the optimal objective function is equal to 0.340 . In spite of neglecting eleven actions, the eight chosen responses are against all of the risks and decrease their impact or probability impressively.

Note that the reserved budget may not be adequate. Thus, we analyze changing budget (in low amount) in order to observe how objective function changes.

Fig. 8 shows how budget reduction can lessen utility function. In low budget, the severity becomes worse as all the risks are not possible to be responded (red dashed line) and it makes a dangerous situation. Because managers are forced to adopt acceptance strategy.


Fig. 8. The effect of changing reserved budget on objective function

## 6. Conclusion

Risk response selection is an extensively concerned. In this study, an integrated novel method was developed through incorporating ANP, DEMATEL, zero-one programming and fuzzy theory. Such an integrated approach is helpful for evaluating risk and planning their responses in a geothermal drilling project. In this method, we drew a network of factors that express the relation between project goal, different types of risks, distinct risks and corresponding responses. The weights of the factors were reflected by FANP and DEMATEL tools. Due to restriction on reserved budget, the resulted weights were utilized in a zero-one integer programming model. Then, the optimal response strategies were detected. Moreover, the major risks were analyzed by an impact-diagram-map.
The main contributions of the proposed method can be summarized as follows:

- Presenting a network of factors, including risks and responses with their inner relations and outer relation on each other.
- Considering all categories of risk responses (avoidance, mitigation, acceptance and transference) within the set of responses.
- Considering impacts and probabilities of secondary risks, caused by responses.
- Introducing a novel method for risk evaluation and response planning in a geothermal drilling project.

There are some potential future works. The inherent uncertainty in parameters, especially costs could be handled by monte-carlo simulation method. On the hand, for conducting the limit supermatrix, group decision-making could be more helpful. Furthermore, we suggest other case studies such as oil project and software project to emphasize on the strength of the proposed model.

## References

Ackermann, F., Eden, C., Williams, T., \& Howick, S. (2007). Systemic risk assessment: a case study. Journal of the Operational Research Society, 58(1), 39-51.
Ben-David, I., Rabinowitz, G., \& Raz, T. (2002). Economic optimization of project risk management efforts. The Israel Institute of Business Research.

Büyüközkan, G., \& Öztürkcan, D. (2010). An integrated analytic approach for Six Sigma project selection. Expert Systems with Applications, 37(8), 5835-5847.
Calabrese, A., Costa, R., \& Menichini, T. (2013). Using Fuzzy AHP to manage Intellectual Capital assets: An application to the ICT service industry. Expert Systems with Applications, 40(9), 37473755.

Chang, C. W., Wu, C. R., Lin, C. T., \& Lin, H. L. (2007). Evaluating digital video recorder systems using analytic hierarchy and analytic network processes. Information Sciences, 177(16), 3383-3396.
Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
Chapman, C. B. (1979). Large engineering project risk analysis. IEEE Transactions on Engineering Management, (3), 78-86.
Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. International journal of approximate reasoning, 21(3), 215-231.
Dey, P. K. (2002). Project risk management: a combined analytic hierarchy process and decision tree approach. Cost Engineering, 44(3), 13-27.
Durán, C., Sepulveda, J., \& Carrasco, R. (2018). Determination of technological risk influences in a port system using DEMATEL. Decision Science Letters, 7(1), 1-12.
Ebrahimnejad, S., Mousavi, S., Tavakkoli-Moghaddam, R., \& Heydar, M. (2012). Evaluating high risks in large-scale projects using an extended VIKOR method under a fuzzy environment. International Journal of Industrial Engineering Computations, 3(3), 463-476.
Fan, M., Lin, N. P., \& Sheu, C. (2008). Choosing a project risk-handling strategy: An analytical model. International Journal of Production Economics, 112(2), 700-713.
Fang, C., Marle, F., Xie, M., \& Zio, E. (2013). An integrated framework for risk response planning under resource constraints in large engineering projects. IEEE Transactions on Engineering Management, 60(3), 627-639.
Gonen, A. (2011, December). Optimal risk response plan of project risk management. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on (pp. 969-973). IEEE.
Gonen, A. (2012). Selecting a Response Plan Under Budget Constraints. In Risk Management-Current Issues and Challenges. InTech.
Kayis, B., Arndt, G., Zhou, M., \& Amornsawadwatana, S. (2007). A risk mitigation methodology for new product and process design in concurrent engineering projects. CIRP Annals-Manufacturing Technology, 56(1), 167-170.
Klein, J. H. (1993). Modelling risk trade-off. Journal of the Operational Research Society, 44(5), 445460.

Klein, J. H., Powell, P. L., \& Chapman, C. B. (1994). Project risk analysis based on prototype activities. Journal of the Operational Research society, 45(7), 749-757.
Kuchta, D., \& Skorupka, D. (2014). Choice of countermeasures in project risk management using fuzzy modelling. International Journal Of Computers Communications \& Control, 9(5), 584-592.
Kujawski, E. (2002). Selection of technical risk responses for efficient contingencies. Systems Engineering, 5(3), 194-212.
Kwan, T. W., \& Leung, H. K. (2011). A risk management methodology for project risk dependencies. IEEE Transactions on Software Engineering, 37(5), 635-648.
Kwan, T. W., \& Leung, H. K. (2011). A risk management methodology for project risk dependencies. IEEE Transactions on Software Engineering, 37(5), 635-648.
Hashim Motaleb, O., \& Kishk, M. (2014). Assessing risk response maturity: A framework for construction projects success in the United Arab Emirates. International Journal of Managing Projects in Business, 7(2), 247-262.
Mousavi, S. M., Raissi, S., Vahdani, B., \& Hossein, S. M. (2011). A fuzzy decision-making methodology for risk response planning in large-scale projects. Journal of Optimization in Industrial Engineering, 57-70.

Nagar, B., \& Raj, T. (2012). Risk mitigation in the implementation of AMTs: A guiding framework for future. International Journal of Industrial Engineering Computations, 3(3), 485-498.
Rose, K. H. (2013). A Guide to the Project Management Body of Knowledge (PMBOK® Guide)Fifth Edition. Project management journal, 44(3).
Ben-David, I., \& Raz, T. (2001). An integrated approach for risk response development in project planning. Journal of the Operational Research Society, 52(1), 14-25.
Nik, E. R., Zegordi, S. H., \& Nazari, A. (2011, December). A multi-objective optimization and fuzzy prioritization approach for project risk responses selection. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on (pp. 888-892). IEEE.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922). Pittsburgh: RWS publications.
Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
THOMAS, L., \& Vargas, L. G. (2013). Decision Making with the Analytic Network Process.
Sadjadi, S., \& Sadi-Nezhad, S. (2017). Ranking Canadian oil and gas projects using TOPSIS. Journal of Project Management, 2(3), 87-92.
Samadi, H., Nazari-Shirkouhi, S., \& Keramati, A. (2014). Identifying and analyzing risks and responses for risk management in information technology outsourcing projects under fuzzy environment. International Journal of Information Technology \& Decision Making, 13(06), 1283-1323.
Seyedhoseini, S. M., Noori, S., \& Hatefi, M. A. (2009). An integrated methodology for assessment and selection of the project risk response actions. Risk analysis, 29(5), 752-763.
Shariati, S. (2014). Underground mine risk assessment by using FMEA in the presence of uncertainty. Decision Science Letters, 3(3), 295-304.
Dizaji, M., Mazdeh, M., \& Makui, A. (2018). Performance evaluation and ranking of direct sales stores using BSC approach and fuzzy multiple attribute decision-making methods. Decision Science Letters, 7(2), 197-210.
Soofifard, R., \& Bafruei, M. K. (2017). An optimal model for Project Risk Response Portfolio Selection (P2RPS).
Wang, Y. M., \& Elhag, T. M. (2007). A fuzzy group decision making approach for bridge risk assessment. Computers \& Industrial Engineering, 53(1), 137-148.
Wang, Y. M., \& Elhag, T. M. (2006). On the normalization of interval and fuzzy weights. Fuzzy sets and systems, 157(18), 2456-2471.
Ward, S., \& Chapman, C. (2003). Transforming project risk management into project uncertainty management. International journal of project management, 21(2), 97-105.
Wu, H. H., \& Tsai, Y. N. (2011). A DEMATEL method to evaluate the causal relations among the criteria in auto spare parts industry. Applied Mathematics and Computation, 218(5), 2334-2342.
Yang, Y. P. O., Shieh, H. M., Leu, J. D., \& Tzeng, G. H. (2008). A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International journal of operations research, 5(3), 160-168.
Zhang, Y. (2016). Selecting risk response strategies considering project risk interdependence. International Journal of Project Management, 34(5), 819-830.
Zhang, Y., \& Fan, Z. P. (2014). An optimization method for selecting project risk response strategies. International Journal of Project Management, 32(3), 412-422.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goal | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00 | 0.000 |
| TR | 0.499 | 0.125 | 0.21 | 0.300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| MR | 0.163 | 0. | 0.071 | 0.100 | 0.000 | 0.000 | 0.000 | 00 | 0.000 | , 000 | . 000 | . 000 | . 00 | . 000 | , | 000 | 00 | 0.000 | 0.000 | . 000 | . 000 | 0.000 | 000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.0 | 0.000 | . 000 | 0.000 | . 000 | 0 |
| NR | 0.338 | 0.188 | 0.21 | 0.100 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0 | 0.00 | 0.000 | 0.000 | 0.000 | 0.0 | 0.00 | 0.00 | . 0 | 0.000 | 0 | . 000 | 0.000 | 0.000 |
| R1 | 0.000 | 0.000 | 0.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | . 000 | . 000 | . 000 | 0.000 |
| R2 | 0.000 | 0.106 | 0.000 | 0.000 | 0.000 | 0.065 | 0.000 | 0.000 | 0.179 | 0.241 | 0.000 | 0.000 | 0.308 | 0.114 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 |
| R3 | 0.000 | 0.00 | 0.10 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | . 00 | . 00 | . 000 | . 000 | 0.000 |  |
| R4 | 0.000 | 0.00 | 0.000 | 0.115 | 0. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | . 00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00 | . 000 | 0.000 | 0.000 |
| R5 | 0.000 | 0.066 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| R6 | 0.000 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.130 | 0.000 | 0.000 | 0.000 | 0.000 | 0.106 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | . 000 | 0.000 |
| R7 | . 000 | 0.000 | 0.000 | 0.055 | . 00 | 0.000 | 00 | 0.000 | 0.000 | 0.000 | 0.000 | 000 | . 00 | . 00 | 00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | , 00 | 000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | . 00 | 000 | 00 | . 000 | 0.000 | 0.000 |
| R8 | 0.000 | 0.00 | 0.000 | 0.080 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.000 | 0.000 | 0.00 | . 000 | 00 |
| R9 | 0.00 | 0.10 | 0.00 | 0.000 | 0.000 | 0.174 | 0.000 | 0.000 | 0.045 | 0.060 | 0.000 | 0.000 | 0.077 | 0.076 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 |
| R10 | 0.000 | 0.14 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | . 00 | 0.000 | 0.000 | . 00 | 00 | 0.000 |
| R11 | 0.000 | 0.000 | 0.000 | 0.171 | 0.000 | 0.261 | 0.000 | 0.000 | 0.148 | 0.199 | 0.000 | 0.000 | 0.116 | 0.156 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | . 00 | . 000 | . 000 | 000 | 00 |
| R12 | 0. | 0.00 | 0.00 | 0.080 | 00 | 0.000 | 0.000 | . 00 | 000 | 0.000 | 0.000 | 0.000 | . 00 | 00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | . 00 | . 00 | 0.000 | 00 | 0.000 |
| A1 | 0.000 | 0.00 | 0.00 | 0. | 0. | 0. | 0.000 | 0.000 | 0.000 | 0.089 | 0.000 | 0.407 | 0.000 | 0.000 | 0.000 | 0.146 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | . 00 | . 0 | . 00 | 0.00 | 0.000 | 00 |
| A2 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.284 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | . 00 | 0.000 | . 000 | 0.000 |
| A3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | . 000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.296 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.000 | . 000 | 0.000 |
| A4 | 0.00 | 0.00 | 0.0 | 0. | 0. | 0.116 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.14 | 0.000 | 0.147 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | . 00 | 0.000 | 0 |
| A5 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.131 | 0.000 | 0.000 | 0.000 | 0.093 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.000 | 0.000 | . 000 | 0.000 |
| A6 | 0.000 | 0.00 | 0.00 | 0. | 0.000 | 0.000 | 0.000 | 0.201 | 0.000 | 0.000 | 0.000 | 0.186 | 0.000 | 0.204 | 0.347 | 0.146 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | . 00 | . 00 | . 00 | . 00 | 0.000 | 0.000 |
| A7 | 0.000 | 0. | 0. | 0.000 | 0. | 0. | 00 | 0.000 | 0.220 | 91 | 0.177 | 0.00 | 0.000 | 000 | . 000 | 000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00 |
| A8 | 0.000 | 0. | 0.00 | 0. | 0. | 0. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.222 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | . 00 | . 00 | 0.000 | 0.000 |
| A9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.089 | 0.000 | 0.000 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| A10 | 0.000 | 0.000 | 0.000 | 0. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | . 00 | 0.260 | 0.000 | 0.000 | 000 | 0.000 | 0.412 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | . 0 | . 0 | . | 0.000 | 000 |
| A11 | 0.00 | 0.00 | 0.00 | 0. | 0.00 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.220 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.000 | 0.00 | 0.000 |
| A12 | 0.000 | 0.000 | 0.000 | 0.000 | . 842 | . 000 | 0.263 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| A13 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.563 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 |
| A14 | 0. | 0. | 0.00 | 0. | 0. | 0.00 | 0.000 | 0.000 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.00 | 0.0 | 0.0 | 0.00 | 0.000 | 0.0 | 0.000 |
| A15 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.267 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
| A16 | 0.000 | 0.000 | 0.000 | 0.000 | 0.158 | 0.000 | 0.000 | 0.000 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.204 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| A17 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.737 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.000 |
| A18 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.799 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| A19 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.407 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.000 | 0.000 | 0.00 |

[^1] 8 00 - 0 ㅇㅇ 888 o 0000
0000
0000 8.8 웅 8. 응 8.8
 8
8
0
0
0
0
0
0

0 \begin{tabular}{l}
8 <br>
\hline

 응 

8 <br>
0 <br>
0 <br>
0 <br>
0 <br>
$\vdots$ <br>
0 <br>
0 <br>
\hline
\end{tabular} 000000000

00000000000 00000000
00000000000

0000 | 8 |
| :--- |
|  |
| 8 |
| 8 |

© 2018 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


[^0]:    * Corresponding author

    E-mail address: a.ghassemi.91@alumni.ut.ac.ir (A. Ghassemi)
    C 2018 Growing Science Ltd. All rights reserved.
    doi: 10.5267/j.dsl.2017.10.001

[^1]:    * TR: Technical Risks, MR: Management Risks, NR: Natural Risks

