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 Understanding mechanical properties of healthy and unhealthy cerebral vessels is a key element 
in the development of their science and the relevant clinical diagnosis, prevention and 
treatment. Thirteen healthy samples were obtained from 23 middle cerebral arteries. The 
changes of force and deformation until the vessel rupture were recorded using a biaxial device. 
Thereafter, the stress-strain curve was plotted and fitted with a hyperelastic five-parameter 
Mooney-Rivlin model and the model parameters (C1, C2, C3, C4, and C5) were determined 
according to the best fit. For statistical comparison, the samples were divided into three age and 
two gender groups and subjected to non-parametric statistical analyses. Comparison of obtained 
results for different age groups showed that there is a significant difference between the "old" 
group and the other two groups (middle-aged and young). There was no significant difference 
between male and female groups. Therefore, the results demonstrate the changes of blood 
vessel wall properties with aging. The results also depicted that the arterial wall is stiffer in the 
circumferential direction than the axial direction. Anisotropy of cerebral vessels was confirmed 
by all of the tests. Therefore, the significance of the biaxial tests is in the spot light in the 
derived data. Moreover, good fitting of data illuminated that the use of multiple-parameter 
constitutive models is useful for mathematical demonstration of cerebral vessel tissue behavior. 
In conclusion, good fitting of data illuminated that the use of multiple-parameter constitutive 
models is useful for mathematical demonstration of cerebral vessel tissue behavior.      
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Nomenclature 
Term  Description 
λl Stretch ratio in direction 1 
λ2 Stretch ratio in direction 2 
λ3 Stretch ratio in direction 3 
C1 to C5 Constants of constitutive model of Fung 
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F11 Force measured by load cells in direction 1 
F22 Force measured by load cells in direction 2 
b1 and b2 Widths of specimens in the two directions 
σii

model  Cauchy stress calculated from the model 
σ ii

exp Cauchy stress calculated based on loads applied in the test 
Sij Components of the second Piola-Kirchhoff stress tensor  
Eij Components of the Green-Lagrange strain tensor 
Fij Components of the finite strain deformation tensor 
Iij  Components of the identity unit tensor 
B Function of the Finger tensor 
I3,I2,I1 Invariants of the function of the Finger tensor 
W Strain energy density function 
S Second Piola-Kirchhoff stress tensor 
E Green-Lagrange strain tensor 
F Finite strain deformation tensor 
I Identity unit tensor 
λl, λ2 & λ3 Ratios of the function of the principal stretch 
µ1, µ2,µ3, α1, α2 &α3 Six material parameters of hyperelastic constitutive equation  
 
1. Introduction 
 
Mechanical properties of arterial wall have significant effects on the functions of blood vessels since 
they determine the relationships between blood pressure, blood flow, and the size of arterial wall 
(Coulson et al., 2004). These properties are dependent on the structure and orientation of constituent 
elements of arterial wall with respect to each other. Due to the orientations of collagen and elastin 
fibers, arteries show various reactions to applied stresses in different directions and have different 
properties in longitudinal, radial and circumferential directions. As arteries are orthotropic materials, 
it is known that arterial wall is stiffer in the radial direction than the axial direction (Cox, 1984; Ally 
et al., 2004). Arterial walls in human body are always subjected to loading-unloading forces 
(pressures) which are mostly due to the pulsatile characteristic of blood flow. Factors like gender, 
smoking, hypertension and diabetes mellitus increase the probability of occurrence of arterial disease 
(Aronow et al., 1987; Lindroos et al., 1993; Steward et al., 1997; Ourie, 2001). Studying the 
mechanical properties of arteries is necessary since it is believed that the mechanical factors may be 
important in initiation of atherosclerosis (Holzapfel et al., 2000).  
 
The external elastic lamina, evident in transition area between tunica media and tunica adventitia of 
other vessels, does not exist in cerebral arteries. Thickness of the two main layers, tunica media and 
tunica adventitia, in cerebral arteries are usually less than the arteries of the same diameters. The 
amount of elastin in tunica media of cerebral arteries is less than other vessels (Busby & Burton, 
1965; Stehbens, 1972, Sekhar & Heros, 1981). Many factors are effective in determining the behavior 
of soft tissues, particularly cerebral vessels. Arteries and most of the biological tissues show non-
linear elastic properties. From mechanical point of view, cerebral arteries are anisotropic (Shadwick 
et al., 1999).  
 
For describing biological tissues, uniaxial and biaxial tests are used. Uniaxial tests are applied only to 
determine the tissue properties in the direction of force measurement. In the case of anisotropy, 
uniaxial tests will be no longer useful and comprehensive. For example, mechanical properties of 
blood vessels samples in circumferential and axial directions are different due to their anisotropic 
structure. In biaxial loading, tissue is stiffer and its nonlinearity is less (Dixon et al., 2003). Therefore, 
biaxial and planar tests may be good alternatives to reach a better understanding of arterial behavior 
(Guccione et al., 1991; L'italien et al., 1994; Okamoto et al., 2002; Criscione et al., 2003; Sun et al., 
2003, Lu et al., 2005; Criscione et al., 2005). Simulations of tissues mechanical behavior are 
applicable for diagnostic and treatment purposes as well as in surgery (Dumoulin & Cochelin, 2000;  
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Gourisankaran & Sharma, 2000; Laroche & Delorme, 2006; Gasser & Holzapfel, 2007; Kiousis et al., 
2007; Wu et al., 2007). Moreover, constitutive models of wall arteries shall be able to reveal the 
mechanical behavior of healthy and diseased tissues (Ottensmeyer et al., 2004).  
 
Computational modeling for prediction of cerebral aneurysm growth and rupture requires the 
biomechanical properties of cerebral vessels as input parameters (Feng et al., 2004). For better 
understanding of the injuries and disease procedures, modeling methods are also used but limited sets 
of biomechanical data are available for cerebral vessels. In the past, the structural pattern of arterial 
wall has not been taken into account in formulation of the constitutive equations that are used 
traditionally for modeling the mechanical behavior of arterial wall. That is why some researchers 
turned to formulate constitutive models in which some histological information is considered 
(Holzapfel et al., 1996; Keshaw, 2001; Gasser et al., 2002; Ogden, 2004). Therefore, the material 
properties involved can be related to the histological structure of arterial walls. Due to nonlinearity of 
mechanical properties of arterial wall, constitutive equations describing nonlinearity might have a 
very complex form with many parameters. Therefore, to formulate elastic properties of arterial walls 
some assumptions were taken into consideration including ideal cylindrical geometry, homogeneity 
of material, incompressibility, cylindrical orthotropy and hyperelasticity (Holzapfel  & Weizsacker, 
1998;  Prendergast et al., 2003; Schulze-Bauer and Holzapfel, 2003;  Gleason et al., 2004; Holzapfel 
et al., 2004;  Holzapfel, 2005;  Virues-Delgadillo et al., 2006).  
 
Hyperelastic models have been shown to be appropriate for prediction of vessel behavior (Humphrey 
et al., 1990a). Three-parameter Mooney-Rivlin model has been used for modeling the vessels and has 
had a good fitting to experimental data (Humphrey et al., 1990b). For a more precise fitting, the five-
parameter Mooney-Rivlin model is used (Monson et al., 2008). Therefore, obtaining biomechanical 
properties of cerebral vessels is a significant step toward understanding the mechanisms causing the 
blood vessel injuries such as cerebral aneurysms. Since most of the studies on the biomechanical 
properties of blood vessels focus on non-cerebral vessels and regarding to the differences between 
cerebral vessels and other vessels, determining biomechanical properties of cerebral vessels through 
biaxial tensile test can smooth the way for further investigations.  
 
The study performed by Monson et al. (2008) is one of the few studies on the cerebral vessels. They 
investigated the biaxial properties of cerebral vessels by applying internal pressure through inflating 
the vessels and using the hyperelastic model of Fung et al (1971), but they did not use the plane stress 
method, as we did, to obtain the biaxial properties of cerebral vessels. Since in the literature, as far as 
the authors know, there is no definite data regarding hyperelastic model parameters for cerebral 
vessels subjected to a biaxial test in a plane stress method and there is no study about the effect of 
gender and age on the mechanical properties of cerebral vessels, the present study was carried out to 
determine the coefficients mentioned above and also to investigate the effects of mentioned factors on 
the mechanical properties of cerebral vessels. This is also one of the first studies providing the stress-
strain curve for cerebral vessels in two directions. 

  
2. Materials and methods 
 
2.1 Developing a dedicated biaxial tensile test device 
 
Regarding the dimensions of samples and the range of applied forces, a biaxial tensile test device was 
designed and developed. This device is able to perform a quasi-static test with proper force 
sensitivity. The clamps of this device are able to directly hold samples with dimensions of ≥ 5×5 
mm2. The device can keep the tissue wet during the test so that its properties do not change due to 
evaporation. Tensile forces are measured by two 2-channels 16 bit with 5 to 8 sample/s ADC 
(Analogue to Digital Converter) and load cell conditioners, for UMAA 2 kgf load cell (Dacell Co., 
Ltd, Korea Corporation, Korea)  attached to the aluminum clamps with a precision of 16 bits. The 
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required tensile forces in this device are applied by four micro stepper motors (made by Autonics 
Corporation, Gyeonggi-do, Korea) with a resolution of 0.36 degrees and with a torque of 1.2 kg.cm. 
For visual measurement of the tissue deformation, a USB digital microscope camera (with zoom: 
300X, frequency: 30 Hz and resolution: 480×640) was used in the test device. Four drivers were used 
to start the stepper motors (Autonics model MD5-H14). Data sent by our controller are transferred to 
a computer and saved there. For synchronizing the results, the data of load cells and cameras were 
both written simultaneously with a frequency of 5 Hz in a Python programmed code and saved. After 
completion, the device was calibrated with standard balance weights. Moreover, we tested 
successfully a silicon sample with known properties to validate our device measurements. 
 
2.2 Strain Energy Density Function 
 
Most experimental data are generally analyzed using the strain energy density function. It is a scalar 
measure of the energy stored in the material as a result of deformation. If there is a one-to-one 
relationship between strain and stress, then the theory of elasticity states that there exists a strain 
energy density function W, from which the stresses can be computed from the strains as follows 
(Humphrey et al., 1990b; Sun et al., 2003; Monson et al., 2008): 
 

௜ܵ௝ ൌ
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௜௝ܧ߲
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where Sij, Eij, Fij, Iij are the components of the second Piola-Kirchhoff stress tensor ( s ), the Green-
Lagrange strain tensor ( E ), the finite strain deformation tensor ( F ) and the identity unit tensor (I), 
respectively. 
 
The most common strain energy density functions used to determine the mechanical properties of an 
artery are the functions of the Finger tensor (B) or more explicitly in terms of its invariants (I3, I2, I1) 
(Sun et al., 2003). The Finger tensor B gives us the relative local change in area within the sample 
and is defined as: 
 
ܤ ൌ .ܨ  (3) .்ܨ
 

The finite strain deformation tensor (F) is defined as F= ∂x/∂x', where x' and x are the initial and 
current configurations, respectively. The invariants of this tensor are given by: 
 

ଵܫ ൌ trB, (4) 
ሾሺܤݎݐሻଶ െ  ଶ, (5)ܫ ଶሿ =ሺ1/2ሻܤݎݐ
ଷܫ ൌ  (6) 	.	ܤ	ݐ݁݀
 

For an incompressible material I3=1. Tr and det refer to transpose of a matrix and determinant of a 
matrix, respectively.    
 
2.2.1 Hyperelastic models 
 
2.2.1.1 Mooney-Rivlin model 
 
Mooney-Rivlin model (Mooney, 1940; Rivlin, 1948) used in this work includes 5 parameters. This 
model was used before in many studies for blood vessels (Ally et al., 2004). The strain energy 
function used was also employed before by Humphrey et al., (1990b), to describe the non-elastic 
pseudolinear behavior of myocardium (Humphrey et al., 1990b; Monson et al., 2008). 
ܹ൫ܫଵ،ܫଶ൯=ܥଵሺܫଶ െ 1ሻଶ ൅ ଶܫଶሺܥ െ 1ሻଷ ൅ ଵܫଷሺܥ െ 3ሻ ൅ ଶܫସሺܥ െ 1ሻሺܫଵ െ 3ሻ ൅ ଵܫହሺܥ െ 3ሻଶ, (7) 
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where W is the strain energy function, I1 and I2 are invariants of right Cauchy deformation tensor, and 
C1-C5 are empiric constants to be fitted.  
 
2.2.1.2 Other models developed to describe the behavior of arteries 
 
Several researchers have developed many mathematical expressions that describe the stress-strain 
relationship for mechanical tests, but the most common are those based on polynomial or exponential 
functions. A three dimensional strain energy function which is appropriate for the analysis of thick-
walled tubes or a two dimensional strain energy function can be used for modeling the mechanical 
properties of arteries. Some of these functions are described below: 
 
Ogden (Keshaw, 2001) proposed an isotropic, hyperelastic constitutive equation that has six material 
parameters (three dimensional: µ1, µ2,µ3, and three non-dimensional: α1, α2,α3), which is a function of 
the principal stretch ratios, λl,λ2 and λ3. Another three dimensional strain energy function was 
developed by Humphrey et al. (1990b) and Monson et al. (2008). For doing that, they based their 
development on the extension of the two dimensional strain energy function proposed by Fung et al., 
(1971). Until now, the architecture of the arterial wall has not been considered in the formulation of 
the constitutive equations  that are conventionally used to model the mechanical behavior of the 
arterial wall. That is why several researchers (Holzapfel et al., 1996; Holzapfel et al., 2000) have 
formulated constitutive models which incorporate some histological information. Hence, the material 
parameters involved may be associated with the histological structure of  the arterial walls. 
 
2.3. Test method 
 
Thirteen samples were obtained from 23 middle cerebral arteries (MCA) extracted according to a 
special protocol from 20 human cadavers whose death was not due to injuries or diseases of cerebral 
blood vessels. These samples were subjected to the test by our biaxial tensile device within 12 hours 
after their resection. Before resecting the samples, the families of the deceased were asked to sign a 
consensus form. To reach a uniform stress distribution, special clamps were designed such that could 
grip tissues with dimensions as small as 5×5 mm2 directly. These lightweight clamps were then 
attached to the load cells. In order to prevent damages of the vessels, brain of the deceased were first 
removed completely. Then all cerebral vessels were separated from soft tissue by an expert 
neurosurgeon. To standardize the tests, 10mm proximal segment of MCA was resected for all 
specimens. To maintain the physiological conditions and freshness of samples, all the tests were done 
on the day of acquiring samples. Specimens were stored in physiological saline 0.9%. Thickness of 
specimens was measured with a vernier caliper. Then the specimens were cut to 5×5 mm2with a 
special cutter. During the test, the samples were stored in 0.9% physiological saline heated by a 
heater to 37°C. The specimens, after attachment to the four clamps, were stretched simultaneously in 
two dimensions (four directions) by the movement of four stepper motors (Fig. 1).  
 

 
Fig. 1. Biaxial tensile test device (a) and cerebral vessel specimen under loading (b) 
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The rate of 0.02 mm/s was chosen for applying the tension in quasi-static tests. Force and 
displacement data were recorded in 0.2 second intervals (i.e. frequency of 5 Hz). Due to low rate of 
loading (the strain rate was 0.02 mm/s in all tests), there was no need to consider the specimens as 
viscous materials. Information of patients were gathered and collected. Then, to compare the 
specimens, three age groups were formed according to the standard of blood vessel diseases as 
follows:  
 
Group A: Young people under 45 years old 
Group B: Middle-aged people ranging from 45 to 65 years old 
Group C: Old people above 65years old 

In order to measure the strains, a digital microscope camera, (installed above and perpendicular to the 
specimens) was used. To synchronize the data, images of the camera and data of the load cells were 
acquired with a frequency of 5 Hz. As the data and images were synchronous, all images were 
processed through freeware package called ImageJ (formerly, NIHImage). The end distance between 
clamps was considered as the reference measure of sample length in two mutually perpendicular 
directions. Due to the small dimensions of the specimens, staining of tissue was not applicable. Thus 
to prevent errors due to the slip of the tissue in the clamps grip, the clamp displacements were 
calculated according to the known pitch of the screw and rotation degree of stepper motors every 0.2 
seconds. These displacements were also compared with the stretch of tissue obtained by images by 
means of Image J freeware. In the case of any difference between the displacement of the clamps and 
the stretch of the tissue, the data were deleted as this discrepancy was due to slip of the tissue. 
 
2.4. Data processing 
 
The force-displacement curve for each specimen was obtained in two mutually perpendicular 
directions. The experimental stresses for specimens were calculated as follows, 
 

ଵଵߪ
௘௫௣ ൌ ଵߣ

ଵଵܨ
ܾଵݐ

, 
(8) 
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where λl and λ2 are the stretch ratios, F11 and F22 are the forces measured by load cells, t is the 
thickness of specimen, b1 and b2 are the widths of specimens in the two directions.  
The stress components were then calculated as follows:  
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where C1 to C5 are constants of constitutive model. For proper fitting of empirical constants and 
model parameters, an algorithm was written using COBYLA (Powell, 1998) (an acronym of 
Constrained Optimization BY Linear Approximations). COBYLA algorithm employs linear 
approximations to the objective and constraint functions. These approximations are formed by linear 
interpolation at n+1 points in the space of the variables. The interpolation points are regarded as 
vertices of a simplex. In our routine, it is reduced from 1 to 10-8. COBYLA minimizes the difference 
between the experimental stresses and the model stresses obtained based on Eq. (10) and Eq. (11) 
using the following equation:  
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where σii
model is Cauchy stress calculated from the model for a specified deformation, σ ii

exp is Cauchy 
stress calculated based on the loads applied in the test, deformation gradient tensor and specimen 
geometry. Parameters C1 to C5 were calculated by COBYLA algorithm with an initial guess of 
(1,1,1,1,1) and after applying 10 million times iterations of optimization program. The optimization 
program stops reaching the convergence threshold of 10-8, otherwise it is implemented for 10 
million times. In all  of our tests, the convergence threshold was reached before 10 million times. 
 
2.5. Analysis of statistical results 
 
The wall mechanical properties of cerebral vessels of the circle of Willis for these hyper-elastic 
coefficients were studied using the mean value of variables categorized based on age and gender and 
were compared using the non-parametric Mann-Whitney U (Mann & Whitney, 1947) test (for gender 
categories) and the non-parametric Kruskal-Wallis (Wallis, 1952) test (for the investigated age 
categories). The levels of significance in these statistical tests were set on 0.05. The SPSS software 
version 19 was used for statistical analysis.  
 
3. Results 
 
3.1 Statistical population 
 
Regarding the gender distribution, most of the specimens in this research, i.e. 53.8 % (7 persons), 
were female samples and the rest (6 persons, 46.2%) were male samples. Regarding the age 
distribution, most of the specimens (6 specimens or 38.5%) belonged to middle-aged party. The 
distribution of specimens of young and old groups was 30.75% (4 people in each group), Tables 1 to 
4 summarize the information of samples used for experimental study of this research. 
 
Table 1.Specifications of tested specimens 
Total number of specimens 13 
Ratio of male/female 6/7 
Average age 57.23 
Age range 18-87 
Average thickness of MCA vessels 0.6 mm 

 
Table 2. Age classification 
Group Average age Ratio of male/female Number of specimens 
A: Young 34.5 3/1 4 
B: Middle-aged 54.2 2/3 5 
C: Old 83 2/2 4 

 
Table 3.The abundance distribution related to (gender) variable 
Levels Abundance Percentage 
Male 6 46.2 
Female 7 53.8 
Total 13 100 

 
Table 4.The abundance distribution related to (age) variable 
Levels Abundance Percentage 
Old 4 30.75 
Middle-aged 5 38.5 
Young 4 30.75 
Total 13 100 
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3.2. Mechanical test 
 
After carrying out mechanical tests and data processing, the average thickness of the specimens and 
the average cross sectional area under tension were 0.6 mm and 3 mm2, respectively. Table 5 
provides the amounts of C1 to C5 under various range of tensions. 
 
Table 5.The abundance distribution related to (age) variable 
Hyperelastic coefficients Range of tension (MPa) Average amount 
C1 [-1.27 to 0.79] 0.2567 
C2 [-2.83 to 8.84] 1.3348 
C3 [-0.33 to 0.06] -0.2950 
C4 [-1.1 to 21.1] 0.0377 
C5 [-0.11 to 0.22] 0.0455 
 
 
To facilitate the analysis, the results have been reported based on age and gender in Table 6. 

 
Table 6.Mann-Whitney U (comparison of hyperelastic coefficients in biaxial test with emphasize on gender) 
Hyperelastic 
coefficients 

Gender Number Average 
of ranks 

Sum of 
the 

ranks 

Mann-
Whitney 

U 

Amount 
of Z 

Level of 
significance 

C1 Male 6 8 48 15 -0.857 0.445 
Female 7 6.14 43 

C2 Male 6 7.17 43 20 -0.143 0.945 
Female 7 6.86 48 

C3 
 

Male 6 7.33 44 19 
 

-0.286 
 

0.836 
 Female 7 6.71 47 

C4 
 

Male 6 5.67 34 13 
 

-1.143 
 

0.295 
 Female 7 8.14 57 

C5 
 

Male 6 8.17 49 14 
 

-1 
 

0.366 
 Female 7 6 42 

- The Mann-Whitney U test is used to assess whether two independent groups are significantly different from each other. 
- The level of significance shows the probability of the results being down to chance. 
- Z is the number of standard deviations. 

 
Table 7. Kruskal-Wallis (comparison of hyperelastic coefficients in biaxial test with emphasize on age range) 

Hyperelastic 
coefficients 

Age range Number Average of 
ranks 

Chi-square 
 

Degrees of 
freedom 

Level of 
significance 

C1 old 4 7 0.267 2 0.875 
Middle-aged 5 6.40 

Young 4 7.75 
C2 
 

old 4 10.50 8.40 2 0.015 
Middle-aged 5 3.20 

Young 4 8.25 
C3 old 4 7.25 5.38 2 0.068 

Middle-aged 5 4.20 
Young 4 10.25 

C4 old 4 4 7.24 2 0.027 
Middle-aged 5 10.60 

Young 4 5.50 
C5 old 5 10.25 6.86 2 0.032 

Middle-aged 4 3.60 
Young 5 8 

- The degree of freedom is the number of groups minus 1. 
- the chi-squared distribution is the distribution of a sum of the squares of the independent standard normal random variables. 
 



 M. Shafigh et al. / Engineering Solid Mechanics 1 (2013) 
 

51

4. Discussion and conclusion 
 
To investigate the hypothesis that the vessel properties change in various age and gender groups, the 
data obtained from these groups were compared statistically. According to Table 7 and with 
emphasize on the values of U and due to small difference in the significance level of α=0.05, it can be 
stated that there is no considerable difference between the hyperelastic coefficients C1 to C5 in female 
and male groups subjected to the biaxial test. Therefore, the average amounts of stresses and strains 
reported in this study can be used simultaneously for both groups. According to the results in Table 8 
and with emphasize on the values of Z, there is a meaningful difference between the hyperelastic 
coefficients C2 and C5 in significance levels of α=0.01 and α=0.05. Regarding the ranks of 
hyperelastic coefficients C2 and C5 in the "old" group (10.50 and 10.25, respectively) are greater than 
those of the “young” and “middle-aged” groups, it can be concluded that the amounts of hyperelastic 
coefficients C2 and C5 in biaxial test are greater in “old” group. This underscores the increase in 
vessel stiffness with aging. There is also a noticeable difference in hyperelastic coefficients C4 in 
significance level of α=0.05. As the average of ranks for this coefficient is in the middle-aged group 
(10.60) greater than those of the old and young groups, thus the amount of hyper-elastic coefficient 
C4 is greater in middle-aged group. 
 
The maximum values of C2 in the old group were 3.34 MPa (average value of this group was: 1.35 
MPa). The maximum values of C5 in the old group were 0.19 MPa (average value of this group was -
0.052 MPa). The maximum values of C4 in middle-aged were 1.21MPa (with average of 0.684 MPa). 
In general, the vessels in the male group had a stiffer behavior than those of female group (Table 7).  
By computing the modulus of elasticity in the range of physiological stresses inside vessels, it was 
found that the tangent modulus in axial direction is in the range of 0.5 and 1.4 MPa (with average 
value of 0.82 MPa) and in circumferential direction is in the range of 0.6 and 1.6 MPa (with average 
of 0.87 MPa). By comparing the curves of mechanical behavior obtained for the tested cerebral 
vessels in axial and circumferential directions and their corresponding slopes, it was found that these 
vessels are stiffer in circumferential direction than in axial direction.  
 
Regarding the results of biaxial test and the small size of specimens studied, the obtained data are a 
proper reference for numerical modeling of cerebral vessels in cases of accidents, the head trauma 
and the aneurysms. The average values reported in this investigation can be used regardless of 
gender. Experimental data related to the biaxial test of cerebral vessels, as far as the authors know, 
had not been available in literature. By the way, the Monson’s study was performed by applying the 
internal pressure through inflation and there was no categorization in it based on gender and age 
(Monson et al., 2008). The most important accomplishment of the present study was the 
determination of mechanical properties of cerebral vessels of the Willis circle through biaxial test and 
demonstration of differences and changes of properties with aging in addition to the comparison of 
vessel mechanical properties between genders (see Figs. 2-8).  
 
Overall, good fitting of data illuminated that the use of multiple-parameter constitutive models is 
useful for mathematical demonstration of cerebral vessel tissue behaviour. It is finally noted that 
according to measurement protocol, many of the specimens did not have acceptable data for reporting 
since removing the cerebral vessels and separating them from the surrounding soft tissue without 
being damaged was intricate very difficult. Hence, from 23 specimens obtained from 20 cadavers, 
only the data of 13 specimens were acceptable and reportable. Carrying out extensive tests on various 
categories yields more comprehensive information. 
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Fig. 8. Comparison of some specimens subjected to tension in two directions along with the fitted 

model. Dots show the experimental data and the solid line is the result of mathematical model 
 
Specimens were studied in gender and age groups. The specimens of "old" group were stiffer than 
those of other groups and this confirmed the variation of wall mechanical properties of vessels with 
aging. There was no significant difference between male and female groups. Studying the 
biomechanical behavior of cerebral vessels is useful for modeling and predicting the behavior of 
vessel in cases of accidents and cerebral aneurysms. Knowing the stress-strain behavior of cerebral 
vessels can be beneficial in prediction of vessel resistance and rupture time by numerical and 
computational modeling. Further studies on biomechanical properties of cerebral vessels can help the 
understanding of the biomechanical conditions leading to occurrence and rupture of aneurysms 
during traumas and accidents. Biomechanical properties of cerebral vessels can be a helpful 
prediction of indices for more comprehensive studies through simulations of wall structure-fluid 
interaction based on imaging so that patients can be informed of rupture risk according to these expert 
assessments (Nabaei & Fatouraee, 2012). This can also be helpful in creation of the numerical 
simulation software which will lead to better understanding of changes of wall mechanical properties 
of cerebral vessels. Furthermore, researches conducted in this study provide reliable data for 
mechanical properties of cerebral vessels. 

References 

 
Lally, C., Reid, A. J., & Prendergast, P. J. (2004). Elastic behavior of porcine coronary artery tissue 

under uniaxial and equibiaxial tension. Annals of Biomedical Engineering, 32(10), 1355-1364. 
Aronow, W. S., Schwartz, K. S., & Koenigsberg, M. (1987). Correlation of serum lipids, calcium, 

and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence 
of calcified or thickened aortic cusps or root in elderly patients. The American Journal of 
Cardiology, 59(9), 998-999. 



  54

Busby, D. E., & Burton, A. C. (1965). The effect of age on the elasticity of the major brain arteries. 
Canadian Journal of Physiology and Pharmacology, 43(2), 185-202. 

Coulson, R. J., Cipolla, M. J., Vitullo, L., & Chesler, N. C. (2004). Mechanical properties of rat 
middle cerebral arteries with and without myogenic tone. Journal of Biomechanical Engineering, 
126(1), 76-81. 

Cox, R. H. (1984). Viscoelastic properties of canine pulmonary arteries. American Journal of 
Physiology-Heart and Circulatory Physiology, 246(1), H90-H96. 

Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic 
constitutive law for biomembranes: I. Theory. Journal of Biomechanical Engineering, 125(1), 94-
99. 

Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003). Experimentally tractable, pseudo-elastic 
constitutive law for biomembranes: II. Application. Journal of Biomechanical Engineering, 
125(1), 100-105. 

Dixon, S. A., Heikes, R. G., & Vito, R. P. (2003). Constitutive modeling of porcine coronary arteries 
using designed experiments. Journal of Biomechanical Engineering, 125(2), 274-279. 

Dumoulin, C., & Cochelin, B. (2000). Mechanical behaviour modelling of balloon-expandable stents. 
Journal of Biomechanics, 33(11), 1461-1470. 

Burleson, A. C., Strother, C. M., & Turitto, V. T. (1995). Computer modeling of intracranial saccular 
and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37(4), 774-784. 

Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon 
angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711-723. 

Gourisankaran, V., & Sharma, M. G. (2000). The finite element analysis of stresses in atherosclerotic 
arteries during balloon angioplasty. Critical Reviews™ in Biomedical Engineering, 28(1&2). 

Guccione, J. M., McCulloch, A. D., & Waldman, L. K. (1991). Passive material properties of intact 
ventricular myocardium determined from a cylindrical model. Journal of Biomechanical 
Engineering, 113(1), 42-55. 

Humphrey, J. D. (2004). A 2-D model of flow-induced alterations in the geometry, structure, and 
properties of carotid arteries. 

Holzapfel, G. A. (2005). Similarities between soft biological tissues and rubberlike materials. In 
CONSTITUTIVE MODELS FOR RUBBER-PROCEEDINGS- (Vol. 4, p. 607). Balkema. 

Holzapfel, G. A., Eberlein, R., Wriggers, P., & Weizsäcker, H. W. (1996). Large strain analysis of 
soft biological membranes: Formulation and finite element analysis. Computer Methods in Applied 
Mechanics and Engineering, 132(1), 45-61. 

Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial 
wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical 
Science of Solids, 61(1-3), 1-48. 

Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2004). Comparison of a multi-layer structural 
model for arterial walls with a fung-type model, and issues of material stability. Journal of 
Biomechanical Engineering, 126(2), 264-275. 

Holzapfel, G. A., & Weizsäcker, H. W. (1998). Biomechanical behavior of the arterial wall and its 
numerical characterization. Computers in Biology and Medicine, 28(4), 377-392. 

Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for 
passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 
333. 

Humphrey, J. D., Strumpf, R. K., & Yin, F. C. (1990). Determination of a constitutive relation for 
passive myocardium: II. Parameter estimation. Journal of Biomechanical Engineering, 112(3), 
340. 

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of 
the American statistical Association, 47(260), 583-621. 

Kumar, K. (2001). Microstructure of human arteries. Journal of The Anatomical Society of India, 
50(2), 127-130. 



 M. Shafigh et al. / Engineering Solid Mechanics 1 (2013) 
 

55

Gasser, T. C., Schulze-Bauer, C. A., & Holzapfel, G. A. (2002). A three-dimensional finite element 
model for arterial clamping. Journal of Biomechanical Engineering, 124(4), 355. 

Kiousis, D. E., Gasser, T. C., & Holzapfel, G. A. (2007). A numerical model to study the interaction 
of vascular stents with human atherosclerotic lesions. Annals of biomedical engineering, 35(11), 
1857-1869. 

Laroche, D., Delorme, S., Anderson, T., Buithieu, J., & Diraddo, R. (2006). Computer prediction of 
balloon angioplasty from artery imaging. Proceedings of the Medicine Meets Virtual Reality 
(MMVR 2006). 

Lindroos, M., Kupari, M., Heikkilä, J., & Tilvis, R. (1993). Prevalence of aortic valve abnormalities 
in the elderly: an echocardiographic study of a random population sample. Journal of the 
American College of Cardiology, 21(5), 1220-1225. 

L'Italien, G. J., Chandrasekar, N. R., Lamuraglia, G. M., Pevec, W. C., Dhara, S. A. N. D. I. P., 
Warnock, D. F., & Abbott, W. M. (1994). Biaxial elastic properties of rat arteries in vivo: 
influence of vascular wall cells on anisotropy. American Journal of Physiology-Heart and 
Circulatory Physiology, 267(2), H574-H579. 

Lu, S. H., Sacks, M. S., Chung, S. Y., Gloeckner, D. C., Pruchnic, R., Huard, J., ... & Chancellor, M. 
B. (2005). Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa 
for bladder wall reconstitution. Biomaterials, 26(4), 443-449. 

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is 
stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50-60. 

Monson, K. L., Barbaro, N. M., & Manley, G. T. (2008). Biaxial response of passive human cerebral 
arteries. Annals of Biomedical Engineering, 36(12), 2028-2041. 

Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582-
592. 

Nabaei, M., & Fatouraee, N. (2012). COMPUTATIONAL MODELING OF FORMATION OF A 
CEREBRAL ANEURYSM UNDER THE INFLUENCE OF SMOOTH MUSCLE CELL 
RELAXATION. Journal of Mechanics in Medicine and Biology, 12(01). 

Ogden, R. W. (1997). Non-linear elastic deformations. Courier Dover Publications. 
Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for 

arteries accounting for wall composition and structure. Journal of biomechanics, 37(7), 989-1000. 
Okamoto, R. J., Wagenseil, J. E., DeLong, W. R., Peterson, S. J., Kouchoukos, N. T., & Sundt III, T. 

M. (2002). Mechanical properties of dilated human ascending aorta. Annals of Biomedical 
Engineering, 30(5), 624-635. 

Ottensmeyer, M. P., Kerdok, A. E., Howe, R. D., & Dawson, S. L. (2004). The effects of testing 
environment on the viscoelastic properties of soft tissues. In Medical Simulation (pp. 9-18). 
Springer Berlin Heidelberg. 

Ouriel, K. (2001). Peripheral arterial disease. The lancet, 358(9289), 1257-1264. 
Prendergast, P. J., Lally, C., Daly, S., Reid, A. J., Lee, T. C., Quinn, D., & Dolan, F. (2003). Analysis 

of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element 
modelling. Journal of Biomechanical Engineering, 125(5), 692-699. 

Powell, M. J. D. (1998). Direct search algorithms for optimization calculations. Acta Numerica, 287-
336. 

Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. IV. Further developments of 
the general theory. Philosophical Transactions of the Royal Society of London. Series A, 
Mathematical and Physical Sciences, 241(835), 379-397. 

Schulze-Bauer, C. A., & Holzapfel, G. A. (2003). Determination of constitutive equations for human 
arteries from clinical data. Journal of Biomechanics, 36(2), 165-169. 

Sekhar, L. N., & Heros, R. C. (1981). Origin, growth, and rupture of saccular aneurysms: a review. 
Neurosurgery, 8(2), 248-260. 

Shadwick, R. E. (1999). Mechanical design in arteries. Journal of Experimental Biology, 202(23), 
3305-3313. 



  56

Stehbens, W. E. (1972). Pathology of the cerebral blood vessels. CV Mosby. 
Stewart, B. F., Siscovick, D., Lind, B. K., Gardin, J. M., Gottdiener, J. S., Smith, V. E., & Otto, C. M. 

(1997). Clinical Factors Associated With Calcific Aortic Valve Disease fn1. Journal of the 
American College of Cardiology, 29(3), 630-634. 

Sun, W., Sacks, M. S., & Scott, M. J. (2003). Numerical Simulations of the Planar Biaxial 
Mechanical Behavior of Biological Materials. ASME Summer Bioengineering, Miami, FL. 

Virues Delgadillo, J. O., Delorme, S., Diraddo, R., Hatzikiriakos, S. G., & Thibault, F. (2006). 
Mechanical characterization of arterial wall: Should cruciform or square sample be used in biaxial 
testing?. Journal of Biomechanical Engineering. 

Wu, W., Qi, M., Liu, X. P., Yang, D. Z., & Wang, W. Q. (2007). Delivery and release of nitinol stent 
in carotid artery and their interactions: a finite element analysis. Journal of Biomechanics, 40(13), 
3034-3040. 

 
  


	Determining the biomechanical properties of human intracranial blood vessels through biaxialtensile test and fitting them to a hyperelastic model
	Nomenclature
	1. Introduction
	2. Materials and methods
	2.1 Developing a dedicated biaxial tensile test device
	2.2 Strain Energy Density Function
	2.3. Test method
	2.4. Data processing
	2.5. Analysis of statistical results

	3. Results
	3.1 Statistical population
	3.2. Mechanical test

	4. Discussion and conclusion
	References


