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 The article deals with stress separation using different experimental techniques and their comparison 
to numerical and theoretical solutions. The method is applied to a keyhole sample coupon, to which 
measurements of fringe order, temperature or displacement were made using photo-elasticity, TSA 
(Thermo-elastic Stress Analysis) and DIC (Digital Image Correlation). The results are compared to 
FEM simulations (Finite Element Method) using the stress concentration factor (Kt) as a benchmark. 
Additionally, an Airy stress function is proposed and tested against obtained measurements. The 
comparison of Kt shows agreement among measurements as well as numerical and theoretical results. 
It is concluded that the presented method can be used for isotropic materials subjected to the plane 
stress, where stress variation through-thickness is negligible.   
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1. Introduction 
 

      In experimental mechanics, optical methods, such as Thermo-elastic Stress Analysis (TSA) or photo-elasticity, do not 
provide independent measurements of either strain or displacement fields (Marsavina & Tomlinson, 2013; Solarguen et al. 
2009; Tabanyukhova, 2019). Measured stresses obtained with these whole field techniques show biaxial components as one 
value that has to be decomposed (Freire & Voloshin, 2009; Sakagami, et al., 2004). So useful information can be extracted 
and properly analyzed. Several methods have been proposed to decompose photo-elasticity stress fields. Anthony et al. (2016) 
as well as Yoneyama et. al. (2005) derived methods combining photo-elasticity and interferometry to do so. Allison (1998) 
proposed taking advantage of the symmetry in a stress field to separate a biaxial stress state. However, this method would be 
limited to a symmetrical stress state such as pure loading modes in a cracked sample (Molteno & Becker, 2015), which was 
similar to what was done by Tabanyukhov (2019) but applied only to tangential stresses with manually counted fringe order. 
Sagakami et al. (2004), Dulie-Smith (1995), and Murakami & Yoshimura (1995) have independently proposed methods to 
perform stress separation obtained with at least two whole-field techniques. Moreover, Solarguen et al., (2009) and Ramesh 
(2000) have summarized methods to perform stress separation based on photo-elasticity measurements. In all cases to 
decompose the measured stresses, it is required a second technique measurement, or calibration against a known stress value, 
usually done within the experiment. 

     On the other hand, stress functions are mathematical equations that describe a biaxial state of stress for a particular 
load/geometry combination and were widely used until the popularization of the Finite Element Method (FEM). Niedenfuhr 
(1957) showed recommendations on how to write a bi-harmonic equation stress function but only using polynomic functions. 
Selvadurai (2000) made similar recommendations but with a broader type of equations. Rao and Nomura (2006) proposed 
functions for circular inclusions in solid media. More recently, Cavaco et al. (2018) used polynomial functions for stress 
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analysis in pipes due to soil-pipe interaction and Jobin et. al. (2020) proposed one function to fit measured displacement fields 
in a cracked epoxy composite. Finally, there are rules of thumb on how to select a stress function, mainly based on Michell´s 
general solution (Sadd, 2014). 

     Biaxial stresses are present under two or more orthogonal loads or a sharp change in geometry. Kirsch in 1898 was the 
first one who successfully tackled and deducted a stress solution around an infinite plate with a circular hole. In 1913, Inglis 
expanded the solution to elliptical holes showing that stress will grow as the ellipse flattens to the point it will show a 
singularity (Sadd, 2014). Brewster described photo-elasticity in 1815 but, it was not until 1930 that works of Coker and Filon 
in Europe and Frocht in the US described a detailed experimental framework for photo-elasticity (Freire & Voloshin, 2009; 
Masuda, 2004) which was when biaxial stress field were observed. Their work laid the grounds for optically measured fields 
as opposed to widely used singular point measurements, such as strain gauges (SG) or the more recent Fiber Bragg Grating 
(FBG) sensors (Triana-Infante et al. 2014). Although less used nowadays, photo-elasticity is a low cost technique, easy to 
implement and with well-known analysis and procedures (Masuda, 2004; Vishay, 2011). Alternatively, the modern and widely 
used technique of Digital Image Correlation (DIC) gives orthogonal displacement measurements (Castillo et al. 2020) but 
also, it gives errors when measuring displacement fields close to sharp edges or close to out-of-plane geometries due to the 
error associated with lower correlation coefficients found when there is a discontinuity (Sutton et al. 2009; Vormwald et al. 
2017). On the other hand, one of the Thermo Elastics Stress Analysis (TSA) main advantages in fracture mechanics is that 
the stress intensity factor can be obtained directly by calculating the cyclic stress in front of the crack propagation direction. 
Extensive applications of TSA take place in civil, maritime, oil and gas, petrochemical and aerospace industries. It is a 
powerful tool to validate FEM analysis (Marsavina & Tomlinson, 2013). 

     In this research to evaluate a method to separate stress, an experiment was performed on a sample which could be tested 
with different experimental techniques. The same test coupon was tested at elastic loads and measurements taken with photo-
elasticity, and TSA. To validate the calibration of experimental measures, a Finite Element Analysis (FEM) was performed 
and, results from a third experimental measure, Digital Image Correlation (DIC) were taken. The paper describes the use of 
these experimental techniques to measure stress and the combination of some of them to estimate the stress concentration 
factor in a keyhole sample. Furthermore, this paper tests a method to separate stresses that are measured using independent 
techniques and compares them with a FEM simulation and a proposed stress function.  
 
2. Liteature review  
 
    This section describes briefly the techniques used, and some schemes used to perform stress separation. 
 
2.1 TSA 
 
     The surface temperature of a body is a function of the volumetric heat generation, and the emission of energy at the surface. 
Thereby, when a body is subjected to tensile stress, its temperature is slightly reduced. Conversely, when subjected to a 
compressive stress, a slight temperature increase is produced. When the body is subjected to cyclic loading, one can measure 
the small change in surface temperature (ΔT), which can be in the order of 1*10-3 oK (Lesniak et al. 1998; Marsavina & 
Tomlinson, 2013), which for most applications is achieved at frequencies below 20 Hz (Lesniak et al., 1998). Such change is 
proportional to the first stress invariant range (Δσ1+Δσ2) as stated by Marsavina & Tomlinson, (2013) in the sample’s surface, 
as shown in Eq. (1). 

( )o
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TT ,
c
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p

α σ σ
ρ

−Δ = Δ + Δ  (1) 

where αT is the linear thermal expansion coefficient, T0 is the reference temperature, ρ is density, and cp is the specific heat 
under constant pressure. So, it seems convenient to place contact sensors on the surface, but often non-contact techniques are 
used to avoid touching components or when one need a whole-field measurement. This calibration method could be difficult 
to perform, due to the number of variables involved. Moreover, the radiation measured by an instrument includes emitted, 
transmitted, and reflected energy. However, with an appropriate calibration and with no presence of material non linearities 
or non-adiabatic factor, one can avoid the use of Eq. (1). For an isotropic material subjected to plane stress, Eq. (1) can be 
simplified to Eq. (2). 

 
( )1 2 ,mS K σ σ= Δ + Δ  (2) 

 
where S is the reading from the thermal camera and Km is the thermomechanical coefficient that can be either extracted from 
literature, calibrated in an experiment (Dulieu-Smith, 1995) or taken from a known sample’s region that has known stress. 
According to Eq. (2), TSA gives the sum of the first stress invariant range when a body is subjected to alternating loads. 
Hence, post-processing needs to be done to separate the principal stress invariant range. 
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2.2 Photo-elasticity  
 
     Photo-elasticity is perhaps one of the oldest methods for experimental stress analysis. For many years, it has been the 
preferred method for stress analysis because of its low cost and simplicity (Freire & Voloshin, 2009; Masuda, 2004). Some 
parameters such as the stress concentration factor Kt, or the stress intensity factor (SIF) were verified with the technique.  

     Light going through a birefringent material is used to determine the stress field in a sample subjected to a mechanical load. 
The material used has the capacity of changing its refractive properties when loaded. In other words, it exhibits temporary 
birefringence subjected to strain. This difference of refractive index acts as speed retardation for the polarized incident light, 
which is perceived as light of different colors (Freire & Voloshin, 2009; Ramesh, 2000). The difference of principal stresses 
is a function of fringe number N, as given by Eq. (3). 

( )1 2 ,
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N E
t K

λσ σ
ν

− =
+

 (3) 

where t is the specimen thickness, E is elastic modulus, ν is Poisson's ratio, K is the strain optic coefficient of the material, 
and λ is the used light source wavelength. The outer right terms in Eq. (3) can be simplified to the birefringent material’s 
constant fσ. Therefore, by observing the fringe order, one can establish the difference between principal stresses.  

     Photo-elasticity can be described using different mathematical models, such as the Poincare sphere, Jones calculus, Stoke´s 
vector and quantum mechanics (Freire & Voloshin, 2009). Nowadays, the technique is available in transmission and reflection 
mode (Masuda, 2004). Details about the color, fringe number, and bandwidth for the isochromatic bands formed in a 
birefringent material when subjected to a stress state are found in (Vishay, 2011). The technique used here assumed a linear 
elastic behavior, and mechanical properties of sample are independent of small changes in temperature. 

2.3 DIC 

      DIC started in 1982 at the University of South Carolina where a series of papers described a method to estimate deformation 
from a photographed deformed sample and how to compute rigid body rotation displacements (Sutton et al., 2009). DIC is a non-
contact optical technique that uses one (DIC-2D) or more (DIC-3D) cameras to account for displacement, rigid body displacement, 
rigid body rotation, and out-of-plane displacement; the latter in case of DIC-3D (Vormwald et al., 2017). The technique uses a virtual 
mesh to discretize the area of interest (AOI) in smaller elements called subsets as depicted in Fig. 1a. Because of the nature of the 
problem dealt with, polar coordinates are used here using the stress notation presented in Fig. 1b. 

      DIC takes advantage of the grey intensity change within a subset in sequential photographs taken on a sample before and 
after deformation. Photographs are acquired digitally, i.e. by a digital camera (CMOS or CCD sensor), or by traditional 
methods which subsequently are digitized as pixel maps f(x, y) making it possible to compare grey intensity before and after 
deformation to obtain displacement fields by using a minimization of a bits-correlation criteria, such as the squared sum of 
squared difference correlation criterion, SSD, as shown in Eq. (4). Other correlation criteria are normalized squared 
differences, zero-normalized squared difference, sum of absolute differences which have different usage depending on 
conditions (Castillo et al., 2020). 

 
Fig. 1. a) Image before and after deformation for utilizing the DIC method; b) stress notation in polar coordinates 

coordinates 
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where f(x, y) and g(x’, y’) represent the grey levels of reference before and after deformation; (x, y) and (x’, y’) are the coordinates of 
a point in the subset before and after deformation. Sutton et. al. (2009) warn that although the SSD is the least influenced by-light-
variation optimization criteria, it is also the most computationally expensive method. The coordinate (x’, y’), after deformation, related 
to the coordinate (x, y), before deformation, using Taylor expansion shown in Eq. (5). Higher order terms can be mapped using 
iterative methods. 
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 (5) 

 
      DIC provides independent values of displacement u, and v in orthogonal directions, so there is no need for further post-
processing to use data (as opposed to photo-elasticity or TSA). The technique can be used to measure small or large samples, 
static or dynamics events, and rigid or soft materials. The speckles can be added by ink spray, can be etched, stamped, or 
even from natural patterns such as grain microstructure. 

 
Once displacements are established using a correlation criterion, such as the one shown in Eq. (4), strains (ε) can be 

calculated using the theory of elasticity Lagrangian relations as presented in Eq. (6), in polar coordinates, as presented in Fig. 
1b. 
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where u is displacement in radial, r, or tangential, θ, direction. By using elastic relations, strains and stresses are related as 
shown in Eq. (7) for plane stress. 
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Extensive details about DIC can be found at (Sutton et al., 2009). 

2.4 Stress Separation 

     Two ways to separate stress and another one link independent measurements are detailed here as follows. 

2.4.1 Independent stress measurement 

     Dulieu-Smith (1995) reported TSA calibration directly from the experiment using two orthogonally placed SG  in 
directions i and j. Vishay Measurements recommends this method for photo-elasticity readings (Vishay, 2011). SG can be 
used to transform deformation readings into first stress invariant as shown in Eq. (8) for isotropic materials. 
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−
, (8) 

 
then substituting Eq. (2) into Eq. (8), it will return the calibration constant as Eq. (9). 
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      It is noted that a second measurement is needed to use Eq. (9), and it must not interfere with TSA readings, i.e. SG should 
be allocated in the dark area of the specimen, making sure the wires neither shield nor reflect heat to the IR camera. 
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2.4.2. A known stress state 
 

Another way to extract the calibration constant is by performing a calibration trial against calculated stress. An area of the 
specimen or in a different specimen made out of the same material and tested under the same conditions, with a known analytic 
solution can be used to calculate known stress for the experiment. Then, reading S from the camera is used in Eq. (2) to calculate 
Km. Because the calibration constant Km may differ from point to point, the over deterministic least squares method (LSM) 
could be used to find the best fitting value. 

 
2.4.3. Assembling of independent readings 

 
As shown in Eq. (2) and Eq. (3), the TSA and photo-elasticity, respectively, do not provide independent readings of stress. 

Sakagami et al. (2004) and Murakami & Yoshimura (1995) proposed a hybrid method combining TSA and photo-elasticity. 
The sum of the first stress invariant is constant as it is the difference of principal stresses. For the same measured point and 
when putting readings together, they form a linear system as shown in Eq. (10). 
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1 2
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Therefore, solving Eq. (10) for each measured point gives one separate values of principal stresses. 
 

2.5. Stress function 
 

If an exact description of stress fields is needed, a solution using an Airy stress function, ϕ(r, θ), can be proposed. However, in order 
to be a stress function, it has to meet conditions (Sadd, 2014) as follows. The function has to be 2D biharmonic and scalar, and the 
fourth gradient for the proposed function has to be equal to zero. In the absence of temperature effects and body forces, Eq. (11) shows 
the governing biharmonic equilibrium condition for any Airy stress function in polar coordinates. 
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If ϕ(r, θ) complies with Eq. (11), the stresses can be computed from the relations shown in Eq. (12). Furthermore, displacement 

fields ur and uθ can be found by integrating strains from Eq. (6). 
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Finally, one needs to remember Michell general solution (Sadd, 2014), which is a generic function with terms that can be taken 
out at convenience. The solution complies with the conditions stated above to be an Airy stress function. 
 

3. Materials and methods 

      A “keyhole” specimen of ¼” thickness made of polycarbonate, Elastic modulus E = 2.6 GPa and Poisson’s ratio of ν 
=0.37 as shown in Fig. 2, was subjected to tensile loading. To have the sample free of residual stresses caused by the 
fabrication process, it was previously stress-relieved in an oven. 

 

Fig. 2. Test coupon dimensions (in mm), 3D view, and photo-elasticity set up. 
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For TSA experiments, a FLIR A655sc micro-bolometer camera was used and the DeltaVision ® (Stress Photonics, 
Madison, WI) software was used to calibrate, to acquire and to process thermograms. DeltaVision ® uses the least square 
method to adjust IR signals (Lesniak et al., 1998). A lock-in analyzer is employed to extract useful thermoelastic information 
from an exceedingly noisy output signal from the micro-bolometer. The lock-in analyzers used in TSA systems separate the 
measured signal into two orthogonal components: one in-phase and the other component at 90° out-of-phase to the reference 
signal. This is done in such way because the sample´s adiabatic mechanical response must be in-phase with the load frequency 
(Marsavina & Tomlinson, 2013). A lock-in analyzer works by synchronizing the camera´s thermal signal with either a signal 
from the load cell or a separate observation window within the same sample. In case heat is generated in regions with high-
stress gradients or if the loading frequency is not high enough for an adiabatic response, a phase change from the reference 
frequency occurs, which is visible as an out-of-phase signal (Dulieu-Smith, 1995; Marsavina & Tomlinson, 2013). Moreover, 
conduction heat transfer is only a problem in TSA measurements when there are high-temperature gradients, i.e. a small 
component subjected to alternative stress and made out of a material with high thermal conduction (gold, silver, aluminum, 
copper, magnesium alloys, carbon, etc). Otherwise, heat loss by convection or significant radiation is negligible (Dulieu-
Smith,1995). Extensive details on how DeltaVision ® software works can be found in (Lesniak et al., 1998). 

 
For photo-elasticity, a Vishay (Raleigh, NC) transmission polariscope, with quarter-wave-filters and equipped with a 

commercial fluorescent lightbox to achieve uniform white lighting, was used. It is important to use cold light as illumination, 
so the sample does not get heated which could affect measurements (Vishay, 2011). The material fringe, fσ was 7 mm/MPa. 
Photoelasticity patterns were digitally acquired with an iPhone 8s ® camera (Apple inc, Palo Alto, CA). Pictures were taken 
both, in full color and with a monochromatic filter to avoid the problem that the combination between the light source and camera 
sensor may affect the quality of photo-elasticity images. Finally, it has to be said that although, digital image processing using RGB 
images and high-speed cameras are the norm for a modern photoelastic system, in this paper the fringe order estimation was 
manually performed. 

 
For DIC measurements, the coupon was primed with white paint and sprayed painted with black ink to achieve the needed 

random speckles. Two, 5-MP CCD cameras (Point Grey GRAS-50S5M) equipped with 35-mm lenses, cameras were used to 
capture images and VIC Snap ® was used for image acquisition, whereas 3D-VIC ® (both from Correlated Solutions, 
Columbia NC) was used to process images. The mm to pixel resolution was 0.0697. 

 
At last, FEM 2D simulations were performed with ANSYS ® (Canonsburg, PA) using a linear elastic isotropic material 

model with triangular elements sizing of 2.75 mm in the bulk of the model. Around the keyhole outer edge and pin supports, 
0.20 mm triangular elements in a 6 mm radius sphere were used. Plain stress conditions were assumed through the thickness.  

 
Samples were subjected to tensile loads and readings were taken with the previously mentioned techniques. The goal was 

to obtain two sets of experimental measures (TSA and photo-elasticity in this case) to form the linear system as described by 
Eq. (8) at each measured point. One numerical result (FEM) was obtained to validate the separation method. 

 
For DIC readings, the sample coupon was subjected to tensile forces with pauses for photographs at 52, 105, 160, 221, 

270 and 307 N successively. The 3D-VIC software readily delivers values for εxx, εyy, εxy, ε1 and ε2. For TSA, the sample was 
subjected to alternating loads in the range of 460 N at 2 and 5 Hz loading rates. Calibration was done by making Δσ2 = 0, 
from Eq. (1), in a second sample (see exemplary results in Fig. 3a) used exclusively for that reason. The Km constant was 
obtained using the procedure described in section 2.4.2. A comparison of a uniaxial known stress value from a dog bone 
sample made from identical material was done with IR camera readings, as seen in Fig. 3a. The FLIR® A655sc IR camera, 
with a 30  mK sensitivity and spectral range from 7.5 to 14 μm, provided S as a 640x480 matrix. To extract the Km constant 
several average values were taken. At last, for photo-elasticity, the sample was subjected to forces of 62, 102, 150, 204, and 
252 N. 
 
4. Results and discussion  
 
4.1 TSA and photo-elasticity 
 

The highest S value, as shown in Eq. (2), near the keyhole was looked for in order to find the Kt, as seen in Fig. 3b. Once it was 
found, the data from a horizontal line (white dashed line in Fig. 3b) departing from the keyhole edge and in the opposite direction to 
the machined slit was processed using Eq. (2). Finally, to find the distance along pixels, a scale factor was extracted several times 
using a known dimension for the coupon. To verify TSA calibration, a FEM simulation was run using E = 2.4 GPa, ν = 0.37, 
and triangular elements. However, when comparing stress values obtained from different loads, it is recommended to 
normalize them by dividing the stress over the applied load. For photo-elasticity, there was a resolution problem at the edge due 
to residual stresses induced whilst machining the sample. In Fig. 4a through Fig. 4c the photoelastic fringes are shown for 62, 102, 
and 150 N in their full-color version. One can see how the fringes become blurry as one moves closer to the bore and such area 
appears to remain constant. It also can be observed how boundary conditions are filled at the slit borders as τnt is zero. Fig. 4d and Fig. 
4e shows the fringes for the sample loaded at 204 and 252 N, respectively., which are shown in their monochromatic filtered version. 
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(a)                                                              (b) 

 
Fig. 3. Exemplary results of IR camera reading for ΔP=460N: a) calibration sample; b) keyhole sample 

 

     
(a) (b) (c) (d) (e) 

 
Fig. 4. Results of fringe bands at: a) 62 N, b) 102 N, c) 150 N, d) 204 N and e) 252 N 

 
FEM and combined TSA + photo-elasticity results are shown in Fig. 5. (where the horizontal axis is the distance from the 

keyhole edge and the vertical axis is the normalized stress in MPa/N. Although there are seen slightly higher values for the 
experimental results, which will be discussed later, one can see an agreement between experimental and numerical results. 
Hence, the calibration method was validated. TSA data points were collected from the horizontal dashed white line depicted in 
Fig. 3b and for photo-elasticity data, an analog white dotted line (see Fig. 3b) was used. The separation method was tested 
against FEM results, and it worked for stress values from the same load at the same point, at or away from the border. 
 

 
 

Fig. 5. Comparison of normalized first stress invariant 
along sample horizontal axis 

Fig. 5. Kt vs (r/a) from photoelasticity and TSA data 
 

 
The stress concentration factor, Kt, can be calculated by Eq. (13). 
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Combined photo-elasticity and TSA results are presented in Fig. 5. It shows Kt versus r/a, where r is the distance from the 

center of the keyhole divided by the keyhole radius a. An order two polynomial interpolation was performed giving the 
relationship shown in Fig. 5, with the Kt at the border (r/a = 1) being 3.02. 
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4.2 DIC results  

As described before, DIC is able to provide orthogonal displacements measurements. Fig. 6a shows the parallel-to-load 
strain (εyy) field as measured by DIC and Fig. 6b shows the area of inspection (AOI) with a subset size (31 pixels) and step 
size (7 pixels) used for correlation analysis. It is observed how strains grow radially from outside and towards the keyhole 
center reaching a maximum at the outer most point of the notch, whereas they decay proportionally from the angular position 
reaching minimums at ±90º. 
 

 
Fig. 6. a) DIC vertical strain, εyy, b) AOI with grid size used in the analysis. 

 
Table 1 shows Kt calculated with Eq. (14) for different acting loads from DIC data. 

 
Table 1. Stress concentration factor, Kt, obtained with DIC data 

σy DIC (MPa) 0.89 1.78 2.67 3.55 4.45 5.33 
Kt 2.94 2.83 2.88 2.94 2.88 2.94 

 
which gives an average Kt of 2.91, very close to results presented in Fig. 5 (Kt from combined photo-elasticity and TSA). 
Results from a FEM simulation under 251 N for the perpendicular-to-load strain are shown in Fig. 7a, whereas results for the 
parallel-to-load strain are shown in Fig. 7b. The perpendicular -to-load strain shows the characteristic butterfly-like field in 
front of a notch. 
 

  
(a) (b) 

 
Fig. 7. FEM normal strain for the 251 N load, a) perpendicular-to-load, b) parallel-to-load 

 
Fig. 9 shows a comparison between normalized stresses as follows: TSA & photo-elasticity obtained through matrix Eq. 

(8), labeled σ1 and σ2, DIC labeled σ1 DIC and σ2 DIC, and FEM results labeled σ1 FEM and σs FEM. It can be seen an 
agreement between TSA & photo-elasticity with FEM for both directions. However, for DIC normal stress (σ1 DIC) the 
tendency agrees with other methods, but values are a little lower than their counterpart. σ1 FEM shows values a little higher 
when getting close to the edge than both experimental values. This may be explained by the traction residual stress product 
of the coupon´s fabrication process that the linear elastic numerical simulation cannot reproduce.  
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Fig. 8. Normalized separated stresses obtained with TSA & photoelasticity, DIC and FEM stress vs distance from the 
keyhole border 

4.3 Results with the Airy stress function 
 

Michell's general solution includes some r2 terms. So as r gets larger, the stresses would become infinite, which in this situation 
clearly, it is not the case. Thus, the r2 terms were left out. The other boundary condition for this problem is for σrθ (a, θ) = 0. 
Therefore, following these previous observations and recommendations from Sadd (2014), an Airy stress´s function is 
proposed, as shown in Eq. (14). 

 

( , ) ln( ) ;   
2r br r cos r aθ
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  (14) 

The stresses are found using Eq. (6), which produced Eq. (15). 
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Eq. (15) are consequent with the boundary conditions exhibited by the experiments. The constant b can be guessed until 

it fits boundary conditions, or it can be data fitted to experimental data. Assuming linear elastic conditions, the von Misses 
stress (the chosen failure criterion) is calculated for the stresses in Eq. (15) and also for the measured DIC strain fields. The 
stress values from the Airy stress function, Eq. (15), were converted to strains using the relations shown in Eq. (7). Then, 
linear data fitting is performed as shown in Eq. (16) for the available measured i points. 

 

( ), ,

 
DIC Airy b r

i
DIC MAX

err θε ε
ε

−
=  (16) 

 
where err is the difference to be minimized, εDIC is the measured strain field, εDIC MAX is the maximum strain value at the 
keyhole, εAiry is the proposed strain field in polar coordinates (r, θ), so b is the parameter that minimizes err. One can see that 
if more than one point is used, Eq. (16) yields an over-determined system, which can be solved by the least squares method. 
The obtained constant b was 7.45 MPa/mm. Fig. 9 shows the comparison of experimental and theoretical first principal strain 
fields with Eq. (16). There are regions of about 40% error but those are located at the bottom right corner, probably due to a 
low DIC correlation value. All in all, in front of the keyhole, where a potential crack could emerge and grow, there is a low 
error. 
 
 
 

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060

0.00 1.12 2.27 2.68 3.22 3.70 4.24 4.98 5.73 6.54

σ/P

X [mm]

σ (separated), DIC & FEM

σ₁ σ₂
σ₂ FEM σ₁ FEM
σ₁ DIC σ₂ DIC



 162 

 
Fig. 9. error in principal strain between DIC and Airy methods 

 
 
Fig. 10 shows the comparison of the first principal strain obtained with DIC with the proposed stress function. One can 

see the similitude in shape and values between the two methods, and also with results from FEA as seen in Fig. 7 for parallel-
to-load strain. The combination loading – geometry makes, in both cases for the DIC measured field and the Airy field, how 
the first principal strain decays radially departing from the edge. 

 

 
Fig. 10. First principal strain obtained with a) stress function, b) DIC. 

 
The obtained b constant was tested with the shear stress, σrθ for the Airy stress function and compared to the DIC measured 

field, εrθ, as shown in Fig. 11. One has to remember that in this case shear stress σrθ is null at the border, r = a and θ = 0 which 
is certain despite the experimental error from the DIC technique. 

 
 

Fig. 11. Shear strain, (r, θ), obtained with a) DIC and b) stress function 
 

 

ε11 from DIC 

a) b) 

a) b) 

ε11 from Stress function 
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5. Conclusion  
 

Photo-elasticity and TSA are techniques that measure stress directly as opposed to strain gages or DIC which measure 
change in electrical resistance or displacements, respectively. Photo-elasticity and TSA however, do not provide independent 
stress measurements. Therefore, they must be separated so useful information can be extracted and properly analyzed. The 
evaluated stress separation technique was successful telling apart experimental stresses from TSA and photoelasticity when 
applied to a polycarbonate keyhole sample under tension. Results from such separation were compared with results from the 
DIC technique and FEA. The calculated stress values lead to a very close stress concentration factor, Kt used as a benchmark. 
Furthermore, all of the experimental techniques used here are capable of only obtaining superficial readings, so that the method 
can be applied to isotropic materials under plane stress conditions. Careful results interpretation should be done in case the 
method is applied to a sample subjected to plane strain because most likely, the superficial stresses found with the techniques 
are not going to represent the maximum state of stress. 

 
Although the IR equipment used in Dulieu-Smith (1995) was very different to what is available today for TSA, a direct 

calibration from experiment properties, as shown in Eq. (2) was done here. Dulieu-Smith (1995) compared both methods, the 
one presented in Eq. (2) seems to be the most complicated method and prone to error due to uncertainties of material properties. 
A much simpler approach was taken here by comparing IR camera readings to a known stress state. 

 
It was observed that the values of σxx and σ2 as well as σyy and σ1 are almost identical in DIC, which is expected in a 

uniaxial loading case. The difference may be due to a lack of alignment between the sample’s holes and loading device axis 
and to the residual stress product of the fabrication process. Additionally, DIC appeared to provide slightly lower values than 
other techniques. This could be due to the correlation parameters used to run the correlation (subset, step, and Lagrangian 
filter) which can smooth data for large setting values. Optimal combination of parameters, along with average speckle size, is 
an ongoing topic of research. Another source of difference could be attributed to the fact that the sample endured local plastic 
deformation due to the rapid alternating stress used when testing with TSA. 

 
The method to extrapolate the stress concentration factor seems valid as seen in Fig. 6 and Fig. 8. Depending on the 

technique used, there is an inherent measuring error on the edge that prevents one from calculating stresses at such borders. 
By measuring the appropriate variables and calculating stresses along a horizontal line, one can extrapolate the actual value 
of Kt. 
 
      A stress function was proposed, validated, and experimentally tested, finding it represents well the stress fields when 
compared to experimentally acquired DIC and FEM simulated strain fields with a polar coordinate system located in the center 
of the keyhole. Furthermore, the function describes the close-to-edge stress field, but only for the opposite-to-the slit side of 
the sample. Finally, the stress function leaves out of the stress description the support pin areas which are expected not to be 
the areas with the highest stress concentration factor. 
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