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 The main goal of this research is to compare the various optimization strategies (Response Surface 
Methodology, Taguchi, and Teaching Learning Based Optimization) for orthogonal turning of Hard 
to Machine materials. The workpiece material in this work is Ti6Al4V alloys. After selecting cutting 
speeds in the High-Speed Machining range, orthogonal turning tests are performed on the material for 
a specific combination of machining parameters – Depth of Cut, Cutting Speed, and, Feed Rate. A 
Lathe Tool Dynamometer is used to record the cutting forces from the trials. After combining Johnson 
Cook Material and Damage models, a comprehensive Finite Element Model is created to model the 
Orthogonal Turning of Ti6Al4V alloys. Experiments conducted previously validate the developed 
model. Three different strategies, namely RSM, Taguchi, and TLBO, were used to optimise machining 
parameters for minimal Cutting Force. The approaches are compared for the best combination of 
machining parameters and the best Cutting Force value. Analysis of Variance is used to study the 
impact of machining factors on Cutting Force. 

© 2023 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

        
Ti-6Al-4V is the most often used titanium alloy in aerospace applications because of its excellent corrosion resistance, high 
strength-to-weight ratio, and fatigue capabilities at high temperatures (Olvera et al., 2012; Sahu et al., 2018; Bandapalli et al., 
2018; Jamil et al., 2019; Gao & Zhang, 2013; Pervaiz et al., 2014; Wu & Guo, 2014; Choudhary & Paul, 2019). Ti6Al4V, on 
the other hand, is difficult to machine because of the significant chemical reactivity of titanium with the tool material favours 
diffusion wear and strong bonding at the rake face, resulting in crater (Su et al., 2006; Oliaei & Karpat, 2016; Arrazola et al., 
2009; Davim, 2014), Titanium's limited heat conductivity raises temperatures at the rake face and cutting edge (Armendia et 
al., 2010; Ribeiro et al., 2003; Ezugwu et al., 2003; Liu et al., 2020; Hassanpour et al., 2016); segmented form of the chips 
causes cyclic pressures, which causes cutting edge surface fatigue (Pramanik, 2014). 
  
Boujelbene (2018) has experimentally studied the influence of different feed rate from 0.1 to 0.2 mm/rev. and cutting speeds 
in the range of 50 to 250 m/min on localized shearing and tangential cutting force during orthogonal turning of Titanium 
alloys. Keblouti et al. (2017) experimentally examined the influence of coating material and machining parameters on the 
performances of cutting tools. A prediction model was developed by Sahoo et al. (2015) using response surface methodology 
and artificial neural network during machining of AISI 1040 steel under dry environment and optimized the process 
parameters using surface plot. Nguyen (2020) used heat transfer equations to determine temperature distribution in the 
workpiece, cutting tool, and chip and a numerical model was developed for temperature distribution in PCBN cutting. 
Experiment and Numerical studies were conducted by Sahib and Nassrullah (2020) to investigate the effect of feed rate and 
cutting speed and uncoated and coated tools, in temperature distribution at cutting zone during turning process for steel AISI 
1010. Miroslav Lučić et al. (2020) simulated thermodynamic processes of machining and calculated the temperature fields on 
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the wedge of the cutting tool. Irfan et al. (2019) optimized machining parameters, during the CNC turning of EN-45 spring 
steel, of depth of cut, feed rate, and cutting speed. Surface roughness and MRR were considered as the responses in this work 
which used Taguchi method and regression analysis as the optimization methods.  
  
Korkmaz and Yasar (2021) numerically examined the effect of cutting parameters on the shear angles, chip morphology, and 
chip thickness during turning of AA6061-T6 alloys. Jaiswal et al. (2020) developed a numerical model using Abaqus® explicit 
6.14 software and is validated using experiments conducted during turning operation on heat-treated Titanium alloy. Javidikia 
(2020) numerically studied the influence of cutting conditions and tool geometry on chip thickness, machining forces, and 
cutting temperature during machining of Al 6061-T6. Sadeghifar et al. (2018b) optimized and identified optimal machining 
parameters to improve machinability and residual stresses produced by orthogonal turning 300M steel. Sadeghifar et al. 
(2018a) numerically predicted the machining characteristics including surface integrity characteristics including 
microstructural changes and residual stresses, cutting forces, tool wear, cutting temperature, chip morphology, and burr 
formation. Mir et al. (2018) experimentally and numerically studied the influence of tool rake angle in single point diamond 
turning of silicon. DNVPO et al. (2019) researched the residual stresses caused by milling in AISI 1045 steel. Statistical 
approaches were also used to determine the influence of the cutting parameters. By reducing the real part of the frequency 
response function, which measures how a cutting tool responds to a harmonic force, Saravanamurugan et al. (2021) optimised 
cutting tool shape and cutting parameters of the turning process. 
  
Zhuang et al. (2018) established an analytical model to predict the cutting forces during oblique turning. Zhou et al. (2019) 
studied the effect of cutting parameters on temperature, cutting force and residual stress. Asad et al. (2019) examined and 
optimized the effect of feed rate, and cutting speed, and tool rake angles on burr lengths. Optimization was done using Taguchi 
and RSM. Prakash et al. (2020) optimized material and cutting parameters for surface finish and Material Removal Rate 
(MRR) using Taguchi and Grey Relational Analysis (GRA). Sahu et al. (2019) used TLBO, JAYA and GA optimization 
strategies for the combined decrease of machined cutting forces and surface roughness in Ti-6Al-4V turning. Li et al. (2020) 
obtained the optimal machining condition under multi-objective optimization of surface roughness and cutting force using 
RSM and ITLBO. Çelik et al. (2017) analysed the effect of machining parameters (feed rate, cutting speed, cutting length, 
and depth of cut) on tool wear and surface roughness during dry turning of Ti-6Al-4V alloy. Rao (2019) optimized the process 
parameters in orthogonal turn milling of Silicon Bronze using TLBO technique.  
  
From the above literature review, it was understood that there are not enough literatures available on the comparison of 
available optimization techniques over optimization of orthogonal turning of Ti6Al4V alloys. In the available literature, either 
RSM and Taguchi or RSM and TLBO are compared.  The main objective of this work is to compare the different optimization 
techniques (RSM, Taguchi, TLBO) applicable to the present work. In this work Ti6Al4V alloys are used as the workpiece 
material. Orthogonal turning experiments are conducted on the material for a certain combination of machining parameters – 
Depth of Cut, Feed Rate, and Cutting Speed after selecting speeds in the range of High-Speed Machining. Cutting Forces 
from the experiments are noted using a Lathe Tool Dynamometer. Using the experimental results, the developed model is 
validated. Optimization of machining parameters for minimum Cutting Force was performed using three different techniques, 
namely RSM, Taguchi, and TLBO. The best combination of machining parameters and the optimal Cutting Force value from 
techniques are compared. Also, the effect of cutting parameters on Cutting Force is investigated in detail using Analysis of 
Variance (ANOVA). 
 
2. Experiment Details 
 
2.1 Work piece material  
 
Grade 5 Titanium alloy (Ti-6Al-4V) was the workpiece material used to conduct experiments. Cylindrical Specimens having 
35 mm dia. and 60 mm long were used. Table 1 shows the chemical composition of Ti-6Al-4V alloy and the important 
mechanical and thermal properties are given in Table 2.  
 
Table 1. % Composition and mechanical properties of Ti alloy. (Ali 2013) 

Constituents Ti C Fe N Al V H 
Composition  89.29 0.05 0.09 0.01 6.15 4.40 0.005 

 
Table 2. Mechanical and Thermal properties of Ti alloy (Ali 2013) 

Mechanical 
Density 
4428 Kg/m3 

Young’s Modulus 
113.8 GPa 

Poisson’s Ratio 
0.342 

Thermal 
Conductivity 
7.4 W/mK 

Specific heat 
611 W/m2K 

Coe. of linear expansion 
8.6E-6 /0C 
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2.2 Cutting tool material  
 
Coated carbide tool inserts of Kennametal make, are used in the turning of titanium alloys. Coated titanium nitrate TiN inserts, 
along with the tool holder PSBNR2525M12 (Tool geometry: clearance angle = 60, rake angle = 00) were used in this 
investigation. 
 
2.3 Experimental Details  
 
Dry orthogonal turning experiments were performed using a conventional lathe with 2.2 kW spindle power. The cutting forces, 
feed force, radial force, and tangential force, generated while machining is measured with the help of lathe tool dynamometer. 
Details of the data are given in Ramesh et al. (2015). In the current work, Depth of Cut (DoC), Feed Rate (FR), and Cutting 
Speed (CS) have been considered as machining parameters. The factors and their associated levels are given in Table 3. These 
values are selected in such a way that all the machining operations will fall under the High-Speed Machining category. 
Experiments were performed on a certain combination of machining factors and the cutting forces are recorded and shown in 
Table 4.       

 
Table 3. Cutting Parameters and their levels 

Parameters L1 L2 L3 
CS (rpm) 580 690 800 
FR (mm/revn.) 0.25 0.35 0.45 
DoC (mm) 0.1 0.15 0.2 

 

Table 4. Cutting forces obtained from experiments. 
CS (rpm) FR (mm/rev.) DoC (mm) Cutting Force 

(N) 
800 0.25 0.2 70.08 
800 0.35 0.2 74.87 
800 0.45 0.2 78.63 
580 0.25 0.2 70.34 

 

3. Analytical Models for Orthogonal Cutting 
 

Analytical models are relations connecting machining forces and cutting conditions based on the type of cutting. These models 
are simple to use, however they do necessitate prior knowledge of shear, medium friction, and chip angles (Chen et al., 2015). 
The use and accuracy of these models are limited because these values must be obtained experimentally. 

 
(i) Ernst & Merchant Model – Assumptions in this model are that the chip is considered as a rigid body, the chip is under the 
influence of forces from the rake face of tool and shear surface. Based on these assumptions the developed equation for shear 
angle is given by Eq, (1) (Shaw, 2005). 

 ∅ =  12 ቀπ2 + α − γቁ (1) 

 
where α is the rake angle of the tool and γ is the friction angle. But this model is considered oversimplified and does not 
include the effect of work hardening, strain, and strain rates during machining. 

 
(ii) Lee & Shaffer Model – In this model a slip line was used to model chip formation. The material in front of the tool acts 
as ideal plastic, and there is no hardening in the chip. The slip line field was triangular in shape and situated next to the tool's 
cutting edge. Based on these assumptions, the obtained equation for shear angle is given by Eq. (2) (Shaw, 2005). Work 
hardening, inertial effects, and heat effects during machining were not included in this model.  

 ∅ =  12 ቀπ2 + 2α −  2γቁ (2) 

 
(iii) Oxley’s Model – This model introduces the use of parallel sided shear zone model to analyse orthogonal turning. This 
model assumes primary shear zone thickness was a tenth of the length of the shear zone and plastic flow pattern occurred in 
this zone. Based on these assumptions, the derived expression for shear angle is given by Eq. (3) (Shaw, 2005). The main 
drawback of this model is that it requires stress – strain data at different temperatures and strain rates during machining. 

 ∅ =  50଴  −  0.8ሺγ −  αሻ (3) 
 

Using the above three equations the shear angle was calculated using the cutting condition (Cutting Speed = 800 rpm = 
1465.33 mm/s = 87.92 m/min, Feed Rate = 0.25 mm/revn, Depth of Cut = 0.2 mm). Then using Eq. (4) (Shaw, 2005), the 
corresponding cutting force was calculated and comparison with experimental cutting force is shown in Table 5. The error 
variations may be due to the assumptions used in the models. 

 𝐹௖  =  tbKcosሺ𝛽 − 𝛼ሻ   𝑠𝑖𝑛∅𝑐𝑜𝑠ሺ∅ + 𝛽 − 𝛼ሻ    (4) 

 
where t is the feed rate in mm/revn., b is the depth of cut in mm, and K is the Shear Strength of the material which is taken as 
760 MPa (Ran & Chen 2018). 



 14 

Table 5. Comparison of Cutting Force from Analytical Models with Experiment 
 Ernst & Merchant Model Lee & Shaffer Theory Oxley’s Theory From Experiments 

Cutting Force (N) 83.23 81.25 79.41 70.08 % Error 18.76 15.94 13.31 
 

Analytical approaches have severe limitations if they are to be applied to practical machining operations involving three 
dimensional effects and non-steady cutting conditions. The strain hardening of the workpiece material is not taken into account 
in the analytical models provided in the literature. Furthermore, temperature increases in the deformation zones as a result of 
plastic deformation and friction, resulting in material softening, are not considered. This means that any good model of the 
metal cutting process must be able to deal with a coupled mechanical and heat transfer problem. Such combined analysis can 
be performed using the finite element technique (FEM). The FEM produces results that are extremely near to real-world 
values, and as a result, it is currently a widely used numerical method. (Kohir, 2014). 

 4. Numerical Modelling of Orthogonal Turning Process 

Because of advances in computational efficiency and speed, finite element techniques (FEM) have become widely used in 
academic and industry applications in recent years. When compared to analytical models, FEM-based simulations have 
numerous advantages. Finite element cutting simulations can estimate process variables that are difficult or impossible to 
measure directly during the cutting process, such as effective stress, normal stress, temperature of chip, tool temperature, 
strain rate and strain. These parameters must be determined in order to understand the mechanics of the cutting process and 
undertake tool wear analysis (Kohir, 2014; Hribersek et al., 2018; Narayanan et al., 2020;  Jagadeesh & Samuel, 2015; Shi & 
Attia, 2010; Outeiro et al., 2015; Yaich et al., 2020). The numerical model is developed using ABAQUS/Explicit in this study. 
In order to estimate the impacts of machining parameters on the cutting force while the turning process of TI6Al4V alloy, a 
2D numerical model (Fig. 1) is first created. The workpiece is designed to be deformable, and the tool is designed to be 
analytically rigid. The tool's rake angle and clearance angle are assumed to be 00 and 60 degrees, respectively. The JC material 
model parameter for Ti6Al4V alloy used in this work is given in Table 6. 

 
Fig. 1. The geometry of 2D orthogonal cutting 

 
The model assumes that the plastic strain at the start of damage is a function of stress triaxiality and strain rate (Smith, 2009). 
The JC damage model parameters for Ti6Al4V alloy used in this work is given in Table 6. 

 
Table 6. JC Material Model (Kay 2002) and Damage Model Parameters (Johnson & Cook 1985) 

A MPa B Mpa C N m Tr (0C) Tm (0C) 𝜀ሶ଴ D1 D2 D3 D4 D5 
1098 1092 0.014 0.93 1.1 25 1680 10-5 -0.09 0.25 -0.5 0.014 3.87 

 
Initially a mesh convergence study is conducted. Surface to surface interaction is employed in this investigation, with a 
constant friction coefficient of 0.24. The workpiece's lower and left edges are both subjected to an encastre boundary 
condition. As the boundary condition, a determined velocity value is applied to the reference point on the tool in the negative 
x-direction. The tool's vertical displacement and in-plane rotation are also restricted. CPE4RT elements of the plane strain 
element type are employed in the model. The fracture energy, which is used to quantify the material deterioration that occurs 
once damage occurs in a workpiece, is changed in this study until the simulation results show a satisfactory agreement with 
the experimental results under the given cutting conditions (refer Table 4). In detail, on the given mesh condition, the initial 
value for fracture energy is estimated by; 

 𝐺௙ = ቆ1 − 𝜗ଶ𝐸 ቇ𝐾ூ௖ଶ 
 

(5) 
 

where KIc is the material's fracture toughness, which is equivalent to 45MPa√m (Chen et.al 2011). To retain the same energy 
density, the failure energy Gf should be adjusted for various cutting situations., as shown in Eq. 6, depending on the ratio of 
different characteristic lengths L1, L2.  
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(6) 

 
Simulations are carried out for combinations of machining parameters shown in Table 4 and validated the FE model results 
by comparing the values with experimental results and shown in Fig. 2.  The maximum deviation is found to be 2.54%. 

 

 
Fig. 2. Validation of Numerical model with Experimental Results 

 
In the validated model, by changing the tool and workpiece geometry and modifying the fracture energy value based on Eq. 
(6), simulations are run for all combinations obtained from Minitab for different optimization techniques. Cutting forces are 
measured as reaction forces at the reference point on the tool. 
 
5. Optimization Techniques (RSM, Taguchi & TLBO) 
 
5.1 Introduction to Response Surface Methodology (RSM) 
 
The impact of machining parameters on cutting force was investigated using the DoE programme Minitab 18. To identify the 
number of trials to be considered for the optimization of variables, central composite design technique is utilized. A typical 
central composite design, named Face Centered Design is used in this analysis (Aydar, 2018; Palanikumar et al., 2008). Based 
on these, 20 trials were generated, and simulations are run in the validated model for each trial. The 20 trials and the cutting 
force noted in each trial are shown in Table 7 below. 
 
Table 7. 20 RSM Trails and Cutting Force  

Trial No. CS (rpm) FR (mm/revn.) DoC (mm) Fc (N) 
1 580 0.35 0.15 74.85 
2 800 0.25 0.2 71.17 
3 690 0.35 0.15 70.93 
4 690 0.35 0.15 70.93 
5 800 0.45 0.1 70.31 
6 580 0.45 0.2 78.87 
7 800 0.35 0.15 69.32 
8 580 0.25 0.2 70.34 
9 580 0.25 0.1 60.01 
10 690 0.45 0.15 74.48 
11 800 0.25 0.1 62.83 
12 690 0.35 0.15 70.93 
13 690 0.35 0.15 70.93 
14 690 0.25 0.15 67.73 
15 690 0.35 0.2 74.53 
16 800 0.45 0.2 80.63 
17 690 0.35 0.15 70.93 
18 580 0.45 0.1 71.12 
19 690 0.35 0.15 70.93 
20 690 0.35 0.1 67.73 

 
ANOVA is performed for the cutting force values and the Rsqu. value is noted. This value shows how the better the model 
fits your data. In the ANOVA confidence interval of 5% is used. So, the terms having P-value greater than 0.05 are considered 
as non-significant terms and are removed from the ANOVA. Further, ANOVA is performed again with significant terms and 
the regression equation of response surface obtained. Main effect plot is plotted to identify the influence of machining 
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parameters on cutting force. Using the response optimizer option available in the software, the optimum combination of 
machining parameters is identified. 
 
5.2 Introduction to Taguchi 

Taguchi explains how to use experimental design to design products/processes that are resistant to environmental conditions, 
as well as to design and develop products/processes that are resistant to component variation, and to minimise variation around 
a target value. The Taguchi approach to design of experiments (DOE) has a high widespread adoption, allowing users to apply 
it with only a basic understanding of statistics. As a result, it has received significant use in engineering applications (Peksen 
& Kalyon, 2021). Numerous tests must be performed as the number of process parameters increases. The Taguchi technique 
solves this problem by studying the whole parameter space with a minimal number of experiments using a particular design 
of orthogonal arrays. The difference between the experimental and intended values is then calculated using a loss function. 
The S/N ratio is computed for each level of process parameters based on the S/N analysis. In addition, an analysis of variance 
(ANOVA) is used to determine whether process factors are statistically significant. If the goal is to limit variability around a 
certain target, nominal the best is utilised; lower the better if the system is optimised for the largest possible reaction, and 
larger the better if the system is optimised for the smallest possible response. The optimal factor levels are those that optimise 
the proper S/N ratio. The requirement of this work was to discover the optimal combination of machining settings for reducing 
Cutting Force. In this investigation, a smaller-the-better quality feature was used since lower Cutting Force reflects better or 
enhanced surface condition and tool life. An orthogonal array specifies the number of trials required to determine the best 
suited factors for use in the manufacturing or design of a product (Murthy et al., 2017). In this work L27 OA is used to find 
the best combination of cutting parameters which minimises the cutting force. Table 8 shows the different combination of 
machining parameters based on this array using Minitab18. Simulations were carried out for each of these trails in the validated 
FE model and the corresponding cutting forces are noted and shown in Table 8. 
 
Table 8. 27 Taguchi Trails and Cutting Force  

Trial No. CS (rpm) FR (mm/revn.) DoC (mm) Fc (N) S/N Ratio 
1 580 0.25 0.1 60.01 -35.5645 
2 580 0.25 0.15 71.13 -37.0411 
3 580 0.25 0.2 68.93 -36.944 
4 580 0.35 0.1 63.31 -36.0294 
5 580 0.35 0.15 74.85 -37.4838 
6 580 0.35 0.2 66.67 -36.4786 
7 580 0.45 0.1 71.12 -37.0398 
8 580 0.45 0.15 77.62 -37.7995 
9 580 0.45 0.2 78.87 -37.9382 

10 690 0.25 0.1 59.63 -35.5093 
11 690 0.25 0.15 67.33 -36.5642 
12 690 0.25 0.2 69.23 -36.8059 
13 690 0.35 0.1 67.73 -36.6156 
14 690 0.35 0.15 70.93 -37.0166 
15 690 0.35 0.2 74.53 -37.4466 
16 690 0.45 0.1 70.08 -36.9119 
17 690 0.45 0.15 74.48 -37.4408 
18 690 0.45 0.2 76.87 -37.7151 
19 800 0.25 0.1 66.83 -36.4994 
20 800 0.25 0.15 66.68 -36.4799 
21 800 0.25 0.2 71.17 -37.0459 
22 800 0.35 0.1 66.52 -36.459 
23 800 0.35 0.15 69.32 -36.8172 
24 800 0.35 0.2 76.63 -37.251 
25 800 0.45 0.1 70.31 -36.9403 
26 800 0.45 0.15 73.38 -37.3116 
27 800 0.45 0.2 80.63 -38.0215 

 
5.3 Introduction to Teaching Learning Based Optimization (TLBO) 
 
TLBO approach is based on the impact of a teacher's influence on the production of students in a classroom. The algorithm 
simulates a teacher's and students' capacity to teach and learn in a classroom. The method is depicted in a flow chart (Sahu & 
Andhare2015). The algorithm explains two primary forms of learning: learning through a teacher (known as the teacher phase) 
and learning by engaging with other learners (known as the learner phase). Furthermore, learners benefit from their 
interactions with one another, which helps them improve their performance. The population size (values of feed, cutting speed, 
and depth of cut within a specific range) is examined in this method, and design variables (such as feed, cutting speed, and 
depth of cut) are considered as distinct subjects offered to learners. TLBO code was generated using MATLAB R2017a.  
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6. Results and Discussions 
 
6.1 Analysis of Variance for Cutting Force using RSM 

In this work, DoE software Minitab 18 was used to analyse the influence of machining parameters on cutting force. The 
central composite design method is used to determine the number of experiments to be evaluated for the optimization of the 
variables and responses. A typical central composite design, named Face Centered Design is used in this analysis. Based on 
these, 20 trials were generated, and simulations were run in the validated model for each trial. The 20 trials and the cutting 
force noted in each trial are shown in Table 7. ANOVA was performed for the cutting force values and the R squ. value was 
found to be 92.78%, which is close to a cent percent. This shows how the better the model fits your data. It was found that the 
square term of depth of cut and interaction between cutting speed & feed rate and interaction between feed rate & depth of 
cut are insignificant terms. Hence, these terms are removed, and ANOVA is performed again. The regression equation 
obtained for cutting force is given in Eq. (7). 
 Fc = 43.33 − 0.00085 ∗ CS + 43.33 ∗ FR + 87.08 ∗ DoC + 0.000001 ∗ CS ∗ CS − 0.00001 ∗ FR ∗ FR + 0.00001∗ CS ∗ DoC 

(7) 

 
6.1.1 Influence of machining parameters on Cutting Force 

 
The fluctuation of cutting force with machining parameters is shown in Fig. 3. According to this diagram, the feed rate and 
depth of cut have a considerable impact on cutting force. Cutting speed has a less impact on cutting force, possibly because 
increasing speed does not result in a large temperature change in the quickly moving primary shear zone. When it comes to 
feed rate and depth of cut, more material comes into contact with the tool in a given amount of time. As a result, it takes 
greater force to remove the material (Sumesh & Ramesh, 2018). 
 

 
Fig. 3. Variation of Cutting Force with Machining Parameters 

Fig. 3(a)-(c) show variation of cutting force with two machining parameters in 2D and 6(d)-(f) represent the variation 
of cutting force with two parameters at a time in 3D plot. In these figures, the same trend observed in Fig. 3 can be 
noticed. 
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(b) 

(e) 

 
(c) 

 
(f) 

 

  
Fig. 3. Variations of Cutting Force with Machining Parameters 

 
Using the desirability function, the optimal combination of machining parameters was identified. The desirability value is D 
= 0.9287 and the optimized machining parameters are CS = 671.1 rpm, FR = 0.25 mm/rev. and DoC = 0.1 mm. The 
corresponding cutting force is 61.48 N. 
 
6.2 Optimization of Machining Parameters using Taguchi Method 

Since it is selected as lower magnitude of Cutting Force (Fc) is the better type quality characteristic, from Fig. 5, it can be 
seen that the second level of cutting speed (A2) = 690 rpm, first level of feed rate (B1) = 0.25 mm/rev, and first level of depth 
of cut (C1) = 0.10 mm results in minimum value of Cutting Force. It is observed from Fig. 5 that Fc is almost constant with 
an increase in cutting speed, but with a decreasing trend. The Fc is continuously decreased with increase in feed rate and for 
depth of cut. 

 
Fig. 5. Mean Plot of S/N Ratios for Cutting Force 
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From the ANOVA analysis for Cutting Force using Taguchi, after calculating percentage contribution for all control factors, 
it is found from the Tables 9 and 10, feed rate and depth of cut are the most significant control factors for cutting force. 
 

Table 9. Response Table for Signal to Noise Ratios 
Level CS (rpm) FR 

(mm/revn.) 
DoC (mm) 

1 -36.90 -36.84 -36.40 
2 -36.89 -36.89 -37.11 
3 -37.04 -37.47 -37.34 

Delta 0.15 0.99 0.94 
Rank 3 1 2 

 

Table 10. Response Table for Means 
Level CS (rpm) FR 

(mm/revn.) 
DoC (mm) 

1 70.28 66.77 66.17 
2 70.09 70.05 71.75 
3 71.27 74.82 73.73 

Delta 1.18 8.05 7.55 
Rank 3 1 2 

 

 
The optimum combination of machining parameters obtained are Cutting Speed = 690 rpm, Feed rate = 0.25 mm/revn., and 
Depth of cut = 0.1 mm. and the corresponding Cutting Force obtained is 60.88 N. 
 
6.3 Optimization of Machining Parameters using TLBO 

The major aim of this work is to find the best machining parameters for reducing cutting force. The turning process was 
written in a conventional optimization problem format that could be addressed with a numerical optimization technique for 
this purpose. Standard optimization problem definitions call for the minimization of an objective function and the satisfaction 
of constraint functions in terms of optimization parameters (Sahu & Andhare 2015). 
The optimization challenge for Ti-6Al-4V machining is as follows: 
 

Objective Z = Min Fc (CS, FR, DoC) (8) 
                                                                                              
During the optimization process, the ranges of allowable modifications in the input parameters are:  
 𝐶𝑆௠௜௡ ≤ 𝐶𝑆 ≤ 𝐶𝑆௠௔௫            𝐹𝑅௠௜௡ ≤ 𝐹𝑅 ≤ 𝐹𝑅௠௔௫      (9) 𝐷𝑜𝐶௠௜௡ ≤ 𝐷𝑜𝐶 ≤ 𝐷𝑜𝑐௠௔௫  
 

Table 3 shows the low, middle, and high values for the variables. The objective function is the expected model for cutting 
force developed using RSM, i.e. Eq. (7). The problem is then solved using the Teaching Learning Based Algorithm (TLBO). 
The TLBO code, written in MATLAB code and used for the optimization of cutting force. This approach is repeated until the 
best solution is consistently reached by repeating Teacher Phase and Learner Phase. The optimal combination of Cutting 
parameters produced by the TLBO method is cutting speed = 580 rpm, feed rate = 0.25 mm/revn., and depth of cut = 0.1 mm 
and the corresponding Cutting Force obtained is 62.38 N. 
 
6.4 Comparison of Optimized Values of Cutting Force 

Table 11 shows the comparison of three optimization techniques, namely RSM, Taguchi, and TLBO. It can be found that feed 
rate and depth of cut values obtained from three techniques are the same and the cutting speed values are different. Also, the 
cutting force value predicted by all the three methods are almost same. 
 
Table 11. Comparison of RSM, Taguchi, and TLBO Results 

Sl. No. Optimization Technique CS (RPM) FR (mm/revn.) DoC (mm) Cutting Force (N) 
1 Using RSM 671.1 0.25 0.1 61.48 

2 Using Taguchi 690 0.25 0.1 60.88 

3 Using TLBO 580 0.25 0.1 62.38 

 
Confirmation tests were carried out at CS = 690 rpm, FR = 0.25 mm/revn., and DoC = 0.1 mm combination of machining 
parameters in the validated numerical model, which produces minimum cutting force of 60.88 N, and the results are shown 
in Table 12 below. It was found that, the error variation of cutting force obtained from the finite element model with the 
experiments is less than 2%. This means that the developed model can be used to find the cutting force for any combination 
of machining parameters effectively.  
 
 
Table 12. Confirmation Test Results 

Machining Combination Cutting Force, N 
From optimization From Experiment From Simulation 

CS = 690rpm 
FR = 0.25 mm/revn. 

DoC = 0.1 mm 
60.88 58.86 

 59.63 
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7. Conclusions 
 
The present work aims at comparison of available optimization techniques, RSM Taguchi and TLBO for the Orthogonal 
Turning processes. Experiments were conducted for different values of Cutting Speed, Feed rate and Depth of cut and 
measured the cutting force. Some popular analytical models such as Merchant’s, Lee & Shaffer and Oxley’s were considered 
for modeling the orthogonal turning process. But due to the disadvantages of the analytical models, further studies were carried 
out using FEM. A numerical model was developed to simulate the orthogonal turning process and the same is validated with 
experimental results. To compare and find the optimal machining parameter combination, initially RSM was used for 
optimization and to investigate the effect of machining parameters. Further, another optimization technique Taguchi was used 
for the analysis. Next, advanced algorithm TLBO was used to find the optimal machining parameter combination. The results 
obtained from the three techniques were compared. The main conclusions from this study are: 
 

1. Analytical models such as Ernst & Merchant, Lee & Shaffer and Oxley’s were considered in this study. The Cutting 
Force values obtained from these models are compared with Experimental values. The error percentage found was 
high. It may be due to non- consideration of stain, strain rates and temperature during machining, in the models. 

2. Developed numerical model is validated with experiments conducted and it was found that the model can be used 
for effective prediction of the cutting force. 

3. In general, it was found that cutting speed has less influence than feed rate and depth of cut on cutting force (Fc) 
value. Thus, lower values of feed rate and depth of cut will produce minimum cutting force. 

4. From the RSM results on influence of machining parameters on cutting force, it was obtained that the feed rate and 
depth of cut have significant influence on cutting force. Also, it was observed that cutting speed has less influence 
on cutting force. Increase in cutting speed increases temperature in the primary shear zone, which softens the material 
and thereby reduces the cutting force. When the feed rate and depth of cut increases, more material comes in contact 
with the cutting tool, which increases the cutting force. Minimum cutting force happens at low values of feed rate 
and depth of cut. 

5. From the Taguchi Optimization results, it was observed that low values of depth of cut and feed rate second level of 
cutting speed will produce minimum cutting force. Also, it was found that, feed rate and depth of cut are the 
significant parameters for minimum cutting force. 

6. Based on the comparison of different optimization techniques like RSM, Taguchi, TLBO, it was found that all models 
can be used successfully to predict cutting force during orthogonal turning of Ti6Al4V alloys. 

7. Confirmation simulations were ran on the validated model and found that results are well acceptable, and the 
variations are within less than 2% only. This means that the developed model can be used to predict cutting force 
during orthogonal turning of Ti6Al4V alloys accurately. 
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