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 Gas Metal Arc Welding (GMAW) is an extensively implemented arc welding process through the 
control of input process parameters and the metal from the filler wire. Despite its popular use in various 
industries, the complex interrelationship between the actual bead and the varying welding parameters 
makes it challenging to predict appropriate bead geometries via mathematical modeling in a 
continually changing welding process. In this study, the Regression Learner App was used to compare 
the performance of supervised Machine Learning (ML) predictive models comprising the Linear 
Regression (LR), Regression Tree (RT), Support Vector Machine (SVM), Ensembles of Tree (ET), 
Gaussian Process Regression (GPR), and Artificial Neural Network (ANN) using GMAW dataset. 
The dataset was scaled and normalized at a range of -1 to +1 to facilitate the visualization of the 
variation effect. The wire feed speed, voltage, weld velocity, unmelted wire length, and melted wire 
volume were considered as the input parameters to predict the bead geometry. In addition, the five-
fold cross-validation was employed to avoid overfitting and poor generalization. Finally, statistical 
indicators, namely the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and 
Mean Absolute Error (MAE), were performed on all developed models to evaluate their performance. 
Thus, the fine tree and ANN models achieved the highest prediction accuracies of 88–91%, signifying 
their potential use in future research. In short, the present study demonstrated the performance of 
various supervised ML algorithms for bead geometry prediction, which would assist the selection of 
appropriately supervised ML algorithms in future studies. 

© 2023 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

        
     Gas Metal Arc Welding (GMAW) is implemented in various industrial processes, particularly for ferrous and non-ferrous 
materials, given its exceptional welding quality, high efficiency, straightforward automation in manufacturing, and low-cost 
production for the development of arc welding. Proper control of certain input process parameters and the metal from the 
filler wire in the GMAW process would ensure the metal from the electrode passes through the arc and is deposited in a 
uniform layer on the base metal called bead (Tham et al., 2012). Such principles can be applied by essentially controlling the 
power (voltage and current), where the voltage is governed by the arc length, which correspondingly relies on the diameter of 
the electrode. Moreover, the voltage and current are set according to the welding position and the size of the workpiece 
(Kamble & Rao, 2013).  
 
     In view of this, the control of the bead geometry through several process factors, such as the welding voltage, welding 
current, welding velocity, wire feed speed, and Contact Tip to Work Distance (CTWD), is crucial in welding processes since 
they influence the mechanical properties of the weldment. Despite the growing significance of bead geometry prediction to 
minimize the duration and material in unnecessary trials across numerous industrial applications, the complex interrelationship 
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between the actual bead and different welding parameters makes it complicated to determine the most suitable mathematical 
model for the bead geometry prediction in a constantly changing welding process (Wu et al., 2017). Thus, the application of 
supervised Machine Learning (ML) algorithms has been investigated to address this problem.  
 
    Generally, ML is a subtheme of computer science that explores a limited set of input data to construct valuable algorithms 
capable of learning from and establishing data-driven predictions. Notably, supervised learning refers to the ML task of 
inferring a function from a set of labeled training data with a given target response (Hastie et al., 2009). Following the ‘No 
Free Lunch’ theorem (Wolpert and Macready, 1997) interpretation, there is no universal ML method that concisely provides 
the best results in terms of predictions based on all sets of potential data (Wolpert, 1996). In other words, it is not possible to 
select the proper algorithm in advance. Hence, the most appropriate method to determine the performance analysis of bead 
geometry prediction is by evaluating different variants of supervised ML algorithms. 
 
     Several conventional computational models have been developed to predict bead geometry, which include the Submerged 
Arc Welding (SAW) process modeling via Linear Regression (LR) (Yang et al., 1993) and the Metal Inert Gas (MIG) process 
modeling via the second-order regression analysis (Fauzi et al., 2018). However, a recent study (Dong et al., 2016) highlighted 
that the key drawback of these models was their poor precision due to the difficulty to establish a reliable formula that includes 
all the processing complexities. Interestingly, the advanced research of ML models in recent years has prompted the 
development of Artificial Neural Network (ANN) that exploits a vast amount of data to learn the input-output correlation and 
offers a better capability to predict non-linear processes. The prediction of weld features using ANN has been reported by 
several researchers. For instance, Dutta and Pratihar (2007) recorded superior bead geometry prediction using the ANN model 
obtained through the Tungsten Inert Gas (TIG) welding process compared to the prediction based on LR approaches. A similar 
investigation agreed that the ANN model outperformed the regression model (Tafarroj and Kolahan, 2018).  
 
     In addition to ANN, other ML approaches, such as Support Vector Machines (SVMs), have been evaluated in past studies 
to predict the weld properties. Previously, Dong et al. (2017) reported the effective use of an SVM to predict the backside 
weld bead shape for online weld quality control. In another study, Liang et al. (2019) presented an enhanced accuracy of the 
bead penetration prediction from the weld pool surface using the Support Vector Regression (SVR) compared to the ANN 
model. Based on the above-mentioned reports, ML models are effective measures to predict bead geometry in any welding 
process. 
 
     While the applicability and effectiveness of ML algorithms on predictive bead geometry modeling expands progressively, 
there is yet any research that attempts to thoroughly compare the performance of different ML algorithms for optimum bead 
geometry prediction. Therefore, this study was aimed to compare the performance of various ML models comprising Linear 
Regression (LR), Regression Tree (RT), Support Vector Machine (SVM), Ensembles of Trees (ET), Gaussian Process 
Regression (GPR), and Artificial Neural Network (ANN) to accurately predict the bead geometry based on varying 
parameters, including wire feed speed, voltage, weld velocity, unmelted wire length, and melted wire volume using the 
Regression Learning App in GMAW process. The performance indicators, namely Coefficient of Determination (R2), Root 
Mean Squared Error (RMSE), and Mean Absolute Error (MAE), were used to validate the accuracy of each proposed model. 
The results of this study would facilitate a greater understanding of the bead geometry prediction using ML algorithms and 
establish precise research goals accordingly. 
 
2. Materials and Methods 
 
2.1 Experimental Details 
 
     This study employed the bead-on-plate approach to deposit weld metal on the surface of a 300 mm × 40 mm × 6.35 mm 
base metal, which is composed of a flat carbon steel sheet piece with the addition of a filler wire ER770S with a diameter of 
1.2 mm. All materials and preparation were based on the AWS A5.18 specification for carbon steel electrodes and rods for 
the GMAW standard, as stipulated by the American Welding Society. A TIME 5000 Digital power source was used to supply 
the welding power, while a state machine implemented in the control interface was used to determine the operational 
parameters and measure the arc variables (welding voltage and welding current) and the welding power source status.  
Meanwhile, a flat welding table was developed in the Automation and Control Group laboratory of the University of Brasilia 
as a platform to place and secure the piece to be welded and allow the specimen to move linearly in one direction. The welding 
table was equipped with a stepper motor control circuit with control signals to modify the direction, speed, and travel time of 
the starting and end points of the weld beads. For each experiment, the working angle and CTWD were fixed at zero degrees 
(0°) and 15 cm, respectively, while the speed of the wire feed was set directly proportional to the welding current 
(Chandrasekaran et al., 2019). The shielding gas was composed of 96% Ar and 4% CO2. The developed bead geometry was 
then revealed by polishing and etching the welded samples with 2.5% Nital solution. Subsequently, macrographic evaluation 
was employed in the same longitudinal direction as the torch movement to measure the developed bead geometry.  
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2.2 Dataset Description 
 
     A data-driven model was built in this study using a GMAW process dataset from reference (Martinez et al., 2021) that 
contains 2,170 records with eight attributes from the experimental results and was 10 times higher than the quantity of the 
input variables (Hastie et al., 2009). As shown in Table 1, the statistical features of the gathered datasets were divided into 
five input parameters to construct different prediction models, which include the direct input parameters (wire feed speed 
(Ws), voltage (V), and weld velocity (Wv)) and indirect input parameters (unmelted wire length (Ul) and droplet or melted 
wire volume (Mv)). These parameters were modified during the process and influenced three output parameters of the bead 
geometry (bead width (Width), penetration depth (Depth), and reinforcement height (Height)). The column Mean represents 
the average values, while the columns Min and Max refer to the minimum and maximum values of each variable. The final 
column Std presents the standard deviation over the requested variable. The respective inputs and outputs were used to develop 
the predictive bead geometry model.  
 
Table 1. Statistical features of the gathered datasets 

 Parameter Notation Mean Min Max Std 
Input Wire feed speed (m/min) Ws 6.38 4.80 8.20 1.06 
 Voltage (volt) V 26.09 17.00 32.00 3.63 
 Welding velocity (mm/s) Wv 9.99 6.20 13.40 1.90 
 Unmelted wire length (mm) Ul 13.78 9.00 15.00 1.12 
 Melted wire volume (mm3) Mv 0.74 5.6×10-5 10.54 0.98 
Output Penetration depth (mm) Depth 1.95 0.00 3.62 0.89 
 Reinforcement height (mm) Height 1.77 0.00 3.33 0.86 
 Bead width (mm) Width 5.94 2.67 8.21 1.28 

 
2.3 Exploratory Data Analysis 
 
     This section explores the effect of input variables on bead geometry through the Pearson correlation calculations. Fig. 1 
illustrates the correlation matrix that relates the correlated values and correlations between the depth, height, and width 
features. The correlated values indicate the correlation strength, where a correlation value lower than zero indicates a negative 
correlation while a zero value indicates no correlation. Based on Fig. 1(a), the Depth was inversely proportional to Wv and 
Ul but directly proportional to Ws and V. The decrease in-depth with the increase in Wv was due to the shorter period for the 
arc force to penetrate the surface of the base metal. In addition, since the Ul regulates the degree of heating resistance of the 
wire before it melts in the weld pool, a shorter Ul leads to a smaller heating effect and deeper penetration, and vice versa. 
Considering the Mv value, which promotes the fluid motion in the weld pool, the penetration depth increases as the Mv 
increases (Kim and Na, 1995). Besides, the increase in V and Ws caused more molten metal to be deposited in the groove, 
hence, increasing the Depth (Kamble, and Rao, 2013).  
 
     In contrast, Fig. 1(b) shows that the Height decreased with the increase in Ws, V, Ul, and Mv. However, a smaller Wv 
increased the metal deposited per unit length, resulting in larger Height. Additionally, an increase in V caused more melting 
of the base metal, resulting in a slight Height increase. Conversely, the increase in Ws led to less deposition of molten metal 
on top of the base metal, consequently decreasing the Height (Kamble    &  Rao, 2013). Furthermore, Fig. 1(c) depicts that the 
increase in Width correlates directly with the increase in Ws and V but inversely decreases with the increase in Wv and Ul. 
The increase in V formed wider, flatter, and less penetrated weld beads. Moreover, the increase in Ws corresponded to the 
higher amount of deposited metal on the base metal and increasing the Width. A higher Ws also decreased both the volume 
of deposited metal and the heat input per unit length (Kamble   &  Rao, 2013). 
 

(a) (b) (c) 
 

Fig. 1 Correlation matrix among all the features with: (a) Depth, (b) Height, and (c) Width 
 
 

 



 178 

2.4 Data Preprocessing  
 
    The collected data consists of a broad range of values and is unfit to be trained by the ML models in their original form. 
Therefore, each dataset was normalized within the range of -1 to +1 (Singh and Singh, 2020). The plot matrix of the normalized 
data is shown in Fig. 2: 

,
,

min( )
2 1

max( ) min( )
i n i

i n
i i

x x
x

x x
− ′ = × − − 

 (1) 

where ,i nx′  represents the final form of the normalized data, ,i nx refers to the value to be normalized, and max( )ix  min( )ix  

are the maximum and minimum values of thi attribute, respectively. 
 

  
(a) (b) 

 
(c) 

 
Fig. 2 Plot matrix of normalized dataset with: (a) Depth, (b) Height, and (c) Width 

 
      Following the normalization, the dataset was randomly divided into two groups, namely the training set and the test set. 
Accordingly, the training set contains 70% dataset and was used to develop the models via supervised learning. The remaining 
30% dataset in the test set was utilized to evaluate the network performances and generalization capabilities. 
 
2.5 ML Models  
 
      The Regression Learner App was employed for the ML analysis, and the comparison was performed for three datasets, 
including training, testing, and overall, using a desktop Intel Core i7-4770 CPU @3.4 GHz, 16 GB RAM. The parameters in 
the proposed models were updated during the training to obtain the most accurate predictions. The identified parameters were 
then saved into a file and are referred to as the model. The model is fixed once it is saved unless additional training was 
performed and the file was overwritten using the new parameters. Table A.1 presents the parameter settings of the proposed 
models. 
 
2.5.1 Linear Regression (LR) 
 
      LR is one of the easiest supervised learning algorithms and is applied to analyze the relationship between a dependent 
variable and a single independent variable, referred to as the Simple Linear Regression (SLR), or more than one independent 
variable, known as Multiple Linear Regression (MLR). The LR relationship is modeled to predict the future state of the 
dependent variable based on linear equations, which contrasts with non-linear regression models that are developed using 
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non-linear equations (Tripepi et al., 2008). The regression line is employed to acquire the relevant information, which is 
derived using Eq. (2): 
 

0 1y xβ β ε= + +   (2) 

where y  is the predicted dependent variable value, 0 1,β β  are the intercept and slope, respectively, x  is a given independent 
variable value, and ε  is a random component. 
 
      MLR can be used to interpret the relationship direction between the dependent variable and the independent variables. 
The independent factors explain the whole variation in the dependent variable. Eq. (3) describes the mathematical model of 
MLR for a total of n number of independent variables: 
 

0 1 1 2 2 ... n ny x x xβ β β β ε= + + + + +   (3) 
 
where 1 2, ,..., nβ β β  are the regression coefficients of 1 2, ,..., nx x x , respectively. As other independent variables are fixed 

in the MLR model, the slope iβ  corresponds to the increased dependent variable ( )y  as a result of the unit increment in the 

respective independent variable ( )ix  (Montgomery et al., 2021). 
 
2.5.2 Regression Tree (RT) 
 
     RT has received considerable interest ever since it was first proposed by Leo Breiman in 1984 (Loh, 2011). Basically, a 
case is denoted as ( , )x y , where x  and y represent the attribute vector and target, respectively, and a regression function is 
utilized to evaluate the impact of x on y when the relationship between x  and y  is altered. The construction of an RT involves 
three consecutive steps: (1) applying a learning dataset for tree growth; (2) utilizing a test dataset or cross-validation for tree 
pruning; and (3) selection of the best-pruned tree. 
 
     RT makes use of the Decision Tree (DT), which is a powerful decision support tool in ML. DT follows the concepts of 
training, validation, and test sets, as well as the concern of overfitting versus under-fitting. While a tree is, graph-theoretically-
speaking, the fundamental model in DT learning, it is crucial to recognize a stylized control flow that overlays the tree 
structure. Primarily, a decision-type question is inquired at each inner node of the tree, which also contains the root. The next 
child node is determined according to the given response. Finally, the leaf node represents the classification of the dataset 
since each leaf node exhibits its class level. DT learning has the advantage of solving more complex decision boundaries 
compared to other learning methods, such as logistic regression. Moreover, DT learning is beneficial for non-linearly isolated 
samples due to the absence of a hyperplane that segregates samples into two different classes. However, the capacity of DTs 
to describe complex decision boundaries can be a trap in itself as a result of the potential occurrence of overfitting unless other 
methods are used, such as the “pruning the tree” technique. The intended output is evaluated by assigning a value to each final 
region. As given in Eq. (4), the tree is referred to as a function defined by h  with jR  referring to the disjoint areas allocated 
to each leaf of the DT: 

{ }
1

( ) 1
j

j

j x R
j

h x b
∈

=

=  (4) 

 
     All types of RTs, namely fine tree, medium tree and coarse tree, were employed in this study. 
 
2.5.3 Support Vector Machine (SVM) 
 
      SVMs, which were developed by Vladimir Vapnik in the 1990s in accordance with the statistical learning theory, is widely 
used in classification applications. Generally, an SVM measures the extreme boundaries and draws the edges, usually termed 
hyperplanes, which separate the dataset into two classes. The data points on either side of the hyperplane that is closest to the 
hyperplane are called Support Vectors (SVs) which are used to plot the boundary line. Given that non-ideal decision limits 
would misclassify new data points, extreme data assists in identifying the limitations called support vectors and they are 
inclined to dismiss the training data points (Mur et al., 2020). Unlike classical regression analysis, which refers to the 
identification of the function ( )f x  with minimal difference between the empirically experimental responses and predictions 
for all training datasets, one of the key elements of SVM is the persistence to achieve optimum generalized performance with 
the smallest generalized error limit compared to the smallest observed training error. The generalized error limit describes the 
combined arrangement term, which minimizes the complex collection of functions as well as the training error. 
 
       A training set in the regression process is expressed as the following: 
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( ) ( ) ( ){ }1 1 2 2, , , ,..., ,m mZ x y x y x y=  (5) 

where mx  and my  are the independent and dependent variables of the regression model, respectively. 

( ) ( )
1

,
n

i i i i
i

y x x bα β
=

= − × +  (6) 

where b  defines the biasness and both iα  and iβ  represent Lagrange multipliers. In terms of non-linear cases, the added 
Kernel function in the modified equation is expressed as: 

( ) ( )
1

,
n

i i i i
i

y k x x bα β
=

= − × +  (7) 

where ( ), ik x x  is the Kernel function. Note that this study utilized all the Kernel functions, including linear, quadratic, 
cubic, and Gaussian terms. 
 
2.5.4 Ensembles of Tree (ET) 
 
     Apart from a relatively swift training process and the ability to tolerate massive amounts of data, DTs are prevalently 
applied since they often provide a discreet visual representation of the categorization of ML systems. DTs are also frequently 
exploited in ensemble learning approaches, such as boosted trees and random forests. Meanwhile, overfitting is specifically 
well-served through bagging methods. The bagging is a major class of ML algorithms that contains random forests, where 
multiple DTs are learned in random forests before they are combined to form a single graph-theoretic forest. Numerous DTs 
in the forest categories are characterized by the new feature vectors. The final classification is performed by integrating these 
individual categories. 
 
     DTs exhibit a restricted generalization although it is one of the most effective and understandable classification methods. 
Consequently, the samples in DTs are exposed to a low biasness but a substantial variance. Instead of applying a single DT, 
multiple DTs are joined together to provide enhanced prediction results, which forms the basis of ET. The working principle 
of ET is to generate a strong learner by uniting a number of weak learners (Mendes-Moreira et al., 2012). Among the most 
typical ET training approaches are bagging and boosting. Although both approaches have different strategies to generate the 
selected trees, all data for each new tree-building was randomly chosen.  
 
      Combining an RT and boosting forms a hybrid boosted tree, which is repeatedly fitted with various DTs, including the 
random forest model, to enhance the accuracy of the model. In contrast, the baggage approach is applied in the random forest 
model, which records a similar probability for the selection of successive samples for each occurrence. The input data are 
weighted in the trees and boosted tree is utilized as a boosting strategy. Since the weights are imprecisely estimated for this 
model, the prior tree is chosen as the new tree. In short, the primary tree fitted to the model would explain the inaccuracy and 
be designated as a new tree. Hence, a more powerful model with enhanced accuracy is achieved by taking the old tree against 
a new tree.  
 
       Furthermore, the variance of a DT can be reduced by employing a bagging tree. Theoretically, numerous data subsets 
from the training sample are formed, which are randomly selected through replacement. Each data subset is then applied to 
train the corresponding DT model, resulting in numerous new models. The average predicted value from several trees is finally 
employed, which is more accurate and powerful compared to the use of a single DT. 
 
2.5.5 Gaussian Process Regression (GPR)  
 
      A GPR is made up of an infinite group of random variables with a fixed joint Gaussian distribution in any of its finite 
subsets. The model is characterized by a mean function and a covariance function (Richardson et al., 2017). Since the GPR is 
a linear combination of random variables with a normal distribution, the mean function is commonly regarded to be zero. 
GPR is also considered a non-linear function distribution and is expressed as: 
 

( ) ( ) ( )( ), ,f x GP x k x xμ ′  (8) 

where ( )xμ is the mean and ( ),k x x′  refers to the positive-semi definite Kernel function that defines the covariance 

between any two realizations of ( )f x  and ( )f x′ : 

( ) ( ) ( )( ), cov ,k x x f x f x′ ′=  (9) 
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      Both the means and Kernel parameters are often assumed to be zero ( 0xμ = ) and θ  ( ( ),k x x θ′ ), respectively. The

( ) ( ) ( ) ( )( )1 2, ,..., nf X f x f x f x=  has a joint multivariate Gaussian distribution for any infinite input collection of 

( )1 2, ,..., nX x x x= : 

( ) ( )( )0, XXf x N K θ  (10) 

 
where the Kernel function defines the elements of the N-by-N covariance matrix as: 
 

( ) ( ),
,XX i ji j

K k x xθ θ=    (11) 

 
      The covariance function assists in determining the specific properties of the model, including periodicity, stationarity, and 
smoothness. Eq. (12) shows that the basic and broadly used GPR is composed of a simple zero mean and a squared exponential 
covariance function, while the value of r  is expressed in Eq. (13): 
 

( ) 2, exp
2f
rk x x σ − ′ =   

 (12) 

2

2

x x
r

l
′−

=  (13) 

where l  refers to the length scale and fσ  is the model noise. Both fσ  and l  are hyper-parameters and affect the 
performance of the Gaussian Process. In the present study, all the Kernel functions were used, including the rational quadratic, 
Matern 5/2, squared exponential, and exponential function. The formulation and information of these functions were based 
on those in past literature (Asante-Okyere et al., 2018). 
 
2.5.6 Artificial Neural Network (ANN) 
 
     ANN is a sophisticated data processing system, which is composed of basic elements known as neurons based on the 
human brain system. Neurons of one layer are built by interacting and combining neurons with each other via connection 
links at specific weights and each neuron receives a weighted input sum. Occasionally, the activation function refers to the 
unique transfer function of every neuron, and the output signal is developed when the weighted input sum surpasses a specified 
threshold. This activity is described as feed-forward given the forward direction of the information flow. In addition, the 
backpropagation and gradient descent is usually applied to minimize the error.  
 
     The major aspect of ANN is its capacity to learn and predict bead geometry. A collection of input/output data can be 
utilized by ANN to construct non-linear structures (Abbasi and El Hanandeh, 2016). For this study, the proposed ANN model 
was composed of two hidden layers. The model was trained using the Levenberg-Marquardt backpropagation algorithm. Each 
neuron received weighted inputs from the uppermost layer before the total weighted input was calculated and an activation 
function was applied to generate the outputs for the subsequent layer. The input sets of ( )1 2, ,..., nX x x x=  were multiplied 

by the vector weight ( )1 2, ,...,j j j jnW w w w= . Finally, the biasness was added to the expression, as follows: 

1

n

j ji i j
i

Y w x b
=

= +  
(14) 

where jY  is the weighted output sum. 
2.6 Cross-Validation 
 
     The concern regarding the random separation of the dataset into the training set and testing set is that certain representative 
samples may be missing during the training process. Therefore, cross-validation is an important evaluation to ensure that the 
developed model is robust and that every data point is represented in the training process. In this study, the five-fold cross-
validation was carried out by randomly dividing the dataset into five equal-sized sets (or five-folds) to prevent overfitting in 
the developed model. Four of the pairs were used for training, while the other one was used for testing. The validation was 
performed five times with each time excluding one fold out of the training and used for testing. Eventually, the average 
iteration was used to estimate the accuracy of the model (Apaydın, 2004).  
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2.7 Performance Indices 
  
      Three statistical metrics were used to examine the prediction model performances, namely the Coefficient of 
Determination (R2), Root Means Square Error (RMSE), and Mean Absolute Error (MAE), following Eqs. (15)–(17), 
respectively. The R2 value represents the correlation between the prediction model ( py ) and the corresponding target ( ty ). 
The R2 value ranges from zero to 1 with an R2 equal to 1 indicating a perfect correlation, while R2 is negative when a trained 
model is worse than the controlled sample.  

2

2 1
2

1
1

11 ,
n p t n

i i m pi
in p m iii

y y
R y y

ny y
=

=
=

 − = − =
 − 

 


 

(15) 

 
where n  is the number of experimental data. Additionally, the RMSE and MAE are exceptional metrics to verify the accuracy 
of the prediction models, being close to 0. The RMSE is always positive and is equal to that of the response. Similar to the 
RMSE, MAE is also always positive but is less sensitive to outliers. The RMSE was calculated to measure the standard 
deviation of the residuals, while MAE was computed to determine the average absolute difference between ty  and py  
values in the dataset. 
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1RMSE
n
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y y

n =
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y y

n =
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     Following the construction of a predictive approach, the performance of the model was evaluated in terms of R2, RMSE, 
and MAE for bead depth, height, and width, respectively. The best model should achieve the highest R2 and the lowest RMSE 
and MAE. 
 
3. Results and Discussion 
 
     Prior to the performance evaluation of each model, the respective model was applied to make predictions using the training 
set before the predictions were compared to the target values based on the various metric calculations. The model assessment 
provides valuable information regarding the generalized model’s prediction to that of the new data. Table A.2 shows the R2, 
RMSE, and MAE metrics according to the respective developed models in order to quantitatively analyze their performance.  
 
      LR models are commonly used as the first test model since they possess linear predictors as part of the model parameters, 
which makes them easier to interpret and achieve a faster prediction-making process. Nevertheless, LR models often exhibit 
lower predictive accuracy due to the highly constrained form of these models. In this study, a wide range of LR models was 
tested, including standard linear, robust, interactions, and stepwise. The interaction linear method provides a greater 
understanding of the association between the model’s variables by supplementing interaction terms to a regression model to 
assist more hypothesis testing. On the contrary, the robust linear is an alternative approach to the least-squares regression with 
lower sensitivity to outliers compared to the standard LR. This approach is able to identify influential observations, where the 
weight value of each observation in the robust regression is regulated by a special influence function. Meanwhile, the stepwise 
linear approach iteratively evaluates the statistical significance of each independent variable. The final variables to be used in 
the final LR model are selected by adding or removing the independent variable in each iteration. Based on the results, the 
best-fitted LR model recorded an interaction linear with an off-robust option and a stepwise linear. The results showed that 
the overall R2 values of the best-fitted LR models for the depth, width, and height of bead geometry prediction were 0.41, 
0.61, and 0.52, respectively.  
 
      The RT approach is also simple to interpret, offers a rapid fitting and predicting process, and occupies a low memory 
usage. Basically, growing smaller trees with fewer larger leaves could inhibit overfitting, while the leaf size can be adjusted 
using the minimum leaf size setting. A prediction is made beginning at the top node before the predictor values are examined 
at each node to determine the next branch to follow. Once a branch reaches a leaf node, the responding value is set to that of 
the corresponding node value. A variety of RT methods were employed in this study, including the fine tree, medium tree, 
and coarse tree approach. For comparison, a fine tree with plenty of small leaves usually exhibits a high accuracy on the 
training data but may not detect comparable accuracy using an independent test set. While a very leafy tree is inclined to 
overfit, the accuracy of the validation is regularly much lower compared to its training accuracy. Conversely, a medium tree 
with medium-sized leaves is appropriate for a less flexible response function. On the contrary, a coarse tree with fewer large 
leaves exhibits a low training accuracy. However, it can achieve higher robustness, where its training accuracy can be close 
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to that of a representative test set. According to the findings, the best fitted RT model was the fine tree with a minimum leaf 
size of four, and the overall R2 values of the bead geometry prediction were 0.91, 0.88, and 0.90 for the depth, width, and 
height, respectively.  
 
      Although linear SVMs are easily interpreted, the method could suffer low predictive accuracy. Oppositely, non-linear 
SVMs can be more accurate but are more complex to interpret. The support vectors highly influence the function of the SVM 
to predict new values. Prior to the training via SVM, numerous Kernel functions were applied to the data to determine the 
non-linear transformation, quadratic, cubic, and Gaussian. Generally, the box constraint regulates the penalty imposed on 
observations with huge residuals. A more flexible model is achieved with a larger box constraint, while a rigid model with 
less sensitivity to overfitting is achieved with a smaller box constraint. Furthermore, smaller prediction errors than the epsilon 
value are dismissed and considered equal to zero. A smaller epsilon value also forms a more flexible model. The SVs are data 
points with errors larger than the epsilon value. The function the SVM uses to predict new values depends only on the SVs. 
The epsilon value controls the width of the epsilon insensitive zone, which is used to fit the training data. The epsilon value 
also affects the number of SVs used to construct the regression function. A larger epsilon value implies that fewer SVs are 
selected. However, a larger epsilon value results in more flat estimates. Moreover, the epsilon value determines the level of 
accuracy of the approximated function. It relies entirely on the target values in the training set. A poor result would be expected 
if the epsilon value is larger than the range of the target values. Contrarily, a zero value epsilon may lead to overfitting. The 
epsilon must therefore be chosen to reflect the data in a certain manner. Choosing the epsilon to be a certain accuracy would 
only guarantee the accuracy on the training set, which oftentimes achieves a certain overall accuracy. Therefore, it is necessary 
to choose a slightly smaller epsilon value. Besides, the Kernel scale, which varies substantially, controls the size of the 
predictors. A smaller Kernel scale generates a model with greater flexibility. The results indicate that the fine Gaussian SVM 
achieved the best-fitted model with automatic box constant mode with an overall R2 value for the depth, width, and height of 
the bead geometry prediction at 0.87, 0.82, and 0.87, respectively.  
 
      Meanwhile, numerous weak learners were combined into a single high-quality ET model. While both approaches involved 
RT learners, bagging or bootstrap aggregating were used to produce bagged trees, and the least-squares boosting was applied 
to form boosted trees. In addition, the learning shrinkage rate was specified for boosted trees, which is usually set to an initial 
value of 0.1. The ET model would require more learning iterations if the learning rate is set to lower than 1 but commonly 
achieves higher accuracy. Based on the findings, the best ET model was the bagged trees with a minimum leaf size of eight 
and an overall R2 value of 0.85, 0.81, and 0.84 for the depth, width, and height of the bead geometry prediction, respectively.  
 
      In terms of GPR models, they are difficult to interpret but provide highly accurate results. A probability distribution is 
used to model the response over a space of functions. The flexibility of the preset models is automatically selected to 
simultaneously limit the training error and protect against overfitting. For this study, the association of the response as a 
function of the distance between the predictor values was identified using different Kernel functions, including the rational 
quadratic, Matern 5/2, squared exponential, and exponential. As such, the scale of the correlation length is similar for all 
predictors using an isotropic Kernel. In contrast, each predictor has a unique correlation length scale using a non-isotropic 
Kernel, which can enhance the accuracy of the model but make the model fitting relatively slower. Overall, the exponential 
GPR recorded the best-fitted model with R2 values of 0.91, 0.85, and 0.89 for the depth, width, and height of the bead geometry 
prediction, respectively. 
 
      While the ANN model has the capability to distinguish complicated non-linear relationships between independent and 
dependent variables, the ‘black box’ characteristic of the ANN model prohibits users from accessing the precise decision-
making process. Nevertheless, the flexibility of the model is enhanced in response to the size and number of fully connected 
layers in the neural network. Additionally, each model is feedforward and fully connected neural network for regression. 
Based on the results, ANN showed similar properties with a fine tree, which demonstrated a greater predictive ability 
compared to other models, particularly in predicting the complex relationship between the bead geometry and its process 
parameters. The overall R2 values of the ANN model were 0.91, 0.88, and 0.90 for the depth, width, and height of the bead 
geometry prediction, respectively. 
 
      Figs. 3–5 presents the overall performance comparison between the LR, RT, SVM, ET, GPR, and ANN models in terms 
of R2, RMSE, and MAE for the bead depth, height, and width, respectively. According to the bead depth prediction in Fig. 3, 
the fine tree and ANN models achieved the highest R2 and the lowest RMSE and MAE. The R2, RMSE, and MAE of the fine 
tree were 0.91, 0.1502, and 0.1032 for the training data and 0.90, 0.1595, and 0.1092 for the test data, respectively. 
Comparatively, the test data recorded a lower R2 value (1.10%) and a higher RMSE and MAE values (6.19% and 5.81%) than 
the training data, respectively. Conversely, the R2, RMSE, and MAE of the ANN model were 0.91, 0.1503, and 0.1034 for 
the training data and 0.90, 0.1596, and 0.1094 for the test data, respectively. The test data demonstrated a lower R2 value 
(1.10%) and a higher RMSE and MAE (6.19% and 5.80%) compared to the training data, respectively. As previously 
expressed, a model is considered highly predictive when it possesses a lower RMSE and MAE value.  
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Fig. 3 Performance indices of the bead depth prediction for each model in terms of (a) R2, (b) RMSE, and (c) MAE 
 

      Fig. 4 illustrates the R2, RMSE, and MAE of the bead height prediction of each model. Similar to the results in Fig. 3, the 
fine tree and ANN demonstrated superior performance in all three indices compared to other ML models. The R2, RMSE, and 
MAE of the fine tree model were 0.90, 0.1657, and 0.1238 for the training data and 0.89, 0.1672, and 0.1254 for the test data, 
respectively. The test data recorded a lower R2 value (1.11%) and a higher RMSE and MAE (0.90% and 1.29%) compared to 
the training data, respectively. Additionally, the R2, RMSE, and MAE of the ANN model were 0.90, 0.1656, and 0.1236 for 
the training data and 0.89, 0.1670, and 0.1253 for the test data, respectively. The test data recorded a lower R2 value (1.10%) 
and a higher RMSE and MAE (0.84% and 1.38%) compared to the training data, respectively. 
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Fig. 4 Performance indices of the bead height prediction for each model in terms of (a) R2, (b) RMSE, and (c) MAE 
 
      According to the R2, RMSE, and MAE of the bead width prediction of each model in Fig. 5, the fine tree and ANN showed 
exceptional accuracies compared to other ML models. The R2, RMSE, and MAE of the fine tree model were 0.88, 0.1578, 
and 0.1016 for the training data and 0.87, 0.1749, and 0.1147 for the test data, respectively. The test data achieved a lower R2 
value (1.14%) and a higher RMSE and MAE (10.84% and 12.89%) compared to the training data, respectively. Meanwhile, 
the R2, RMSE, and MAE of the ANN model were 0.88, 0.1579, and 0.1018 for the training data and 0.87, 0.1751, and 0.1149 
for the test data, respectively. In addition, the test data recorded a lower R2 value (1.14%) and a higher RMSE and MAE 
(10.89% and 12.87%) compared to the training data, respectively. 
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Fig. 5 Performance indices of the bead width prediction for each model in terms of (a) R2, (b) RMSE, and (c) MAE  
 
      Based on the three performance indices, the study revealed that the fine tree and ANN were the best-fitted ML models. 
In terms of the precise analytical approximations, the trend of the R2, RMSE, and MAE assessment standards can be arranged 
in a decreasing order as follows: Fine Tree = ANN > Exponential GPR > Fine Gaussian SVM = Medium Tree > Rational 
Quadratic GPR > Matern 5/2 GPR = Squared Exponential GPR > Bagged Trees > Medium Gaussian SVM > Boosted Trees 
> Coarse Tree > Cubic SVM > Quadratic SVM > Interactions Linear = Stepwise linear > Coarse Gaussian SVM > Linear > 
Robust Linear > Linear SVM. Regardless of the slight performance variations, the majority of the developed models 
demonstrated the ability to learn the patterns and provided excellent prediction performance in terms of the R2, RMSE, and 
MAE.  
 
4. Conclusion 
 
      This study investigated the comparison of various ML models on the bead geometry in a GMAW process. The findings 
demonstrated the superior accuracy of the fine tree and ANN models in all three indices. The R2, RMSE, and MAE values 
showed that both models accurately predicted the bead geometry, including the bead depth for training (0.91, 0.15, and 0.10), 
testing (0.90, 0.16, and 0.11), and all dataset (0.91, 0.15, and 0.10), the bead width for training (0.88, 0.16, and 0.10), testing 
(0.87, 0.18, and 0.12), and all dataset (0.88, 0.16, and 0.10), and bead height for training (0.90, 0.17, and 0.12), testing (0.89, 
0.17, and 0.13), and all dataset (0.90, 0.16, and 0.12), respectively. The Regression Learner App models produced a MATLAB 
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software code that precisely predicted the bead geometry with respect to the measurements. Overall, the findings in this study 
can be potentially utilized to predict the optimum bead geometry in a cost-effective and time-efficient manner. 
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Appendix A 

Table A.1 Parameters settings of ML models 

Model Parameters settings 
Linear Terms : Linear 
 Robust option : Off 
Interactions Linear Terms : Interactions 
 Robust option : Off 
Robust Linear Terms : Linear 
 Robust option : On 
Stepwise Linear Terms : Linear 
 Upper bound on terms : Interactions 
 Maximum number of steps : 1000 
Fine Tree Minimum leaf size : 4 
 Surrogate decision splits : Off 
Medium Tree Minimum leaf size : 12 
 Surrogate decision splits : Off 
Coarse Tree Minimum leaf size : 36 
 Surrogate decision splits : Off 
Linear SVM Kernel function : Linear 
 Kernel scale : Automatic 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
Quadratic SVM Kernel function : Quadratic 
 Kernel scale : Automatic 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
Cubic SVM Kernel function : Cubic 
 Kernel scale : Automatic 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
Fine Gaussian SVM Kernel function : Gaussian 
 Kernel scale : 0.56 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
Medium Gaussian SVM Kernel function : Gaussian 
 Kernel scale : 2.2 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
Coarse Gaussian SVM Kernel function : Gaussian 
 Kernel scale : 8.9 
 Box constraint : Automatic 
 Epsilon : Automatic 
 Standardize data : true 
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Table A.1 (continued) 
Model Parameters settings 
Boosted Trees Minimum leaf size : 8 
 Number of learners : 30 
 Learning rate : 0.1 
Bagged Trees Minimum leaf size : 8 
 Number of learners : 30 
Squared Exponential GPR Kernel function : Squared Exponential  
 Use isotropic kernel : true 
 Kernel scale : Automatic 
 Kernel sigma : Automatic 
 Sigma : Automatic 
 Standardize : true 
 Optimize numeric parameters : true 
Matern 5/2 GPR Kernel function : Matern 5/2 
 Use isotropic kernel : true 
 Kernel scale : Automatic 
 Kernel sigma : Automatic 
 Sigma : Automatic 
 Standardize : true 
 Optimize numeric parameters : true 
Exponential GPR Kernel function : Exponential 
 Use isotropic kernel : true 
 Kernel scale : Automatic 
 Kernel sigma : Automatic 
 Sigma : Automatic 
 Standardize : true 
 Optimize numeric parameters : true 
Rational Quadratic GPR Kernel function : Rational Quadratic 
 Use isotropic kernel : true 
 Kernel scale : Automatic 
 Kernel sigma : Automatic 
 Sigma : Automatic 
 Standardize : true 
 Optimize numeric parameters : true 
Artificial Neural Network Network type : Feed-forward backprop 
 Training functions : Trainlm 
 Adaption learning function : Learngdm 
 Number of layers : 2 
 Number of neurons : 10 
 Transfer function : Tansig 
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Table A.2 Comparison of performance indices of different models 
Model Dataset Depth Width Height 

  RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE 
Linear Training 0.4440 0.17 0.3633 0.3209 0.50 0.2580 0.4342 0.31 0.3489 

 Testing 0.4365 0.22 0.3552 0.3326 0.52 0.2675 0.4306 0.27 0.3531 
 All 0.4421 0.19 0.3624 0.3271 0.50 0.2634 0.4337 0.30 0.3509 

Interactions Linear Training 0.3693 0.43 0.3007 0.2839 0.61 0.2274 0.3659 0.51 0.2843 
 Testing 0.3808 0.40 0.3135 0.2905 0.63 0.2349 0.3408 0.54 0.2683 
 All 0.3749 0.41 0.3054 0.2888 0.61 0.2329 0.3604 0.52 0.2810 

Robust Linear Training 0.4479 0.16 0.3559 0.3237 0.49 0.2534 0.4353 0.31 0.3441 
 Testing 0.4422 0.19 0.3466 0.3370 0.50 0.2649 0.4315 0.26 0.3492 
 All 0.4464 0.17 0.3536 0.3290 0.49 0.2601 0.4348 0.29 0.3461 

Stepwise Linear Training 0.3697 0.43 0.3009 0.2839 0.61 0.2274 0.3662 0.51 0.2849 
 Testing 0.3821 0.40 0.3132 0.2911 0.63 0.2350 0.3421 0.54 0.2697 
 All 0.3748 0.41 0.3061 0.2888 0.61 0.2329 0.3605 0.52 0.2812 

Fine Tree Training 0.1502 0.91 0.1032 0.1578 0.88 0.1016 0.1657 0.90 0.1238 
 Testing 0.1595 0.90 0.1092 0.1749 0.87 0.1147 0.1672 0.89 0.1254 
 All 0.1510 0.91 0.1017 0.1623 0.88 0.1042 0.1626 0.90 0.1199 

Medium Tree Training 0.1780 0.87 0.1263 0.1962 0.81 0.1336 0.1919 0.87 0.1481 
 Testing 0.1997 0.84 0.1471 0.2200 0.79 0.1522 0.1936 0.85 0.1504 
 All 0.1765 0.87 0.1233 0.1920 0.82 0.1296 0.1869 0.87 0.1432 

Coarse Tree Training 0.2191 0.80 0.1637 0.2308 0.74 0.1636 0.2081 0.84 0.1641 
 Testing 0.2347 0.77 0.1743 0.2672 0.69 0.1887 0.2796 0.69 0.2193 
 All 0.2022 0.83 0.1481 0.2140 0.75 0.1496 0.2007 0.85 0.1577 

Linear SVM Training 0.4681 0.08 0.3492 0.3305 0.47 0.2505 0.4407 0.29 0.3401 
 Testing 0.4622 0.12 0.3421 0.3455 0.48 0.2623 0.4381 0.24 0.3455 
 All 0.4656 0.10 0.3479 0.3371 0.47 0.2574 0.4406 0.28 0.3423 

Quadratic SVM Training 0.3272 0.55 0.2223 0.2644 0.66 0.1850 0.3637 0.52 0.2480 
 Testing 0.3686 0.44 0.2366 0.2651 0.69 0.1826 0.3325 0.56 0.2268 
 All 0.3418 0.51 0.2295 0.2660 0.67 0.1883 0.3562 0.53 0.2433 

Cubic SVM Training 0.2153 0.81 0.1442 0.2287 0.75 0.1524 0.2174 0.83 0.1634 
 Testing 0.2218 0.80 0.1478 0.2344 0.76 0.1590 0.1990 0.84 0.1527 
 All 0.2596 0.80 0.1632 0.2350 0.74 0.1643 0.2188 0.82 0.1667 

Fine Gaussian SVM Training 0.1687 0.88 0.1096 0.1846 0.83 0.1139 0.1886 0.87 0.1353 
 Testing 0.1585 0.90 0.1086 0.1855 0.85 0.1191 0.1751 0.88 0.1226 
 All 0.1744 0.87 0.1132 0.1968 0.82 0.1222 0.1902 0.87 0.1381 

Medium Gaussian SVM Training 0.1984 0.84 0.1357 0.2126 0.78 0.1365 0.2159 0.83 0.1605 
 Testing 0.2134 0.81 0.1478 0.2154 0.80 0.1491 0.2048 0.83 0.1544 
 All 0.1982 0.84 0.1373 0.2110 0.79 0.1422 0.2111 0.83 0.1582 

Coarse Gaussian SVM Training 0.3984 0.34 0.2812 0.2924 0.58 0.2055 0.3844 0.46 0.2890 
 Testing 0.3962 0.35 0.2822 0.3043 0.60 0.2257 0.3905 0.40 0.3044 
 All 0.3888 0.35 0.2694 0.2832 0.62 0.2033 0.3675 0.50 0.2795 

Boosted Trees  Training 0.1949 0.84 0.1515 0.2015 0.80 0.1508 0.2173 0.83 0.1793 
 Testing 0.1905 0.85 0.1501 0.2116 0.80 0.1585 0.2355 0.78 0.1903 
 All 0.1957 0.84 0.1513 0.2092 0.79 0.1560 0.2201 0.82 0.1818 

Bagged Trees Training 0.1867 0.85 0.1423 0.1996 0.81 0.1484 0.2011 0.85 0.1625 
 Testing 0.1977 0.84 0.1544 0.2131 0.80 0.1565 0.1963 0.85 0.1603 
 All 0.1896 0.85 0.1447 0.1998 0.81 0.1465 0.2048 0.84 0.1666 

Squared Exponential GPR Training 0.1760 0.87 0.1277 0.1955 0.81 0.1392 0.1962 0.86 0.1536 
 Testing 0.1713 0.88 0.1296 0.2074 0.81 0.1514 0.1886 0.86 0.1486 
 All 0.1793 0.87 0.1308 0.2024 0.81 0.1439 0.1965 0.86 0.1542 

Matern 5/2 GPR Training 0.1725 0.88 0.1247 0.1891 0.83 0.1333 0.1929 0.86 0.1508 
 Testing 0.1655 0.89 0.1248 0.2040 0.82 0.1474 0.1834 0.87 0.1440 
 All 0.1750 0.87 0.1271 0.1987 0.81 0.1400 0.1943 0.86 0.1522 

Exponential GPR Training 0.1456 0.91 0.1040 0.1668 0.86 0.1165 0.1684 0.90 0.1307 
 Testing 0.1263 0.93 0.0936 0.1802 0.86 0.1261 0.1554 0.90 0.1202 
 All 0.1508 0.91 0.1084 0.1787 0.85 0.1245 0.1734 0.89 0.1342 

Rational Quadratic GPR Training 0.1732 0.87 0.1253 0.1845 0.83 0.1294 0.1962 0.86 0.1536 
 Testing 0.1707 0.88 0.1292 0.2043 0.82 0.1476 0.1886 0.86 0.1486 
 All 0.1769 0.87 0.1287 0.1971 0.82 0.1385 0.1970 0.86 0.1546 

Artificial Neural Network Training 0.1503 0.91 0.1034 0.1579 0.88 0.1018 0.1656 0.90 0.1236 
 Testing 0.1596 0.90 0.1094 0.1751 0.87 0.1149 0.1670 0.89 0.1253 
 All 0.1510 0.91 0.1017 0.1623 0.88 0.1042 0.1626 0.90 0.1197 
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