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 Using the assumption that the load is evenly distributed in the horizontal direction, the article has given 
the cable deflection equation as a function that depends only on the horizontal coordinates, the length 
of the cable and horizontal distance between two supports. This result leads to the construction of a 
general system of equations to calculate the deflection, tension, and elongation of an elastic single 
cable resting on two supports with or without high difference, bearing uniformly distributed loads (or 
evenly distributed at intervals) and load is concentrated at many points. Calculations of examples to 
compare with results have been performed by other methods. 
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1. Introduction 

      
         Cables are used in many construction projects such as suspension bridges, domes, power transmission lines, cable car 
systems transporting people and goods, etc. Computational models of cables are also developed to suit the properties of each 
type of building in which it is applied and mainly develop in two directions: 
 

1) The first direction: Using the finite molecule method, divide the cable into small segments, each cable segment is an 
element and the split points are nodes. The simplest element most commonly used in the analysis of cable structures is the 
two-node straight bar element having only axial stiffness (Ozdemir 1979). Elastic catenary cable formulation was first 
presented by O'Brien and Francis (1964) and Jayaraman and Knudson (1981), it requires less number of elements in cable 
structures modeling (Andreu et al. 2006, Yang and Tsay 2007). The parabolic elastic element is also used due to its simpler 
shape compared to catenary (Irvine 1992). 

2) The second direction: Based on the assumption that the load is uniformly distributed in the horizontal direction, the 
deflection equation of the cable span has a parabolic shape. 
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A cable suspended horizontally under the influence of its own weight has the shape of a catenary. The mathematical 
solution of the catenary is attributed to James Bernoulli in 1691. In 1794, again in connection with the design of a proposed 
suspension bridge it was found that, if the cable's weight was assumed to be uniformly distributed along the span rather than 
along the cable, the cable hung in a parabolic profile. Ren et al. (2008), presented a finite element (FE) analysis of two-node 
parabolic cable element for analysis of cable structures with considering static behavior. They concluded that their results are 
in good agreement with the results obtained from theory of parabolic cable that considers the nonlinear effects. Rezaiee-
Pajand et al. (2018) proposed a novel element for considering nonlinear thermo-elastic effects in cables. Abed et al. (2013) 
also analyzed the cable structures using nonlinear assumption for general loading cases. Some researchers implemented 
multiple-node (e.g. four and six node) isogeometric elements for analyzing and modeling of cables (Coyette & Guisset, 1988; 
Ali & Abdel-Ghaffar, 1995; Jian-hua & Wen-zhang, 2015; Wang et al. 2013). However, such models are relatively complex 
and with a large number of degrees of freedom. Several scholars and researchers have also modeled the cables subjected to 
different applied loadings (Jiang et al. 2022; Impollonia et al. 2011; Castro-Fresno et al.; 2008; Greco et al. 2014).  

 
In some research works the parabola method has been utilized for the design, analysis and calculation of strength or 

deformation of cables (Ren et al. 2008; Tibret, 1999; Wang & Yang 1996). The parabolic cable has since received considerable 
attention, not only because of its simplicity, but also because in many situations (such as suspension bridges), a substantial 
part of the load is uniformly distributed along the span. 

 
A inextensible cable hanging under its own weight, if the ratio of sag to span is 1:8, or less, the load may be assumed 

uniformly distributed along the span (Fig.1a), then the deflection equation will have the form of: 
24 cf xy x

d d
 

= − 
 

. For 

this cable, the horizontal component of cable tension is: 
2

8 c

qdH
f

=  and the longitudinal tension at any point in the cable is: 

[ ]21 ( )T H y x′= + ; where q is the weight of the cable per unit length, d is the cable span distance, cf  is the cable 

deflection at mid-span
2
dx = 

 
. Also the length of the cable is determined from: 

2

0

4 21 1
d

cf xL dx
d d

  = + −    
 .  

The concept of cable elasticity received little attention until 1858 when Rankine gave an approximate solution for the increase 
in sag obtained when an inextensible, free-hanging parabolic cable is allowed to stretch. Then, it was not until 1891 that Routh 
gave the solution of the elastic catenary. However, Rankine's solution contains unnecessary approximations, while Routh's 
solution is inconvenient on account of the coordinate system used. 
 
      In 1974, Irvine (1974) came up with a solution to solve the limitations of the above two approaches. By calculating the 

value of the ratio cf
d

 in terms of the approximate value of the length  L  over the polynomial expansion,  Irvine gave the 

additional deflection (due to the elasticity of the cable) found to be 
22

2
H qd x xv

H H H d d
 Δ   = −  − Δ    

, where HΔ  is the 

amount of reduction of the horizontal component of the cable tension. 
 
In this paper, an approach is proposed for the calculation method of elastic parabolic cables, which are subjected to many 
concentrated loads and at the same time are subjected to uniform loads over each interval. Unlike Irvine, from the exact 

calculation of the parameter 
4 cfu
d

=  value according to the cable length, L ; leads to the cable deflection equation is 

determined when knowing the distance between the two supports, d , and the parameter u . 
 
      In the case of a cable span with a high difference between the two supports, sh , with the idea of considering the span of 
the cable as part of a hypothetical cable span with two supports with no difference in height, it is easy to get the deflection 
equation of the cable span is expression depends on the parameters , , .su d h  
 
      This result is used to build a calculation method for elastic cable spans that are subjected to many concentrated loads and 
at the same time are subjected to uniform loads on each cable segment. In this case, each cable segment can be considered as 
a cable span characterized by: ,i ih d  are the height difference, the horizontal distance of the two supports and the parameter

iu , respectively. From the condition of force balance at the junctions between spans, the system of nonlinear equations of 
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variables: , ,i i iu h d  is obtained. By solving this system of equations according to the Newton-Raphson method the values of 
quantities of the tensile force along the string, T ; horizontal tension component, H ; displacements at the loading points are 
then calculated. 
 
      Thus, by the calculation method for the cases of elastic cable spans under uniformly distributed loads, the article builds a 
general system of equations to calculate the deflection for elastic cable spans subjected to many concentrated loads and at the 
same time are subjected to uniform loads on each segment, resting on two supports with or without a height difference. 

 
2. Equation of deflection of a single cable 
 
2.1. Single cable with uniform load 
 

(a) (b) 
Fig. 1. Model of single cable with uniformly distributed load, resting on two supports: 

(a) no high difference, (b) high difference sh . 
 

       Single cable of length ( )L m  rests on supports O and A  with horizontal distance ( )d m , no high difference (Fig. 1.a) 
or high difference (Fig.1.b). Select the coordinate system Oxy  with origin O  coincides with a support (in case two supports 
are of equal height) or origin O  coincides with a support with higher elevation (in case of high difference), the Ox  axis is 
horizontal and lying. In the vertical plane connecting the two supports the Oy axis points downward. Assume the load is 

uniformly distributed in the horizontal direction with the strength ( )/q N m . Table 1 also describes the symbols used in the 
current research. 

 
Table 1. Symbols of quantities 

Content Symbol Unit 
The cable span length L  m  
The cable span distance (Horizontal distance between two supports) d  m  
The sag (Maximum deflection of the cable)  cf  m  
The load intensity evenly distributed along the length of the cable γ  /N m  
The load intensity is evenly distributed in the horizontal direction Ox  q  /N m  
The tension in the cable T  N  
The horizontal component of cable tension  H  N  
The vertical component of the cable tension V  N  
Height difference between two supports sh  m  
Horizontal distance between low bearing ( A ) and assumed support ( K ) (Fig. 2) a  m  
Horizontal distance between high bearing ( O ) and assumed support ( K ) (Fig. 2) 1d  m  
Young's modulus of elasticity E  

2/N m  
Cable cross-sectional area F  

2m  
The elongation of cable span LΔ  m  

 
2.1.1 Single cable with uniformly distributed load, resting on two pillows with no height difference 
 
2.1.1.1 Equation of deflection 
 
      The cable of length ( )L m  , resting on two ,O A  supports, has no height difference (Fig. 1.a). Assume the cable is 
subjected to a uniformly distributed load and is inextensible cable. 
From the condition that the moment at any point ( )x,y  on the cable is zero, the force balance in the y direction (Fig. 1.a) is 
obtained: 
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0

( ) 0− + − − =
x

Hy Vx q x t dt   
 

(1) 

2
= qdV   

 
(2) 

 
   Leads to the deflection equation 

2
qx(d x)y

H
−=  

(3) 

      The cable deflection at 
2
dx = is the sag and the horizontal component of cable tension is 

2 2

;
8 8

= =c
c

qd qdf H
H f

    (4) 

 
      Substituting (4) in (3) get the deflection equation:   
 

24 cf xy x
d d

 
= − 

      

 
(5) 

 
      The deflection equation of a single cable in the form Eq. (5) was also presented by Irvine (1974). However, Eq. (5) also 

contains the undefined quantity cf . Symbol 
4 cfu
d

= , the deflection equation  Eq. (5) becomes: 

2xy u x
d

 
= − 

 
.  

 
(6) 

     If point ( , )M x y  lies on the cable, the length of the OM cable will be: 
 

2
2 2

2
0 0

1 [ (t)] 1 (2 )
x x

x
uL y dt t d dt
d

′= + = + −    
 

(7) 
 

 
     Integral Eq. (7) will get: 
 

( ) ( )2 2

2 2
ln 1 ln 1 ( )

1 1 ( )
4x

u u Bu BudL u B Bu
u u

 + + + + = + + + + + 
 
 

 

 
 

(8) 

where   
2x dB

d
−= . When x d= , then 1B = , resulting in the length of the span's cable segment: 

( )2

2
ln 1

1
2

u udL u
u

 + + = + + 
 
 

   

 
 

(9) 
 

      Symbol 
2 2LA
d

= > , the Eq. (9) is equivalent to:   

( )2

2
ln 1

W( ) 1 0
u u

u u A
u

+ +
= + + − =    

 
(10) 

      Symbol 2 2 0a A A= − > ,  2 1 0b A= − >  found that 
( )2

2
ln 11W ( ) 1 0 0

u u
u u u

u u

 + + ′ = + − > ∀ > 
  

 , 

( ) 0W a <  and ( ) 0W b > , so equation ( ) 0W u =  will exist and have a unique solution on ( )a, b . The finding of the 

solution u  will be by the method of consecutively bisecting the segment [ , ]a b . 
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Eq. (6) is the equation representing the deflection of the span of the cable resting on two supports without height difference, 
assuming the load is uniformly distributed in the horizontal direction and the cable has no stretch. Where u  is the solution of 
equation (10). 
 
2.1.1.2 Horizontal tension and longitudinal tensile force in the cable 
 

The horizontal component of cable tension is 2

8 2c

qd qdH
f u

= =   (11) 

 
   The tension at any point ( ),M x y   in the cable is   

[ ] ( )
2

2 2
21 ( ) 1 2

2
qd uT H y x d x

u d
′= + = + −    

(12) 

2.1.1.3 The elongation of cable span 
 
     The tensile stress 2( / )N mσ  of the cable is a function of x  as below equation: 
 

( )2

2
21 2

2
qd d x
F

T( x ) u( x )
F . du

σ = −= +  
 

(13) 

As a result, the element of length sΔ  at point x  will have elongation length of 
( )x s
E

Δ = Δσε . Therefore, the cable length 

has increased by an amount 
 

( )
0

2 2
2

2
2

2
0

1 2 1 1
2 2 3

L dqd qd ud x . y dx
E.F.u E.E F.

( x ) uL ds
d u

 ′+ − + + Δ


= =


= 
σ

   
 

(14) 

 
      To get the cable deflection equation including the wire elongation, it is necessary to solve Eq. (10) with the value of  A  

replaced by 
( )2 L L

A
d
+ Δ

=  to get the solution u . Then the equation of deflection of the extensible cable, resting on two 

supports with no difference in height, with a uniformly distributed load in the horizontal direction is obtained from: 
 

2xy u x
d

 
= − 

 
   

(15) 

 
2.1.2 Single cable with uniformly distributed load, resting on two supports with high difference 
 
2.1.2.1 Equation of deflection 
 
      The cable of length ( )L m  , resting on two ,O A  supports, has  height difference ( )sh m  (Fig. 1.b). Assume the cable is 
subjected to a uniformly distributed load and is inextensible cable. Found that, the  OA  cable segment is part of the OAK
cable span, with support K  having the same height as support A . The cable span OAK is called assumed cable span. Choose 
the coordinates whose origin coincides with the support with the higher height. There is the coordinates of the points ( , )sA d h
and 1K( d ,0 ) . 
 
       Let cf  be the deflection (at the mid-span point) of the assumed cable span, then according to (5), the deflection equation 
of the cable span is obtained as  
 

2

1 1

4 cf xy x
d d

 
= − 

 
    

 
(16) 

 
        Since the length of cable segment OA  is equal to L , there will be: 

( )
1

2
22

14
0 0

161 1 2
d d

cfL y dx d x dx
d

′= + = + −   
 

(17) 
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      By defining symbol 1a d d= − and integrating Eq. (17) we get: 
 

( ) ( ) ( ) ( )

2 22

2 2

2 22 2

2 4 2 4

2 16 4 1611 1
8 2

2 16 4 1611 1
2

c c c c

c

c c c c

f f f f(d a )L ln
f (d a ) (d a ) (d a ) (d a )

f a d f a d f a d f a d
ln

(d a ) (d a ) (d a ) (d a )

+ = + + + + + + + +
− − − − − + − + + + + + + 

 

 
 
 

(18) 

 

where 
4 cfu

d a
=

+
, the deflection equation (16) becomes: 

x(d a x )y u.
(d a )
+ −=
+

   
 

(19) 

      There are: 
 

( ) s
d(d a d ) d ay d h u. u.

(d a ) (d a )
+ −= = =
+ +

    
 

(20) 

2 22; ; ;s s

s s s

h d h d ud uda a d a d
ud h ud h ud h

−
= − = + =

− − −
 

 
(21) 

     By assuming symbol
2

2

2 2( ) 1s sh d ud ha dC u
a d ud ud

−−= = = −
+

, from Eq. (18) leads to 

( ) ( )2 2 2

2 2 2
ln 1 ln 1

1 1
2(1 )

u u Cu C udL u C C u
C u u

 + + + + = + + − + − −  
 

  

 
(22) 

 
      Find the solution u  from the equation: 
 

( ) ( )2 2 2

2 2 2
ln 1 ln 1

( ) 1 1 0
2(1 )

u u Cu C udu u C C u L
C u u

 + + + + Ψ = + + − + − − = −  
 

    

 
 

(23) 

      Substituting the value u  found in Eq. (19) and Eq. (21), we get the equation of deflection of the inextensible cable OA , 
resting on two supports with difference in height sh , with a uniformly distributed load in the horizontal direction as: 
 

22

2
sh xxy u x

d d
 

= − + 
 

   
 

(24) 

2.1.2.2 Finding the solution u of the equation ( ) 0uΨ =  

      Symbol   
2 2

1 0 2
2 16, ,s sh h L du u u

d d d
−= = = . There is   1

1

21 C( ) 2 0shu
u d

− = − = ,  

so 1u u=  is the discontinuity of the function ( )uΨ  
 

There are    
2

2 2 2 2 2 2 2 2 2 22 4 3 3 4 4
4s s s s

dh h h h L d L L d L d L< = < + − < + − < − < −  

=>   
2 2 2

2
1 0 2

2 2 164
4

s sh h d L du u L u
d d d d

−= < = < − = =    =>  1 0 2u u u< <    

 
 

(25) 

There are    
1

2 2 21
12 2

1 1

1 2 1lim ( ) 1 0
2 1 1

su u

udu L d u L d h L
u u→

 + Ψ = + − = + − = + − <
 + + 

            
(26) 
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Symbol: 
1

2 2
1

( ) ,
( )

,s

u u u
u

d h L u u

Ψ >Ψ = 
+ − =

 
 

(27) 

=> function ( )uΨ  is continuous 1u u∀ ≥  

Considering 0u u> :  Because 
2( ) 1shC u
ud

= −   

should 1 C 0− < < and  1 1 C 2< − < => 
2

2 2

2 2

1 1ln 1 0
2(1 ) 1

d u u C C u
C u Cu C u

 + +
 − + >

−  + + 
 

=> 
2

2 2 2 2

2 2

1 1( ) 1 ln 1 1
2(1 ) 2(1 ) 41

d d u u du u C C u L u L
C C u Cu C u

 + +
 Ψ = + + − + − > + −

− −  + + 
  

(28) 

Therefore   2
2

2( ) 1 0
4
du u LΨ > + − =  

(29) 

    The function ( )uΨ  is continuous on [ ],1 2u u , satisfying the conditions: 2 2
1( ) 0su d h LΨ = + − <  and 2( ) 0uΨ > , so 

there will exist and only solutions ( ) 0uΨ =  on [ ],1 2u u . The finding the solution u  from equation (23) is done by the 

method of consecutive halving the segment[ ],1 2u u . 
 
2.1.2.3 Horizontal component of cable tension and tensile force along the wire 

     The horizontal component of cable tension ( )1

2 2
q d aqdH

u u
+

= = ,  

After substitution s

s

h da
ud h

=
−

 the following equation is obtained:  

( )
2

2 s

qdH
ud h

=
−

 
 

(30) 

The tensile force along the cable 21T H y′= + . From Eq. (24) one gets:  

2

22 sh xuxy u
d d

′ = − +  => ( ) , ( ) s2hy 0 u y d u
d

′ ′= = − ,   from which: 

 
2

2

 

2  1

  

  

1

s

T H u

hT H u
d

at high cable support

at low cable support

= +

 = + − 
 

 

 
 

(31) 

2.1.2.4 The elongation of cable span 
 
     The tensile stress along the cable is a function of x  as below equation: 
 

( )
22

2

221
2

s

s

h xqd uxu
F . u d h

T( x )( x )
F d d

 + − +σ


= − 
=  

  

 
(32) 

from which, the elongation of the cable in the span will be  
 

( ) ( )
2 2

0

4 2
2 3 3

s
s

s

L hqd dud h ud
E.F. h

( x )
d

L ds
E u d

 
+ + − −

=
 

Δ = 
σ

   
 

(33) 

          
     If the elongation of the cable is taken into account, it is necessary to solve Eq.(23) with the value of  L  being replaced by 
L L L= + Δ  to obtain the solution u .Then the equation of deflection of the extensible cable, resting on two supports with 
difference in height sh , load evenly distributed in the horizontal direction: 
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22

2
sh xxy u x

d d
 

= − + 
 

  
 

(34) 

 
      If the height difference is equal to zero ( sh 0= ), the calculation results for the cable span resting on  supports with high  
difference  return to the calculated results for the cable span when the supports are not difference in height. 
 
2.2. Single cable under uniformly distributed and concentrated loads 
 
2.2.1 Single cable under uniformly distributed load and only one concentrated load, resting on two supports with high 
difference 
 
     The assumption in this section is that the load is uniformly distributed horizontally with intensity ( / )q N m . The load 

( )Q N  is concentrated at the point ( , )M x y  whose height is lower than the two supports (as shown in Fig. 2a) or higher than 
the low support (Fig. 2b). The OA  cable segment can be considered to be supported by three supports: ,  ,  O M A . If the 
values of parameters 1 2,u u  of the cable segments ( ,OM MA ) and the deflection 1h  at M  can be calculated, then 
according to section 2.1.2, the deflection equation of the cable segments OM  and MA  will be determined. 
 

 
(a) 

 
(b) 

Fig. 2. Model of a single cable span under uniformly distributed load and only one concentrated load, resting on two 
supports with high difference. 

(a) – Concentrated load application point is lower than the two supports, (b) – Concentrated load application point 
is higher than the low support 

 
      Let 1 2,T T be the longitudinal tension forces of the cable segments 1 2,L L at the point of applying concentrated load M . 
On the MA  cable segment, take the 2 2 2O x y  coordinate system so that the origin of 2O  coincides with the point of higher 
elevation (with A  in Fig. 2a or with M  in Fig. 2b). The forces 1 2,T T make up with the horizontal the corresponding angles

1 2,α α . 
 
       Let 1 2,d x d d x= = −  and 1 2,u u  be the variables in the deflection equation (according to Eq.(24)), respectively the 
cable segments 1 2,L L .  Use Eq.(30) applied to cable segments 1 2,L L to obtain: 
 

( ) ( )
2 2
1 2

1 1 1 2 2 22 2
qd qdH

u d h u d h
= =

− −
  

 
(35) 

 
            

      Due to ( ) ( )2 1 1 1.s s sh h h h h sign h h= − = − − , Eq.(35) is equivalent to : 
 

( ) ( )2 2 2 2 2
1 1 2 1 1 1 2 2 2 1 1 1 0s s su d d h sign h h d d u d d h d sign h h + − − − − − =     (36) 

     By balancing the forces at M  one gets: 
 

1 1 2 2cos cosH T T= α = α   (37) 

1 1 2 2sin sinT T Qα + α =    (38) 

( )1 2tan tanH Qα + α =   (39) 
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     Also from Eq.(24)it can be found: 
 

1
1 1 1 1

1

2tan ( ) hy d u
d

′α = = −    
 

(40) 

2
2 1

22

2 1

2 ,
tan( )

,

s

s

h u h h
d

u h h

 − >α =
 − ≤

  

 
 

(41) 

or  ( ) ( )1
2 1 2

2

1
tan( ) . s

s

sign h h
h h u

d
 − +  α = − −  

(42) 

   
     With the aid of Eq. (35), Eq. (40), Eq. (42) , Eq. (39) is more conveniently written as: 
 

[ ] [ ]2 2 2 2
1 1 2 1 1 2 1 1 2 2 1 2 1 2 1 1

2 22 ( ) 1 ( ) 1 0   
+ − + + − + − − − + =   

   
s s s

Q Qh d d d sign h h d u d d d d u d d d sign h h h
q q

 
 

(43) 

     Applying Eq. (22) to the OM  and MA cable segments result the below relations: 
 

( ) ( )
( ) ( ) ( ) ( )

2 2 2 2
1 1 1 1 1 1 1 1 1 1

22
2 1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1
1

4 1 ln 1

2 2
2 2 ln 0

L u d h u d u d u u

u d h d u d h
u d h d u d h d

d

− − + + + + + +

− + + −
+ − + − + =

  

 
 

(44) 
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2

2 2 2 2
2 2 2 2 2 2 2 2

22
2 2 2 2 2 2 22 2

2 2 2 2 2 2 2
2

4 1 ln 1

2 2
2 2 ln 0

L u d h u d u d u u

u d h d u d h
u d h d u d h d

d

− − + + + + + +

− + + −
+ − + − + =

 

 
 

(45) 

( ) ( )2 1 1 1s s sh h h h h sign h h= − = − −   (46) 

1 2 0d d d+ − =   (47) 
 
     Solve the system of 6 equations: (i.e. Eq. (36), Eq. (43), Eq. (44), Eq. (45), Eq. (46), Eq. (47)) to find the 

1 2 1 2 1 2, , , , ,d d u u h h values according to the parameters 1 2, , , , , sL L d Q q h . Solving the above system of equations is done by 

Newton-Raphson method. The initial values 
1

(0) (0) (0) (0) (0) (0)
1 2 2 1 2, , , , ,d d u u h h are calculated according to the section 2.1.2 

applied to the cable segments , ,OA OM MA  when there is no load Q . 
 
      If the longitudinal extension of the cable is taken into account, then after calculating the values of 1 2 1 2, , ,u u h h  from the 
above equations, Eq.(33) can be applied to calculate the elongation on the cable segments OM  and MA  respectively: 
 

( ) ( )
2 2

1 1 1 1
1 1 1 1

1
1

1 1 1

4 2
2 3 3

qd d u hd h u d
E.F. u d h

L
d

 
+ +Δ = − −  

  

  

 
(48) 

( ) ( )
2 2
2 2 2 2

2 2 2 2
2

2
2 2 2

4 2
2 3 3

qd d u hd h u d
E.F. u d h

L
d

 
+ +Δ = − −  

  

 
(49) 

       Resolving the system of six equations (i.e. (36), (43), (44), (45), (46), (47)) with the value iL  replaced by 

, 1,2i i iL L L i= + Δ =  , get the solution 1 2 1 2 1 2, , , , ,d d u u h h . From here, the deflection equations for each cable segment A 
and B are obtained as described by Eq. (34): 
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2 2

2 1 2i i i
i i i

i i

x h xy u x , i ,
d d

 
= − + = 

 
  

 
(50) 

 
      Tensile force along the cable is determined from:  
   

( ) ( )

2
1

2

1
1 2

2

1

1
1

 

 

o

s
A s

T H u

sign h h

at O

T H h h u
d

at A

= +

  − +   = + − − 
  

             (51) 

 
2.2.2 The elastic single cable subjected to a load evenly distributed over each segment and a concentrated load at many 
points 
 
       Consider an elastic single cable resting on two supports ,O A  with the difference in height equal to ( )sh m . At points 

( ),i i iM x y  on the cable is subjected to concentrated load ( )iQ N ( )1i n= ÷  as shown in Fig. 3. On segments 1i iM M− , load 

evenly is distributed along the cable with intensity ( / )i N mγ . Knowing the coordinates of the ( ),i i iM x y  points before 

placing the load, it is necessary to determine the coordinates of the ( ),i i iM x y  points and also the deflection equation of each 
segment of 1i iM M−  cable after placing the load. Table 2 illustrates the symbols and parameters for the investigated cable. 

 
Fig. 3.  Model of single cable subjected to a load evenly distributed over each segment and a concentrated load at many 

points. 
 

Table 2. Symbols of quantities for defining the conditions of a single cable subjected to an evenly distributed load over each 
segment. 

Content Symbol Unit 
The length of the 1i iM M− cable segment, 1 1i n= ÷ +  iL  m  

The load intensity is uniform on the wire of the 1i iM M−  cable segment. iγ  /N m  
The projection of iM  on Ox  iN   

The length of  1i iN N− , 1 1i n= ÷ +  id  m  

The deflection at iM , 1 1i n= ÷ +  iy  m  

Tension force in cable segment 1i iM M−  at  iM , 1i n= ÷  P
iT  N  

Tension force in cable segment 1i iM M +  at  iM , 1i n= ÷  1
T

iT +  N  

The difference in height between two points 1iM −  and iM , 1 1i n= ÷ + . 1i i ih y y −= −  m  

Angle formed by P
iT  with the horizontal. 1i n= ÷  P

iα  rad  

Angle formed by 1
T

iT +  with the horizontal, 1i n= ÷  1
T
i+α  rad  

 
where  0 1; nO MM A+≡ ≡  , 0 10, n sy y h+= = . The assumption is that on each segment 1i iM M−  the load is uniformly 

distributed horizontally with intensity of   ( / )= γ i
i i

i

Lq N m
d

.    
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     Use Eq. (30) applied to cable segments ( iL  and 1iL + ) at points  ( 1, )iM i n=  to obtain: 
 

    
( ) ( )

2 2
1 1

1 1 12 2
i i i i

i i i i i i

q d q dH
u d h u d h

+ +

+ + +

= =
− −

 
 

(52) 

     Substituting ( ) ( )1 1 1i i i i i i ih y y y y sign y y− − −= − = − −  into Eq. (52) will get: 
 

[ ] [ ]2 2
1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) 0 , 1,i i i i i i i i i i i i i i i i iu d y y sign y y q d u d y y sign y y q d i n+ + + + − − + +Φ = − − − − − − − = =  (53) 

 
     Vertical and horizontal equilibriums at iM  lead to below equations: 
 

1 1T cos cosP P T T
i i i iT H+ +α = α =   (54) 

1 1sin sinP P T T
i i i i iT T Q+ +α + α =   (55) 

( )1tan tanP T
i i iH Q+α + α =   (56) 

             
      On each cable segment 1i iM M− with length iL  considered in the local coordinate system i i iO ξ η  ( i kO M≡ , 

{ }1,  k i i∈ − , { }1min ,k i iy y y−= ), the deflection equation in the form of Eq. (24) is obtained as: 
 

2 2

2
i i i

i i i
i i

hu
d d

 
= − + 

 

ξ ξη ξ   
 

(57) 

     Hence get: 
 

( ) ( )1 1 1
tan( ) i i i iP

i i
i

y y sign y y
u

d
− −−  − +  = −α   

 
(58) 

( ) ( )1 1
1 1

1

1
tan( ) i i i iT

i i
i

y y sign y y
u

d
+ +

+ +
+

−  − +  = −α   
 

(59) 

     With the aid of Eq. (52), the Eq.56 is written as: 
 

( ) [ ]2
1 1 1tan tan 2 ( ). ( ) 0 , 1,P T i

i i i i i i i i i i
i

Qd u d y y sign y y i n
q+ − −Ψ = α + α − − − − = =  

 
(60) 

     Applying the Eq. (22) to 1i iM M−  cable segments will result: 
 

( ) ( )2 2 2

2 2 2
ln 1 ln 1

1 1 0, 1, 1
2(1 )

 + + + + = + + − + − − = = + −  
 

i i i i i i
i

i i i i i i
i i i

u u C u C ud
W u C C u L i n

C u u
 

 
(61) 

 

and    
1

1
0

n

i
i

d d
+

=

Γ = − =  
(62) 

            
                     

where :  
( ) ( )1 12

1i i i i
i

i i

y y sign y y
C

u d
− −− −

= −  

      Solve the system of 3 2n +  equations (53), (60), (61), (62) for 3 2n +  values of  1,..., ny y , 1 1,... nd d +  and 1 1,..., nu u + . 
The solution of the above system of equations is done by Newton-Raphson method. The initial values 

1

(0) (0) (0) (0) (0) (0)
1 1 1 1,..., , ,..., , ,...,n n ny y d d u u+ +  calculated according to section 2.1.2 are applied to the OA  and 1i iM M−  cable 

segments in the absence of the , 1,iQ i n=  and , 1, 1iq i n= +  loads. 
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      If the longitudinal extension of the cable is taken into account, then after calculating the values of 1,..., ny y , 1 1,... nd d +

and 1 1,..., nu u +  from the above equations, Eq. (33) is applied to calculate the elongation on the cable segments 

( )1 1, 1i iM M i n− = +  respectively: 

 

( ) ( )
2 2

1
1

1

4 2
3 32

i ii i i i
i i i i i i

ii i i i

L
y yq d d ud y y u d

dE.F . u d y y
−

−
−

 −
+ + − − − − 

Δ


=  
 

(64) 

 
      Resolving the system of 3 2n +  equations (53), (60), (61) and (62) with the value iL  replaced by 

, 1,n 1i i iL L L i= + Δ = +  , get the solution , 0, 1iy i n= + and  , , 1, 1i iu d i n= + .  From here, get the deflection equations 

in the local coordinate system i iξ η  for each 1 , 1, 1i iM M i n− = +  cable segment. 
 

22
1

2
i i ii

i i i
i i

y y
u

d d
−  − ξξη = ξ − +  

 
  

 
(65) 

       After applying the load, the coordinates of the load points , 1,=iM i n   is 
1=

=
i

i k
k

x d  and with 0 10, nx x d+= =  we 

have the equation of deflection of the elastic cable OA  in the coordinate system Oxy  with each segment

1 , 1, 1i ix x x i n− ≤ ≤ = + : 
 

( ) ( ) ( )

( ) ( ) ( )

22
1 11

1 1 12

22
1

12

i i ii
i i i i i

i i

i i ii
i i i i i

i i

y y x xx x
u x x y if y y

d d
y

y y x xx x
u x x y if y y

d d

− −−
− − −

−
−

   − −−
 − − + + ≥ 
    = 

  − −−
− − + + < 

   

 

 
 
 

(66) 

      
      Tensile force along the cable at two supports are obtained from: 
 

1

2
1

2

 

1  

1

n

o

A

T H u

T H u

at O

at A+

= +

= +
   

 
(67) 

 
3. Calculation applications 
 
3.1. Elastic cable suspended with point load 
 
      The following application is taken as reference to validate different methods to simulate the cables. These cases were 
analyzed by some researchers such as: O'Brien and Francis (1964), Jayaraman and Knudson (1981), Tibert (1998) and Andreu 
et al. (2006). The problem is to determine the displacement of the loading point M , when the pre-stressed cable bears its own 
weight and is subjected to concentrated loads. The cable has a self-weight: 46.12 /=q N m , a cross-sectional area: 

25.484=F cm and an elastic modulus: 213100 /=E kN cm . Initial configuration and further information regarding this 
example are shown in Fig. 4. 

 
Fig. 4. Cable under self-weight and concentrated load. 
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      Let 0 0,L u  and ,L u  be the corresponding parameters of the in extension and elastic cable spans in the state of self-load. 
According to formulas (9) and (14) one gets: 
 

( ) ( )
0

2 2220 02 2
0 0 0

0 0

ln 1 ln 1
1 (1 1

2 2 3 2

   + + + +    + Δ = + + + + = = + +            

u u u uud qd dL L u L u
u EFu u  

 
 

(68) 

where 304.8=d m ; 
4 30.48 0.4

304.8
×= =u . Solving equation (68) gets 0 0.398=u => 0 312.666=L m . The cable span, 

when no load is placed at M , has 1 121.92=d m , 1 29.26=h m . When the  load is applied at M by using equations (36), 

(43), (44), (45),(46),(47), the initial values are obtained as: (0)
1 35.586=d ; (0)

2 182.88=d ; (0) (0)
1 2 0.398= =u u ;

(0) (0)
1 2 29.1164= =h h  via solving the equations with Newton - Raphson method. Get the results: 1 2 34.8608= =h h m , 

1 121.053=d m ; displacements at point M  in the Ox  and Oy directions were compared with the results of different 
researchers, as shown in Table 3 and on the graph of  Fig. 5. It is seen from Table 3 that the results of the current research are 
in agreement with the previous works and researcher showing the acceptable assumptions and calculations of the cable with 
parabola type element  
 

Table 3. Comparison of displacements obtained with different works at point M . 

Reference Element type 
Displacements (m) 

Horizontal ( )Ox  Vertical ( )Oy  

O'Brien and Francis (1964) Elastic straight -0.845 5.472 
Jayaraman and Knudson (1981) Elastic catenary -0.859 5.626 
Tibert (1999) Elastic parabola -0.866 5.601 
Andreu (2006) Elastic catenary -0.860 5.626 
Present work Elastic parabola -0.866 5.600 

 

 
Fig. 5.  Image for elastic parabolic cable span under concentrated load. 

(1) - The inextensible cable in the state of self-loading; (2) - The inextensible cable in the state of under concentrated 
load; (3) - The extensible cable in the state of under concentrated load. 

 
3.2. Elastic cable span subjected to many concentrated loads and at the same time are subjected to uniform loads on each 

segment 
 
      The cable span rests on two supports O  and A  with horizontal distance 200=d m  and height difference 2=sh m . 
Initially, the cable is pulled with a horizontal tension 33,333=H kN  , then concentrated loads 1 220 ; 15= =P kN P kN  are 
applied at points 1 2,M M  together with a uniform load of magnitude 90 /=q kN m  on the cable interval 1 2M M  (see Fig. 
6). The displacement at points 1 2M M  in vertical and horizontal directions and reactions at two supports ,O A were 

calculated after loading. The cable has a self-weight: 40 /γ = N m , a cross-sectional area: 28=F cm and an elastic modulus: 
213100 /=E kN cm . 
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Fig. 6.  The elastic cable span simultaneously bears many concentrated loads and uniform loads on each segment. 

 
      Let 0 0,L u  and ,L u  be the corresponding parameters of the in extension and elastic cable spans in the state of self-load. 
Before the load is applied, the cable span is stretched due to its own weight, with 200 , 2= =sd m h m  and horizontal 

component of cable pulling force 33,333=H kN . According to Eq. (30), get: 
. 0,13

2
γ= + =shdu
H d

. The coordinates of the 

points are iM : ( ) ( )1 240,4.24 ; 90,6.84M M .Using the formulas (22) and (33): 
 

( )
( ) ( )

( ) ( )
2

2
2 2

0 0 0 02 2 2
0 0

2
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0
0

0 0
0 0

ln 1 ln 1
1 1

2 1
4 2

2 . . 3 3
s

s
s

u u Cu C udL L u C C u
C u u

d du hd h u d
E F u d h d

γ  
+

 + + + + + Δ = + + − + − + + − −−   







 

 

( )
( ) ( )2 2 2

2 2 2
ln 1 ln 1

1 1
2 1

u u Cu C udL u C C u
C u u

 + + + + = + + − + − −  
 

,  in which  
2 1,shC
d

= − . 

      Solving equation 0 0L L L+ Δ =  gets 0 0.13u = => 0 200.42L m= . After applying the load, the set of equations (53), 

(60), (61), (62) are solved by Newton - Raphson method with initial values: ,
(0)
1 3.952y = , (0)

2 6.394y = ; (0) (0) (0)
1 2 340, 50, 110d d d= = = . The corresponding results are: 1 27.12; 9.43y y= = , 

1 239.67 ; 50.14d m d m= = .  Displacements at point iM  in the Ox  and Oy directions is shown in Table 4 and on the graph 
of Fig. 7. The reactions at O  and A   in vertical directions: 0 33,152 ; 14,358AV kN V kN= =  and  in the horizontal 
direction is: 180.3H kN= . 
 

Table 4. Comparison of displacement point M  

Point 
Displacements (m) 

Horizontal ( )Ox  Vertical ( )Oy  

1M  -0,33 2,88 

2M  -0.19 2,59 
 

 
 

Fig. 7. Image for elastic cable span simultaneously bears many concentrated loads and uniform loads on each segment. (1) - 
The inextensible cable in the state of self-loading; (2) - The inextensible cable in the state of under concentrated load; (3) - 

The extensible cable in the state of under concentrated load. 
 

(0) (0) (0)
1 2 30.121, 0.0766, 0.101u u u= = =
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4. Conclusion 
 
     With the load evenly distributed on the cable being considered to be evenly distributed in the horizontal direction and the 

introduction of the dimensionless parameter
4 cfu
d

= , the paper has built a system of non-linear equations, calculated the 

necessary parameters to get the equation of deflection and tension of the elastic cable resting on two high-displacement 
bearings, simultaneously bearing many concentrated loads and uniform loads on each cable span. Solving the system of 
equations is done easily by the Newton-Raphson method. Finally, the example calculation results are compared with the 
calculated results of other studies as acceptable and demonstrating the validity and accuracy of considering the cable with 
parabola elastic elements. 
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