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method to utilize can be using piezoelectric patches which are stuffiest enough for various applications
like energy harvesting. This study presents a novel approach for investigating energy harvesting in
smart structures using composite panels integrated with piezoelectric patches. The panels are chosen
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Co)r)nposite panel to symmetry—balanced laminated composites, and modal a.nd harmonic analysis conducte_d using the
Energy Harvesting Rayleigh-Ritz method. To compute the kinetic and potential energy components of the piezoelectric
Optimization patches at a local level, piecewise Heaviside functions are employed, and these energy components
Piezoelectric patches are integrated into the equations of motion together with those of the host composite plate. The results

of the numerical method are validated by a commercial finite element software (FEM) COMSOL and
there is a good match between FEM and this paper results. By subjecting the laminated composite with
piezoelectric patches to forced vibration while varying the lamination parameter, the power output is
optimized. The findings emphasize the substantial impact of the lamination parameter on power
output, indicating that modifications can result in significant power output increase.

© 2024Growing Science Ltd. All rights reserved.

1. Introduction

In recent years, there has been a growing demand for efficient and sustainable energy harvesting technologies to meet the
ever-increasing energy needs of modern society. Among various approaches, the integration of piezoelectric materials into
composite structures has shown great potential for converting ambient mechanical vibrations into usable electrical energy
(Detwiler et al., 1995). This integration enables the development of smart materials capable of self-powered sensing systems,
wireless sensor networks, and other energy-autonomous devices (Wan et al., 2023). The purpose of using laminated
composites is to combine the desirable properties of different materials and create a composite material with improved overall
performance. Each layer in the laminate may contribute specific characteristics, such as high strength, stiffness, impact
resistance, or thermal stability, depending on the materials used (Park et al., 2001). By strategically arranging and bonding
these layers, engineers can tailor the properties of the laminated composite to meet specific requirements for a given
application(Park et al., 2001). One key advantage of laminated composites is their ability to provide high strength and stiffness
while maintaining a low weight. This is particularly important in industries such as aerospace, automotive, and sports
equipment manufacturing, where lightweight materials are essential for achieving fuel efficiency, performance, and
durability(Liu, 2023).

Various methods and technologies are utilized for harvesting energy from vibrations, depending on the application and
needs. These methods include piezoelectric (Kim et al., 2011), electromagnetic (Yang et al., 2009), and electrostatic
transduction mechanisms (Torres & Rincon-Mora, 2009), which are commonly employed in vibration energy harvesting.
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Their small form factor allows for easy integration into various systems without adding significant bulk or weight. These
materials are known for their durability and robustness, making them suitable for long-term and reliable operation in harsh
environmental conditions. These materials have gained significant attention and adoption across various applications,
including structural health monitoring (Jiao et al., 2020), energy harvesting (Safaei et al., 2019), and shunt damping (Han et
al., 2013). Piezoelectric materials exhibit a wide frequency response range, allowing them to harvest energy from a broader
spectrum of vibrations (Fakhzan & Muthalif, 2013). This flexibility in frequency response makes them suitable for capturing
energy from various vibration sources, including low-frequency ambient vibrations and high-frequency mechanical vibrations.
Piezoelectric energy harvesters can be relatively easier to manufacture compared to electromagnetic or electrostatic
counterparts(Cook-Chennault et al., 2008). Piezoelectric materials, such as ceramics or polymers, can be readily integrated
into devices or structures, making the manufacturing process more straightforward and cost-effective. Piezoelectric energy
harvesters can be designed to be compact and lightweight, which is advantageous for applications where size and weight
constraints are critical, such as wearable devices or portable electronics (Lam et al., 1997). They can withstand mechanical
stresses, temperature variations, and other challenging operating conditions, ensuring the longevity and performance stability
of the energy harvesting system(Li et al., 2014).

Energy harvesting has been a primary focus of research by (Motlagh et al., 2021) highlighting the potential of piezoelectric
materials in this design domain. The generated voltage difference can be effectively captured and subsequently utilized as a
viable source of electrical energy(Howells, 2009). The performance of piezoelectric energy harvesting systems is contingent
upon several crucial factors that significantly influence their overall efficiency and effectiveness. The geometric attributes of
the piezoelectric material can be meticulously engineered to optimize its electrical properties and enhance the energy
conversion process (H. Yang et al., 2017). Moreover, the frequency and amplitude of the mechanical vibrations directly
influence the magnitude and quality of the electrical energy output. A comprehensive understanding of the intricate interplay
between these vibrational parameters and the resulting energy harvesting performance is crucial for devising effective
optimization strategies (Motlagh et al., 2020). Piezoelectric materials, in the form of patches or layers, are predominantly
employed in the field of structural engineering for their integration onto the surfaces of flexible beam or plate-like structures
(Lahe Motlagh et al., 2023; Motlagh et al., 2021). In this research study focuses on the investigation of energy harvesting
techniques through the integration of vibrating laminated composite plates with piezoelectric patches. In existing literature,
researchers have made significant contributions to the modeling of structures integrated with piezoelectric materials. Initially,
Erturk and Inman (2009) proposed a lumped parameter model for beam-like structures with a full piezoelectric layer.
Expanding upon this work, Motlagh et al. (2018) and Yoon et al. (2016) developed an analytical model for plate-like structures
incorporating a piezoelectric patch, which can also be adapted for partially covered panels. Additionally, (Zhou et al., 2018)
focused on smart composite modeling and presented a novel approach for analyzing the vibration behavior of a composite
pipe-shaped structure integrated with piezoelectric materials.

Power optimization plays a vital role in improving the efficiency and viability of energy harvesting systems, as it directly
affects the amount of electrical energy that can be generated and utilized. One promising avenue for enhancing power output
is through the manipulation of lamination parameters within the composite structure. Lamination parameters include factors
such as the stacking sequence, fiber orientations, and layer thicknesses, which collectively determine the mechanical and
electromechanical properties of the laminated composite (Almeida & Awruch, 2009). By strategically selecting and optimizing
these parameters, it is possible to tailor the structural response and enhance the electromechanical coupling efficiency, thereby
maximizing power output. Various researchers have employed the lamination parameters technique to represent the stiffness
characteristics of laminated composites in a concise form, irrespective of the number of layers and their individual thicknesses.
Abdalla et al. (2007) utilized lamination parameters to express the fundamental natural frequency of symmetrically laminated
panels. Trias et al. (2016) employed lamination parameters to determine the optimal stacking sequence that maximizes the
fundamental frequency. Honda et al. (2009) optimized lamination parameters to modify the natural frequencies of laminates
based on three performance metrics. (Bardell et al., 1997) conducted a vibration analysis of thin, laminated, cylindrically
singly curved shell panels using the finite element method. Assaece and Hasani (2015) investigated the forced vibration
response of curved composite cylindrical shells using the spline finite strip method.

The optimization of power output in laminated composites integrated with piezoelectric patches via lamination parameters
is a complex and multifaceted research area. It requires a comprehensive understanding of the interplay between the
mechanical and electrical properties, as well as the effects of different lamination configurations on the overall system
performance. Consequently, this topic has attracted considerable attention from researchers in the field of smart materials and
energy harvesting. In the existing body of literature, several approaches have been proposed for modeling piezoelectric
laminated composite plates. One widely employed method is Classical Plate Theory (CPT), which is a two-dimensional
mathematical model designed to analyze thin plates with small deformations. CPT assumes a thin and uniformly thick plate,
neglecting deformations in the thickness direction compared to those in the plate's plane(Lee, 1990). While CPT possesses
certain limitations, such as its inability to accurately model large deformations and shear effects, it remains a prevalent choice
for modeling straight panels. Researchers have developed various CPT-based models to investigate the vibration
characteristics of piezoelectric layers (Zhang & Yang, 2009). To optimize the lamination parameter for a specific application,
a combination of numerical modeling techniques can be employed. Finite Element Analysis (FEA) is a numerical method
capable of simulating the panel's behavior and offering insights into the influence of various lamination parameters on energy
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harvesting performance. FEA facilitates the calculation of displacement, strain, and electric potential, providing a
comprehensive understanding of the panel's electromechanical behavior. Moreover, FEA enables the evaluation of panel
performance under different loading conditions, including static and dynamic loads (David Miizel et al., 2020).

Enhancing the efficiency and reliability of piezoelectric energy harvesting systems remains an ongoing challenge. The
energy generated from smart composites has received limited attention thus far. To address this, the present study proposes an
approach to optimize the power output of a smart panel integrated with piezoelectric patches by selecting an appropriate
lamination parameter for the panel. The lamination parameter, dictating the stacking sequence of the panel's different layers,
significantly impacts the piezoelectric effect and energy harvesting performance. In this study, the Rayleigh-Ritz Method is
employed to calculate the natural frequencies and mode shapes of a smart composite panel with piezoelectric patches. The
analytical model incorporates the geometric discontinuities of the piezoelectric patches and utilizes piecewise Heaviside
functions to obtain the kinetic and potential energy components locally. These components are combined with those of the
host composite plate to derive the equations of motion. Furthermore, the governing equation of motion is derived using
Hamilton's principle. To ensure the accuracy and reliability of the analytical model, the obtained results are validated by
comparing them with a commercial FEM software, COMSOL. Additionally, optimizations are performed to obtain globally
optimal results. The optimized lamination parameter is then compared with the original unidirectional configuration to
illustrate the benefits of lamination optimization. Through this comprehensive research, it aims to contribute to the
advancement of power optimization techniques in laminated composites integrated with piezoelectric patches. The findings
will provide insights into the influence of lamination parameters on energy harvesting performance, facilitating the design
and development of efficient and practical energy harvesting systems. These advances will contribute to the broader goal of
realizing self-powered devices and enabling sustainable energy solutions in various engineering applications.

2. Method

To solve equation of motion in the smart structure we have in this paper, classical plate theory is utilized to implement
motion of smart composite integrated with piezoelectric patches. Subsequently, the constitutive equations for the problem's
structural utilize lamination parameters to include effect of composite stacking sequence. To present symmetry-balanced this
study use Miki's lamination diagram to include various lamination parameters such that the whole design space is simplified.

3. Problem Definition

Piezoelectric materials are commonly employed as patches or layers integrated onto the surfaces of flexible structures that
resemble beams or plates. The diagram presented in Fig. 1. illustrates a schematic representation of a fully clamped composite
plate, where a pair of piezo patches is attached to it in a bimorph configuration. The plate's dimensions are characterized by
the parameters a, b, and h, where a and b correspond to the length and width of the plate, respectively, and h represents the
overall thickness of the plate. The composite plate comprises layers of equal thickness. The length, width, and thickness of
the piezo patches are denoted by 1, wy,, and hy, respectively. Symmetrically positioned with respect to the plate's mid-plane,
both piezo patches are symmetrically attached to the top and bottom surfaces of the laminated composite plate. These piezo
patches are connected in parallel to a resistive load, represented by R;. Occupying a rectangular region on the composite plate,
the piezo patches are defined by the coordinates of their two corners, (x;,y;) and (x,,y,). To perform frequency response
analyses, a transverse harmonic point force is applied at the coordinates (x,, ¥,), acting as the excitation source.
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Fig. 1. Schematic representation of a laminated composite plate with surface-bonded piezo patches: Isometric view, (b)
Cross-sectional view

4. Constitutive Equations

Piezoelectric patches are commonly fabricated as thin plates, which enables the use of a two-dimensional Kirchhoff plate
model to represent the mechanical behavior of the patch's skin. According to Kirchhoff plate theory, this model assumes that
the deflection of the middle surface is significantly smaller than the thickness of the plate. Initially, the cross-sectional plane
of the piezoelectric patch is perpendicular to the middle surface, and this orientation remains unchanged even after the plate
undergoes bending. As a result of this assumption, the transverse shear strains y, - and Vyzs which represent the deformation

in the directions perpendicular to the plate's surface, can be neglected. Similarly, the normal strain €,,, which corresponds to
the deformation occurring in the thickness direction of the plate, can also be disregarded when analyzing transverse vibrations
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of the skin thus the normal stress o, in the thickness direction being significantly smaller than the stresses occurring within
the plane of the plate. Accordingly, the plane stress state:

Ozz = Tyz = Tzx = 0 (1)

The structural layer material is assumed to exhibit isotropic behavior. In the context of Kirchhoff plate theory, the
relationship between stress and strain for a thin composite plate is expressed as follows.

1 v 0

O-xx gxx
P RO L 0 Eyy )
Txy 1-v? 0 1-v Vxy

In this context, Y; represents the Young's modulus and v, corresponds to the Poisson's ratio of the structural layer. By
employing the principle of equilibrium, we equate the force and moment to the integral of the stress and stress multiplied by
the distance from the centerline. Fig. 2. And Fig. 3. show the forces and moments for the classical lamination theory.
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Fig. 2. In plane normal forces and bending moment
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In this equation, h represents the thickness of the plate and z shows thickness directions. If expressed in compact form:
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and moment resultants can be expressed as follows:

Fig. 3. In- plane shear force and twisting moment
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Herein, the integration is performed across the entire thickness of the laminate by summing the integrals over each
individual layer. So, the integrals are taken as follows and Fig. 4. shows notation for location of ply interfaces.
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Fig. 4. Notation for location of ply interfaces
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By utilizing these integrals, the equations can be formulated in a conventional manner, establishing a relationship between
stress resultants, moment resultants, centerline strains, and curvatures in the following expression:

{11\\/[1} - [g g] {6;?} (®)

The vector g, represents the mid-plane strains, while K represents the panel curvatures. 4, B, and D are tensors that
respectively represent the in-plane stiffness, in-plane/bending coupling, and bending stiffness. The relationship between force
and moment resultants and the strains in the laminate can be established by considering the material properties of each ply
group. In the case of symmetric laminates, the in-plane/bending coupling tensor is zero, the B matrix is equal to zero. It is
possible to represent the normalized in-plane stiffness tensor using only two lamination parameter variables, that can be
formulated (Tsai & Hahn, n.d.). The normalized lamination parameters, denoted as V; and V3, can be defined as follows:

Ny
1
v, = EZ t cos(26y,) )
k=1
Ny
1
Vs = EZ t, cos(46,) (10)
k=1

N, is the number of layers, t;'s are the layer thicknesses, and 8},'s are the layer angles. The material invariants, denoted as
U's, are calculated using the following equation:

3 3 1 1
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U 11 00
(U;\I % 12 Q11
1 11) Q2
u; V== = = _Z 11
{Uﬂ& 8 8 4 2[|Cu ()
o) 121 3 1]\
s e
8 8 4 2
1 1 -1 1
8 8 4 2.

The reduced stiffness matrix entities, Q;;'s, are given by the following equation:

E;
4
Q1 B
Q22 e
= where y= (1 — vy, 12
Q12 \J v1,E, r=( 12V21) (12)
Qss %
b1
e
By employing the reciprocity relations for orthotropic layers, the Minor Poisson's ratio can be determined as follows:
v12E,
Vy1 = E (13)
1

Using the normalized lamination parameters /; and V3 found by Eq. (9) and Eq. (10), it is possible to represent the
normalized in-plane stiffness tensor.

4 Ui Us O u, 0 0 Us -Us O
E = U4 U]_ 0 + 0 —U2 0 Vl + _U3 U3 0 V3 (14)
0 0 Us 0 0 o0 0 0 -U;
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For laminates composed of numerous uniformly distributed layers, the bending stiffness matrix becomes orthotropic,
characterized by only two lamination parameter variables. This leads to the following relation (Fukunaga, & Vanderplaats):

A h?
D=—— 15
P 15)
The electric field E3; is utilized in the subsequent steps in the following manners:
v;(t
E3; = — Lh( ) (16)
P

By virtue of the electric field and its alignment with the z-axis, the electric displacement field D can be simplified to a
scalar component, denoted as D;s. In relation to each piezo-patch, the stress and electric displacement components can be
adequately characterized using 2D constitutive equations, as detailed in the study conducted by (Yoon et al., 2016).

[C11 Ci2 0 _9_31] €
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Within this equation, the term ¢; ; denotes the reduced modulus of elasticity associated with the piezoelectric patches. The
equations of motion governing the system are derived by employing Hamilton's principle, as:

t2
5f (KE—PE+W,)dt=0 (18)
t1

where § signifies a variation in the system's configuration, KE represents the system's kinetic energy, PE represents the
system's potential energy, W}, denotes the work done by non-conservative forces, and the integral is taken over a specified
time interval from t, t, t,. The derivation of the expression for the kinetic energy of the system can be obtained in the following
manner:

1
KE = 3 ffsm(x.y)v'vz ds (19)

The parameter S denotes the surface area of the system, which includes both the upper surfaces of the piezo-patches and
the thin composite plate. The variables m(x,y) and w represent the areal mass and velocity terms, respectively. The
calculation for determining the equivalent mass per unit area can be accomplished by employing the following computation:

m(x.y) = pshs + pph,P(x.y) (20)

In this context, p; and p, represent the respective densities of the thin composite plate and piezoelectric patch. The
function P (x,y) serves as an indicator, identifying the specific locations on the surface of the composite plate where k
piezoelectric patches have been affixed.

k

Px.y) = Y [Hx = xi2) = HGx = xi)] X [HO = ¥e) = HOY = %12)] e
i=1
In Fig. 2. the geometrical parameters of the piezoelectric patch are illustrated. The formula for the area, defined by the
four vertices x;, x2, y1, and y; along the x and y-axes, incorporates the use of the Heaviside unit step function denoted by H.

Fig. 2. Representation of the geometric parameters of the piezoelectric patch



M. K. Acar and P. L. Motlagh / Engineering Solid Mechanics12(2024) 147

The stored potential energy within the composite plate and piezoelectric patch is represented by the symbol PE, and it is
expressed in the following manner:

PE = % .UI; {(Uxxexx)s + (Uyy‘EYJ/)S + (Txyyxy)s} Vs

(22)
+% fffv {(axxexx)p + (nygyy)p + (Txyyxy)p} dVy

In this equation, the thin composite plate and the piezoelectric patch are characterized by their respective volumes, denoted
as V; and Vj,. The potential energy stored within the thin composite plate can be mathematically described in the following

way:
e o () 2 (22) (222) (222
N 2 s, 11 axz 12 ayz axz 22 ayz
4Dy ("’_W> (a_w> +4D, (0_W> (a_w) +4D ("”_W)} s
dx2 |\ 0xdy ¢\ ay? )\ oxay 66\ axay s
The equation provided involves two key elements: S;, which denotes the surface area of a thin composite plate, and D;j,

which represents the elements of the bending stiffness matrix of a host plate consisting of » layers that obtained through the
following derivation:

(23)

n
1
D = §Z(Qu)k (z3 —z3_,).fori=j =126 (24)
k=1

The elements of the reduced stiffness matrix, denoted as @;; s, can be determined by employing Egs. (12-14). The stored
potential energy within the thin piezoelectric patches can be represented by the following expression.

» (07w 2 » (0°wW) (0%w » [0%wW 2
1 2 ﬁ; P(x.y){D11 9x2 + 2D, W 9x2 + Dy ay?
P
PEr=5).

- 2w\®  _ hs + hy\ (0*w  0%*w
=t ta4pk (_axy> —e31v(t)( > )<_6x2 +_0y2> ds,

In this equation, S,, denotes the surface area of the piezoelectric patches, v(z) represents the voltage applied to the patches,
and Di’}. corresponds to the bending stiffness matrix of the patches, which can be defined as follows.

(25)

B_‘_h _hs 3 2 2
2P 2 h hih hsh
pP, = ¢y 22dz = oy 22ds = &y (24 e Bty
1 f% €11 2°dz f_%_hp €11 2°dz c11(3 + 7 + > o
o _J%np_ oy _j—% gy s (M MRy hh
12 = % Ci2z7°Az = _%_hpcuz Z=Cy2 3 7 2
. [T ¥ [k hh, hh}
D66=ﬁ Co6 Z dz=Jh Coe Z2°dz = Cgq ?+T+T
> > hp
The work done by the point force can be calculated by the following equation.
W, = fff(t)(?(x—xO)(?(y—yO) ds 27
s

In this equation, f(t) denotes the amplitude of the force, and §(x) and §(y) represent the Dirac delta functions along the
x and y axes, respectively. The displacement of the system is denoted by w. By considering these variables, we can derive the
equation of motion for the plate and piezoelectric patches as follows:
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5. Miki's lamination diagram

Miki's Lamination Diagram is a graphical tool used in the field of composite materials to analyze and visualize the feasible
design space for balanced and symmetric laminates (Albazzan et al., 2019). The diagram consists of two axes that represent
the normalized lamination parameters, typically denoted as V; and V3. These parameters are calculated based on the angle and
thickness of each layer within the laminate. By plotting various combinations engineers can determine the allowable range of
lamination configurations that satisfy specific design requirements. Points within this region represent viable laminate designs
that fulfill balance and symmetry conditions. The boundary of the diagram is defined by the curve given below, which
separates the feasible area from the non-feasible area.

Ve = 2V2—1 (29)

In Fig. 6. Miki's Lamination Diagram is presented, offering an insightful visual representation. This diagram displays
specific points that represent laminates with orientations of [0°], [ + 45°],,[90°], and [0° + 45° 90°], (quasi—isotropic).
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Fig. 6. Miki’s Lamination Diagram
7. Modal analysis

Accurately analyzing the piezoelectric energy harvesting (PEH) patches poses challenges due to the presence of geometric
inconsistencies at the edges of the piezoelectric patch. To address this issue, the Rayleigh-Ritz method has been employed to
conduct modal vibration analysis of a laminated composite plate with integrated piezo-patches. By imposing fully clamped
boundary conditions (CCCC), the natural frequencies and their corresponding mode shapes can be determined for the system.
To facilitate the analysis, assumed modes are employed to define the displacement of the system, as described by (Yoon et al.,
2016). This approach allows for a comprehensive examination of the system's dynamic characteristics and provides valuable
insights into its vibration behavior.

w(x.y.t) =ZZUU Wi (e y)ug;(6) (30)

i=1 Jj=1

In the equation provided p;;(t), represents the generalized modal coordinates, which are associated with N vibration
modes in the y coordinates and R vibration modes in the x coordinates. Assumed modes, U;;W;;(x, y), where U;; represents
the corresponding coefficients and W;;(x, y) represents the trial functions that satisfy the boundary conditions. To obtain
orthogonal polynomials within the interval 0 <x <a, 0 <y <b, the Gram-Schmidt procedure is employed such as:
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$2(x) = (x — Bo) 1 (x). ¢r(x) = (x = B)pr_1(x) = Crpy_2(x)
Sy xhe()Pp?_ (x)dox . Sy ke () r—y () pr—p (X)dx 31)
fy k@1 dx Iy k)$7_5 (x)dx

r =

The boundary condition of a rectangular beam with fixed-fixed ends, characterized by the first term of the orthogonal
polynomials, denoted as ¢, (x), can be mathematically obtained through specific techniques which for a fixed-fixed boundary
condition for the beam with length a, it can be written as:

¢1(x) =a*x?—2ax®+x* (0<x<a) (32)
@1(x) = b%y? = 2by3 +y*. (0<y <bh) (33)

The quotient U;; , known as Rayleigh's quotient, can be defined as the ratio between the maximum potential energy and

the corresponding reference kinetic:
PEmax
R[U;Wy(x.p)] = KErey (34)

To identify the conditions for achieving a stationary value of Rayleigh's quotient, it is necessary to differentiate it with
respect to the coefficients U,,,. This process will yield the essential conditions that need to be satisfied for the attainment of
stationary value.

6_R _ <6PEmax w2 aKEref> _
Uy oU;; YUy

The maximum potential energy (PEpq,) and the reference kinetic energy (KE,.f) can be determined by utilizing the
following equations

Emax = §

1j=1

i=
N N
1
KEref=§ZZ
=1 j=1

Furthermore Kij k1> can be identified as:

(35)

KijiaUijUk (36)

=
1l

1
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g

M;j Ui Ui (37
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+{D22 + 11 ay
[02W;; 3%W, 6 W;; 02Wy,]
+{2D26} ZL] kl + ij 2kl
| dy*  Oxy oxy 0dy? |
4D pt.p
+{ 66 + 8Dge (x. y)}[ axy xy ]] S
To determine the mass term, M;; ;, one can utilize this equation:
M = [[ Wiy y)mee y) Wi e )ds (39)
s

After computing the mass and stiffness parameters, the eigenvalue problem for investigating the natural vibration of
piezoelectric patches can be formulated as:

[Kij it — 0FMij ] [Ui;] = {0} (40)

In this formulation, the eigenvectors of the equation, denoted by U;;'s, represent the coefficients of the assumed mode
shapes. The corresponding eigenvalues of the equation are the square of the natural frequencies, denoted by w;;'s.

8. Electrical circuit equations

Fig. 7. illustrates the representation of the two piezo patches connected to a resistive load in the form of an equivalent
circuit. It is important to mention that when nonlinear circuits are utilized in conjunction with the piezo-patches, an alternative
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approach known as the equivalent impedance method can be employed, as proposed by (Aghakhani et al., 2019; Motlagh et
al., 2021). By applying Kirchhoff's current law, the circuit equation can be formulated:

dv(t)

N
Z(Cp)l v® Z if (t) (N = 1.2...number of patches) 41

=1
In thls equatlon the term I P(t) represents the current source that depends on the velocity, (Cp) denotes the equivalent

capacitance of the Ith piezo-patch, and 6, corresponds to the electromechanical coupling term for the Ith piezo-patch. The
value of 8, can be determined through the following procedure.

d? d*w
(o_ewtﬂ<#f )w (42)
(), = ’”)(:V”) 43)
0= en (hs * ) @)

iﬂ%@ iah iﬂﬁé) (aﬂ &§ V(t)

Fig. 7. The representation of the electromechanical system in terms of an equivalent circuit.
9. Harmonic point force excitation and its steady-state responses

By employing a transformation procedure that incorporates modal coordinates, the equations of the system, within physical
coordinates, can be effectively converted into modal coordinates. It has been elucidated by (Yoon et al., 2016) that the assumed
mode shape coefficients U;; demonstrate orthogonality in relation to the mass and stiffness matrices. This inherent
orthogonality property engenders a decoupling effect, thereby yielding uncoupled equations of motion when the system's
equations are subjected to the transformation from physical coordinates to modal coordinates.

, 1if ij = ki
G = UliMij Uy = { if ij # kl (45)
, w? if ij=kl

tiaa = UliKij U :{ 8 if i %kl (46)

The modal mass and stiffness matrices, denoted as M;; ;; and Kj; ;; respectively, play a crucial role in the modal coordinate

representation. To determine the applied point force in modal coordinates, a specific procedure needs to be undertaken,
involving a series of calculations or computations.

= f FO8Gx = 20)8(y — YO)Uys Wy (x. Y)dS = £(€)UysWis (x0.50)
S

r=123....N s=123....N
The current output in modal coordinates can be obtained:

HOR ZZ W0 (5,0, @)

r=1s=
The expression below can be employed to represent the electromechanical coupling term (érs)l of the /th piezo patch in

47

modal coordinates:

szVrs d* W
(%)—mﬂmw&n( dy>ﬁ (49)
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The electromechanically coupled equations of the system can be expressed in modal coordinates in the following manner,
as demonstrated by (Gohari et al., 2016):

0% s () Optrs ()
% + 2wpsGrs ;S

+ Wt () - Z(ers ) p(®) = fs(® (50)

dv(t)z( p) Ig_ Zii Hrs(t)(grs) —0 (1)

In the case of a linear system, when a harmonic force input is applied in the form of f(t) = F,e/®¢, the resulting steady-
state voltage output and mechanical modal response can be represented as follows:

v(t) = Vel®t (52)
Urs(t) = Hrsejwt (53)

Within this framework, V represents the complex magnitude of the voltage output, and H,s signifies the complex
amplitude of the modal response. Upon replacing the values of u,(t), v(t), and f,, one can derive the complex modal
amplitude H,.

FOUTSM/rs(xO-yO) + Vlezl(érs)l

s = 2 2 i (54)
wis — W + 2j{s 050
By employing the same method, the complex voltage amplitude V can be obtained as:
]w(ers)lpo UrsWrs(x0.y0)
- Zl 127’ 1 ZN z __ 2
V= Wrs—W?+2j{rsWrsw (55)

jw(grs) Z% (grs)
joXia(C), + % +Zz 1 201 251 7t it

Utilizing a substltutlon technique like the equation, one can determine the modal displacement of the system in modal
coordinates.

( t) _ ZN:ZN: Ursw/rs(x y) [FOUrsVVrs(xO yO) + VZ 1(61‘5) ]e]wt
Wiy wrs —w?+ qurswrsw

(56)
r=1s=
Through the apphcation of a harmonic force input, it becomes possible to derive the frequency response function of the
voltage, which illustrates the correlation between the input force and the ensuing voltage output.

jm(érs)lurswrs(xo-yo)

v(t) =X XN B —

Wis—w2+2jrsWrsw
Foejwt

jo i 1(Cp) tx +Zl 1 20— Xie 1M

s~ W2 +2j{rswrsw

(57)

By applying a harmonic force input, one can determine the voltage frequency response function, which expresses the
relationship between the input force and the voltage output as:

wr.y.t) ZZ U Whs (2. 3) [Ups Wi (0. 50) + (@) B34 (B | -

FOe}wt wrgs —w?+ 2j¢rswrsw

r=1s=
10. Technique for separating integrals

In this section, to solve the Rayleigh-Ritz incurred significant computational time, an alternative technique is introduced
that involves splitting the integrals (i.e., splitting the surface integral into two separate integrals). Using this method, a
significant reduction in computational time can be achieved, especially in scenarios involving higher mode numbers. The
variables ¢ and 1 represent dimensionless quantities along the x and y coordinates, respectively, as described by the following
expressions:

e=%y ="/, (59)

The interpretation the displacement in physical coordinates can be elucidated by considering the normalized variables in
characterizing the displacement field (Bhat, 1985) as :
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N N
WEDE) = D Ui (Y n (O (60)

m=1n=1
By employing normalized variables, the x and y coordinates can be expressed as orthogonal polynomials X,, (), Y, ().
These polynomials are characterized by coefficient U,,, and generalized modal coordinates p,,,(t). Furthermore, the

indicator function P (&, 1) can be split into two separate components.

P(e.n) = Px(¢), Py(n)
Px(e) = [H(e —x;/a) — H(e — x5 /a)] (61)

Py = [H (n—22) - 1 (1 -22)]

The presence of Px(¢) and Py(n) indicates separate Heaviside-step functions operating in the x and y directions. These
functions rely on the normalized variables € and 1. An eigenvalue equation can be derived as:

N N
Z Z[Cmnij - )‘anij]Umn =0.1= pshswmn2 a4/D11 (62)

m=1n=1

The stiffness term Cyy,p;; tefers to the interaction between the host structure and the piezo patches. It can be defined as:
Cmnij = Csmnij + ZCpmnij (63)

The expressions representing the stiffness term of the host structure Csy,;; and the piezo patches Cpy,p;; can be stated as
follows:

D
CSmnij = EGOFSY + a EGOFE? (Di>

D
+a2[EQPFGD 4 EEOFO? (D_lz)
11

D
(2 1) -(0.1) (1 2) -(1.0) 16
+2a[Eq Fy iV + Ep iV Fy <_D11)

+2a3[E(01)F(21)+E(1O)F182) (D >+4 2E(11)F(11) <D66)
Dll m Dll

(64)

2) . (0.0) Dp 0) . (2:2) Dp
CPmnij = EPS; Fp,; (D >+a"Epml Fp,; (D )
11 11
Dp
+a?[Epo P Fp” + EplOFpl? < 2) (65)

Dy4
Dp
+4azEp(1 1)Fp(1 D <D )
11

The aspect ratio (o = %) characterizes the proportions of the host structure, while the mass term Mp,,,;; considers the total
mass contributions from the host structure and the piezo patches.

anij = Msmnij + 21\/Ip‘mnij pphp/pshs (66)

In this equation, the mass term of the host structure Ms,,;; and the piezo patch Mp,,,;; can be given by the following
expressions:

MSynij = EQOFS” (67)

MPonij = EpSo” FplS® (68)

The components representing the host structure E ") F (;'S) and the components representing the piezo patches

Ep(id F p(r ) are defined as:

197X (e)@SX (e)

(rs) _ 7 AmieJ

B = | e e (©9)

) _ flaryn(e)asyj(n) ;
0

n o an (70)




EpT) = fo()
Fpl) = f Py =2

wherem.i = 1.2.3.....

11. Results and Discussion

arxm(e) xXi(e)

=l

ary (e) 0%Y; (77)

67]5
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N n.j=123....N

r.s =0.1.2
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(71)

(72)

The accuracy of the analytical model's solutions was validated by comparing them with results obtained from COMSOL,
a commercial FEA software. A proper bonding of the host structure and the piezoelectric patches is utilized. The connection
between the piezo-patches and the external resistive load was modeled using a circuit element. Table 1 provides information

about the material properties of both the composite plate and piezo patches.

Table 1. Material Properties of composite plate and piezo patches

Properties Composite Plate Piezoelectric Material
Width(mm) 500 150
Length(mm) 500 150
Thickness(mm) 2,5 0,2

Mass Density(kg/m?) 1500 7750
Poisson’s Ratio . 0,25 0,35
Piezoelectic Constant €3 [C/m?] - -16,041
Permittivity Constant €%3 [nF/m] - 9,56

Young Modulus (E;;) [GPa] 150 -

Transverse Elastic Modulus (Es,) [GPa] 10 -

Shear Elastic Modulus G;» [GPa] 6 -
Piezoelectric strain coefficient (ds;) - -171 pm V!
Dielectric permittivity at constant strain (€%3) - 9,5657 nF m’"!
Dielectric permittivity at constant stress (€733) - 1,5052 nF m’!
Absolute permittivity (€o) - 8,854 pF m!

Compliances of the piezoelectric patch

S11:16,4 pm? N-!
Si12:5,74 pI]leN'l
Se6 :44,3 pm? N!

Modal analysis was performed to determine the mode shapes and natural frequencies. By employing the mode
superposition method and considering the first ten vibration modes, the voltage and displacement frequency response
functions (FRFs) were calculated. Then the voltage frequency response function and displacement frequency response
function of the system under 1 N load were found. In the following section, the power obtained from the system is discussed
and the power outputs and average power outputs resulting from the optimizations are extracted.

12. Natural frequencies of system

The modal analysis of composite plates with surface-bonded piezo-patches is accomplished by employing both the
Rayleigh-Ritz method and finite element simulations. The obtained solution for modal analysis is presented in Table 2, which

displays the initial ten resonance frequencies of the system.

Table 2. First six natural frequencies of the different laminated plate

V1 =1,V3 = 1,[0/0],

V1 =0,V3 = -1 [45/-45],

V1 =-1,V3 = 1[90/90]

V1 =0,V3 = 0 [0/45/-45/90];

R-R
98,79

134,23
207,96
277,54
301,98
309,69
352,22
422,70
426,42
528,85

FEM
98,627
133,47
208,76
277,63
297,07
310,04
353,11
422,09
4229

530,7

Diff.(%)
0,170
0,570
0,384
0,031
1,653
0,114
0,253
0,144
0,833
0,348

R-R
91,08

175,74
213,49
283,06
348,50
373,00
399,08
485,24
536,40
551,36

FEM
91,11

175,70
213,74
283,97
350,11
374,33
399,96
487,04
537,74
553,38

Diff.(%)
0,035
0,020
0,118
0,320
0,460
0,354
0,219
0,369
0,249
0,365

R-R
98,79

134,23
207,96
277,54
301,98
309,69
352,22
422,70
426,42
528,85

FEM
98,627
133,47
208,76
277,63
297,07
310,04
353,11
422,09
4229

530,7

Diff.(%)
0,170
0,570
0,384
0,031
1,653
0,114
0,253
0,144
0,833
0,348

R-R
97,65

170,10
249,60
286,47
323,22
414,54
450,94
475,14
544,67
557,99

FEM
97,70

169,96
249,89
288,01
323,91
41538
451,52
475,91
54538
559,46

Diff.(%)
0,053
0,084
0,117
0,535
0,212
0,202
0,129
0,162
0,130
0,262




154

The abbreviation R-R represents the Rayleigh-Ritz method, while the subsequent columns represent the outcomes obtained
from the analytical solution. The term FEA signifies the finite element method, and the subsequent columns illustrate the
results obtained using COMSOL. It is important to note that in all the scenarios considered, the piezo patches are positioned
at the plate's center. The analytical model and the COMSOL model match well and exhibit a discrepancy of no more than 1%.

13. Harmonic analysis for displacement FRFs and voltage FRFs

To calculate the frequency response function (FRF), a transverse point force of 1 N is applied at the upper section of the
primary structure, specifically at position coordinates of (125) mm. The resulting vibrations are measured at coordinates of
(375) mm. The subsequent graphs depict the displacement FRFs for the [0/0]s, [90/90], [45/-45]s, and [0/45/-45/90],
lamination sequences. These FRFs are obtained for ten different modes utilized in both the analytical and finite element
analysis solutions. To acquire the frequency response function (FRF) for voltage-to-force input, the voltage output across the
resistive load needs to be measured. In both analytical and finite element modeling, a resistance value of 1e6 Q is utilized,
which closely resembles an open circuit condition. The voltage FRFs, or frequency response functions, for ten distinct modes
are presented in the following graphs. These graphs depict the voltage FRFs for three different lamination sequences: [0/0]s,
[90/90], [45/-45]s, and [0/45/-45/90]s. These FRFs are calculated using analytical solutions and FEM.

Frequencies [Hz]

(© (d)

Fig. 8. Displacement and voltage FRF of system for different lamination sequences: [0,0]s, (b) [45, -45]s, (c) [90,90]s, (d)
[90,90];

14. Power outputs optimization

In this section, the maximum power outputs and the average values of the power outputs for a composite plate of 50x50cm
dimensions with a 150x150mm piezoelectric patch integrated on its top surface are calculated. The power output can be
derived from :

2

Power Qutput = = (73)
l
Within this equation, V denotes the voltage output, and R; represents the resistance of the load that can be derived as :
1
R= —— 74
U= Cpcr (74)

where Cp, is capacitance and the first natural frequency is @;. Optimization problems concerning lamination parameters find
ideal solutions through the brut-force optimization by varying lamination parameters with increment of 0.01 values. This
section shows the power outputs and the average of the power outputs obtained with different lamination parameters The size
of the piezoelectric patch was taken as 150 X 150 mm for all cases.

° °
D (I1)
Fig. 9. Representation of the position of the forces (I) Force in the corner, (II) Force in the middle
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First, a transverse load of 1 N was applied at 125 mm (coordinates on the x-axis and y-axis (x;; and y; ;) of the 500x500
mm composite plate with piezoelectric patch integrated and the power outputs were measured at 375 mm coordinates on the
x- and y-axis (x;2 and ;). Fig. 9(1). shows the position of the load. Then, a force of 1 N was applied on the composite plate
of the same dimensions at the position coordinates, x; ;=250 mm, y; ;=125 mm, and measurements (x;> and y;») were taken
over 375 mm. Also, Fig. 9. shows the position of the load. The table 10 shows the maximum power outputs and average power
outputs for 2 different cases, as it can be seen the amount of maximum power output and also power average varies when the
force location is changed and also it can be seen the improvement in maximum power output is higher compared to average
power out in frequency range. Up to 48% improvement can be achieved by varying lamination parameters and this can
significantly increase power out. As a result of the optimization depending on the lamination parameters, when the power

output values are examined, the maximum power output is obtained at parameter values V; = —0.4,V; = 0.7 for the 50 X 50
cm composite plate and if the load is in the middle of bottom edge of the composite plate. For the composite plate of the same
dimensions and if the load is at corner, the maximum power output is obtained at parameter values I/; = 0.2,V; = —0.9.
a) 1 ~ = b) 1 .
| 4000 680
0.5} 3800 g5 660
3600
on & o 640
> 0 ¥ : 3400 > O
620
3200 \
-0.5 -0.5 X y 600
3000
580
-1 - > . 2800 . | .
-1 05 0 0.5 1 A 05
<) 1 \ d) I 72200
\ 1 12000
05} \ 11000 0.5 2000
- “ 10000 1800
0 0
> 9000 =
1600
05! 8000 05
7000 1400
] <l
4 05 -0.5 )5

VI
Fig. 10. a) maximum power out in case of force in the corner case (I), (b) average of power output in case of force in the
corner case (I), ¢) maximum power out in case of force in the center case (II), (b) average of power output in case of force in
the center case (II)

Pommax
Loading location ~ Unidirectional Pty [MW] Difference (%)  Foutyyerage Unidirectional [mW] By .. [mW]  Difference (%)
[mW]
Center 8675.25 12913.7 48.83 1645.2 2182.01 32.64
Corner 3060.85 4028.11 31.34 598.02 675.35 13.01

15. Conclusions

This paper investigates a new modeling approach to include the effect of lamination sequence by including lamination
paraments in the design process. By utilizing the rayleigh-ritz method modal analysis was performed and validated via
comparing to a commercial finite element software (FEM) COMSOL to provide accuracy, it was shown the method used in
this paper has less than 1% difference with FEM. Furthermore, a thorough optimization was performed to show the optimum
value of power output in smart composites. The research investigation conducted here reveals compelling evidence that the
careful selection of proper lamination parameters have the potential to yield remarkable enhancements in the maximum power
output of composite plates. To commence the study, the researchers delved into determining natural frequencies for distinct
lamination parameters. Harmonic analyses were meticulously performed to gain valuable insights into the behavior of the
composite plates under varying conditions. Subsequently, the researchers embarked on assessing the maximum power outputs
and average values of the power outputs. This assessment encompassed a comprehensive exploration of diverse lamination
parameters and composite materials, spanning a spectrum of sizes. Moreover, the findings offer an invaluable resource for
advancing renewable energy systems, where the quest for greater energy generation and sustainability is paramount and by
leveraging this newfound knowledge, engineers and designers can push the boundaries of what is achievable in these
industries, driving progress and innovation toward a more sustainable and technologically advanced future.
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