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 This paper deals with exact solution for free vibration analysis of simply supported rectangular 
plates on elastic foundation. The solution is on the basis of three dimensional elasticity theory. 
The foundation is described by the Pasternak (two-parameter) model. First, the Navier 
equations of motion are replaced by three decoupled equations in terms of displacement 
components. Then, these equations are solved in a semi-inverse method. The obtained 
displacement field satisfies all the boundary conditions of the problem in a point wise manner. 
The solution is in the form of a double Fourier sine series. Then free-vibration characteristics of 
rectangular plates resting on elastic foundations for different thickness/span ratios and 
foundation parameters are studied. The numerical results are compared with the available 
results in the literature. Important parameters on the accuracy of plate theories and free-
vibration characteristics of rectangular plates resting on elastic foundations are discussed. 
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1. Introduction 

       Rectangular plates resting on elastic foundation are frequently used structural elements in 
modeling of engineering problems such as: concrete roads, mat foundations of buildings and 
reinforced concrete pavements of airport runways. The Pasternak model (Pasternak, 1954) or the two-
parameter model is frequently adopted to describe the mechanical behavior of foundations. The well 
known Winkler model (Winkler, 1867) can be considered as a special case that ignores the shear 
deformation of the foundation. Depending on the plate thickness, two main theories may be 
considered for modeling a rectangular plate. Classical and first-order shear deformation plate theories 
for thin and moderately thick rectangular plates, respectively. The classical plate theory, referred to as 
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Kirchhoff’s theory (Timoshenko & Woinowsky-Krieger, 1970), does not take into account either the 
effect of transverse shear deformation or rotatory inertia, and hence it becomes inaccurate for thicker 
plates. The first-order shear deformation theory was proposed by Reissner (1945), and developed 
further for the deformable plates in statics and dynamics by Mindlin (1951), Mindlin and Deresiewicz 
(1954) and Mindlin et al. (1956). They considered both these effects, by assuming linear variations 
for all three displacement components across the thickness. Although first-order shear deformation 
theory is more accurate than classical plate theory, this theory cannot provide accurate results for 
thick plates. The inherent deficiency of the Mindlin plate theory is the presence of a correction 
coefficient k2, which is introduced to correct the contradictory shear stress distribution over the 
thickness of the plate that cannot be found from the assumptions of the theory itself. Moreover, in 
order to improve the solution accuracy, some higher-order plate theories were also formulated (Hanna 
& Leissa, 1994; Reddy, 1984). However, two dimensional plate theories cannot be exact because 
these theories neglect the transverse normal and shear stress effects. 

 
 
     Two-dimensional approximate plate theories were widely used to investigate the vibrational 
behavior of rectangular plates rested on the Pasternak foundation. For example, Lam et al. (2000) 
investigated the elastic bending, buckling and vibration of Levy-plates resting on a two-parameter 
foundation using classical plate theory and Green’s functions. Xiang et al. (1994) studied the 
vibration problem of initially stressed thick rectangular plates on Pasternak foundation using Mindlin 
plate theory. Omurtag et al. (1997) explored the free vibration of thin rectangular plates resting on 
Pasternak elastic foundation with variable thickness and different boundary and loading conditions on 
the basis of classical plate theory. Wen (2007) investigated the method of fundamental solution 
applied to the rectangular Mindlin plates resting on the Pasternak foundation. Zhong and Yin (2008) 
explored eigen-frequencies and vibration modes of a rectangular thin plate on an elastic foundation 
with completely free boundary using classical plate theory and integral transform method. Matsunaga 
(2000) studied the vibration and stability of simply supported rectangular thick plates on a Pasternak 
foundation using a special higher-order plate theory. Akhavan et al. (2009) investigated vibrational 
behavior of rectangular plates resting on Pasternak foundation on the basis of Mindlin plate theory. 
Hosseini Hashemi et al. (2010) investigated the free vibration analysis of vertical rectangular Mindlin 

Nomenclature 
a, b  Length and width of plate  
D  Flexural rigidity 
e  Volume expansion coefficient   
E  Young’s modulus 
h  Plate thickness  
i  √-1  
ks  Shear foundation coefficient 
kt  Total foundation coefficient 
kw  Winkler foundation coefficient 
m, n  The wave numbers in the x and y directions, respectively 
t  Time 
u, v, w  Displacements in the x, y and z directions, respectively  
x, y, z  Cartesian coordinate system 

  Gradient operator (dell)    

m, n  Eigenfrequency parameter 
  Lame’s elastic constants 
  Non-dimensional foundation parameters
  Poisson’s ratio 
  Mass density 
x, y, z Normal stresses 
xy, xz, yz Shear stresses 
  Natural radian frequency  
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plates resting on Pasternak elastic foundation and fully or partially in contact with fluid on their one 
side. This analysis has been done for different combinations of boundary conditions.   
 
      As mentioned earlier, two dimensional theories are inherently erroneous. In order to overcome 
this disadvantage, several attempts have been made for three-dimensional vibration analysis of 
rectangular thick plates. For example, Lim et al. (1998 a,b) investigated the numerical aspects for free 
vibration analysis of thick plates. In their research works, the effect of transverse shear strain has 
been considered by using a higher-order plate theory without the need for a shear correction factor. 
Levinson (1985) presented an exact, three-dimensional solution for the free vibrations of simply 
supported, rectangular plates of arbitrary thickness within the linear theory of elasto-dynamic. 
Srinivas and Rao (1970) presented an exact closed form characteristic equation for obtaining natural 
frequencies of thick, simply supported homogeneous or laminated rectangular plates. Furthermore, 
recently the vibration analysis of a functionally graded rectangular plate resting on two parameter 
elastic foundation has been done by Hasani Baferani et al. (2011) employing the third order shear 
deformation plate theory. Free vibration of exponentially graded sandwich plates resting on elastic 
foundations was the subject of another research by Sobhy (2012).   
 
      Despite extensive two-dimensional approximate studies on the vibration of rectangular plates on 
elastic foundation, very few researches can be found for exact three-dimensional vibration analysis of 
plates on elastic foundation. For instance, Zhou et al. (2004) studied the vibration of rectangular thick 
plates on Pasternak foundation based on the Ritz method. In addition, Tajeddini et al. (2011) 
investigated free vibration of thick circular and annular plates resting on Pasternak foundation. 
Malekzadeh (2009) also adopted differential quadrature method (DQM) and series solution to study 
free vibration of thick functionally graded plates supported on two-parameter elastic foundation. 
Furthermore, a global transfer matrix and Durbin’s numerical Laplace inversion algorithm were 
employed by Hasheminejad and Gheshlaghi (2012) to study the transient vibration of simply 
supported, functionally graded rectangular plates resting on a linear Winkler–Pasternak viscoelastic 

foundation. In this paper, an exact three dimensional linear elasticity solution for free vibration 
analysis of simply supported rectangular plates resting on Pasternak foundation is presented.    

2. Formulation 
 

      It is well known that for linear elasticity, a problem may be reduced to Navier equations of 
motion together with appropriate boundary and initial conditions. When body forces are absent these 
equations in the x, y and z directions, respectively, are: 
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     Here   and   are the Lame’s elastic constants, which are related to the Young’s modulus E and 

Poisson ratio ν by 
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is the mass density of the elastic body, u, v and w are the components of the displacement vector in 
the x, y and z directions, respectively. The “dot” above each parameter denotes differentiation with 
respect to time.  is the gradient operator usually called "del" and e (volume expansion coefficient) is 

zyx
z

w

y

v

x
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e  




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


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


 , (3) 

which is invariant with respect to the rotation of the coordinate axes. From Eq. (1), it is obvious that 
this parameter (e) couples the displacement components in each of the Navier equations. Apparently, 
using decoupled forms of the governing equations of each theory for solving related problems is 
much easier than using the original coupled form for both analytical and numerical methods. Thus, in 
the next section first the Navier equations of motion are decoupled in terms of displacement 
components.  

2.1. Decoupling of Navier equations 

      In order to decouple the Navier equations, the following procedure is proposed: 
Differentiating Eqs. (1a-c) with respect to x, y and z respectively, and adding the results yields: 
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   is named as V operator, which can vanish volume expansion coefficient and 

hence is able to decouple the Navier equations of motion. In fact, Eq. (4) confirms that the volume 
expansion e can be interpreted as a wave that propagates in an elastic medium with a constant speed 
of (()/) 0.5 (Timoshenko & Goodier, 1951). Imposing V operator into Eqs. (1a), (1b) and (1c) 
yields: 
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These equations were also obtained by Saidi et al. (2009) via another complicated method. 
 
2.2. Semi-inverse method 
 
       In order to analyze free vibration of simply supported rectangular plates on Pasternak foundation 
the following assumptions for displacement field were used. 
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where  f(z) and g(z)  are two unknown functions of z and a,b are the length and width of the plate 
respectively. In order to satisfy the transverse displacement boundary conditions on the edges of a 
simply supported plate, m and n are taken to be integers. is the natural radian frequency and i=√-1. 
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      Substituting Eqs. (6a-c) into Eqs. (5a-c) and assuming that f (z) and g (z) are proportional to ez , 
where  is a constant, leads to the following equation.  
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where the parameter M  is defined as: 
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     Eq. (7) is a characteristic equation for the elastodynamic problem of the simply supported 
rectangular plate (Levinson 1985), which describes the mechanical behavior of these components for 

arbitrary values of . The roots of Eq. (8) are the relatively simple expressions: 
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Depending on 2 values, the following five different possible cases arise.  
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Considering the above five cases one can obtain )(zf  and )(zg  functions as below: 
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     Using displacement field, which is mentioned before, the strain-displacement relation and Hooke’s 
law for a linear elastic isotropic material the stress field can be found as: 
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      Using semi inverse method by displacement field as an initial assumption, we should satisfy 
boundary conditions and equilibrium equations to obtain an exact three dimensional elasticity 
solution. First, the equilibrium equations are considered as below: 
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Substitution of the assumed stress field (Eq. (12)) into the equilibrium equations leads to the 
following equations for f (z) and g (z)  
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      Eq. (14a) is obtained from the equilibrium equations in both x and y directions while Eq. (14b) 
comes from the equilibrium equation in the z direction. Substituting Eqs. (11a-e) into Eqs. (14a) and 
(14b) will show that the arbitrary constants kj, lj (j=1, 2, 3, 4) are not independent and related to each 
other as below: 
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in which  has been written for  Eqs. (15a-e) show that in each case, only four constants 
are independent. These constants must be determined using boundary conditions. The plate geometry 
and appropriate boundary conditions are elaborated in the next section. 

2.3. Boundary conditions 

      Consider a homogeneous isotropic rectangular thick plate with length a, width b and thickness h, 
which is resting on an elastic foundation as shown in Fig. 1. A Cartesian coordinate system is used to 
describe the plate geometry and dimensions such that the origin is at the mid-plate corner and the 
axes (x, y, z) are parallel to the edges of the plate. Furthermore, the Pasternak model is used to 
describe the reaction of the foundation on the plate and hence boundary conditions are: 
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Fig 1.  A rectangular plate on a two-parameter elastic foundation 

Imposing the boundary conditions in Eq. (12) yields: 
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in which kt  is a parameter that can be calculated from the following equation: 
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in which kw is the Winkler foundation stiffness and ks is the shear stiffness of the elastic foundation. It 
is obvious that this parameter (kt) depends on the plate dimensions and the mode shapes of the 
vibration in addition to Winkler and shear foundation coefficients. One can interpret this parameter as 
a total foundation coefficient for simply supported rectangular plates resting on a Pasternak 
foundation. 

2.4. Determination of natural radian frequencies  

      Satisfaction of the boundary conditions of relation (17) yields a set of four homogeneous 
equations for each (m, n). These can be put in the form  
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in which the square matrix [q]andfor three important cases i.e. cases (i), (iii), (v) 
(Levinson 1985) are given in the appendix. For a non-trivial solution of the problem (Eq. (19)), the 
determinant of the square matrix [q must be zero and this yields an eigenvalue problem in each 
case. Solving the obtained eigenvalue problem for selected values of m, n gives the corresponding 
desirable natural radian frequencies (). It is necessary to note that the obtained modes of vibration 
are those consistent with the kinematic assumptions of Eq. (6). It means that it should not be assumed 
that no other modes of free oscillation for such plates exist within the three dimensional theory of 
linear elasto-dynamics.  

 3.  Numerical examples 
 

      For the purposes of illustrating the performed analysis in the previous section and making 
comparisons with the predictions of the other theories, the results for square plates with simply 
supported edges on Pasternak foundation are presented in this section. For the sake of comparison 
with data presented by Zhou et al. (2004), non-dimensional eigen-frequency parameter  and non-
dimensional foundation parameters 1 and 2 are defined as bellow: 
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, (20) 

where D=Eh3/12(1-2) is the flexural rigidity of the plate. Moreover, the eigen-frequency parameter 
m, n (m, n=1, 2, 3 …) as defined in Eq. (20) is used to denote the flexural modes of the plate where 
subscripts m and n mean the wave numbers in the x and y directions, respectively (Zhou et al., 2004).  

     Using proposed method, eigen-frequency parameters for simply supported thin (h/b=0.01) and 
moderately thick (h/b=0.1) square plates on Pasternak foundation have been calculated. The obtained 
results, the results of the Ritz method (Zhou et al. 2004) and the exact Mindlin plate solutions (Xiang 
et al. 1994) are given in Table 1. This Table shows that although for thin plates (h/b=0.01) on 
Pasternak foundation, both Ritz method and Mindlin plate theory can give accurate results, the Ritz 
method provide more accurate results for moderately thick plates (h/b=0.1). 

     Tables 2 and 3 show the obtained results for simply supported thick square plates on Winkler and 
Pasternak foundations, respectively. In these Tables, the obtained results for a moderately thick plate 
(h/b=0.2) are compared with the results of Ritz method (Zhou et al. 2004), Mindlin plate theory 
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(Xiang et al. 1994) and the special higher-order plate theory (Matsunaga 2000). Moreover, the 
obtained results for a thick plate with thickness/width ratio (h/b=0.5) are also compared with the 
result of Ritz method (Zhou et al. 2004) and the special higher-order plate theory (Matsunaga 2000). 
 
Table 1. Comparison between the obtained results and the results of the other theories for thin and 
moderately thick simply supported square plates on Pasternak foundation (2=10, case (i))    

1,1 Method 1 h/b 

8.5406 
8.5406 
8.5405 

5.5717 
5.5717 
5.5718 

2.6550 
2.6551 
2.6551 

Exact 3D 
Ritz method * 

Mindlin ** 

100 .01 

8.7775 
8.7775 
8.7775 

5.9285 
5.9285 
5.9287 

3.3398 
3.3398 
3.3400 

Exact 3D 
Ritz method 

Mindlin 

500 .01 

7.7272 
7.7279 
7.7287 

5.2953 
5.2954 
5.3043 

2.7756 
2.7756 
2.7842 

Exact 3D 
Ritz method 

Mindlin 

200 0.1 

8.1947 
8.1954 
8.2214 

5.9756 
5.9757 
6.0078 

3.9566 
3.9566 
3.9805 

Exact 3D 
Ritz method 

Mindlin 

1000 0.1 

* Zhou et al. (2004) 
** Xiang et al. (1994) 

Table 2. Comparison between the obtained results and the results of the other theories for moderately 

thick and thick simply supported square plates on Winkler foundation (2=0, case (i))    
1,1 Method 1 h/b 
6.6930 
6.6930 
6.6078 
6.6930 

3.9103 
3.9103 
3.8780 
3.9103 

1.8020 
1.8020 
1.7955 
1.8020 

Exact 3D 
Ritz method * 

Mindlin ** 
Higher-order *** 

10 0.2 

6.7479 
6.7479 
6.6719 
6.7479 

4.0090 
4.0090 
3.9875 
4.0090 

2.0216 
2.0216 
2.0268 
2.0216 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

102 0.2 

7.2503 
7.2503 
7.2812 
7.2503 

4.8499 
4.8499 
4.9499 
4.8499 

3.4793 
3.4793 
3.5972 
3.4793 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

103 0.2 

9.8784 
9.8785 
11.689 
9.8785 

7.2934 
7.2934 
10.430 
7.2934 

4.6127 
4.6127 
9.9835 
4.6127 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

104 0.2 

10.314 
10.314 
23.075 
10.314 

7.2934 
7.2934 
20.089 
7.2934 

4.6127 
4.6127 
17.990 
4.6127 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

105 0.2 

3.5549 
3.5550 
3.5550 

2.3479 
2.3480 
2.3480 

1.2903 
1.2903 
1.2903 

Exact 3D 
Ritz method 
Higher-order 

10 0.5 

3.6376 
3.6376 
3.6376 

2.4674 
2.4674 
2.4674 

1.5026 
1.5026 
1.5026 

Exact 3D 
Ritz method 
Higher-order 

102 0.5 

3.8276 
3.8276 
3.8276 

2.7689 
2.7689 
2.7689 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

103 0.5 

3.8860 
3.8860 
3.8860 

2.8733 
2.8733 
2.8733 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

104 0.5 

3.8927 
3.8927 
3.8927 

2.9174 
2.8857 
2.8857 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

105 0.5 
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* Zhou et al. (2004) 
** Xiang et al. (1994) 
*** Matsunaga (2000) 

Table 3. Comparison between the obtained results and the results of the other theories for thick 
simply supported square plates on Pasternak foundation (2=10, case (i))    

Method 1 h/b 

7.2436 
7.2436 
7.2727 
7.2436 

4.4056 
4.4056 
4.4344 
4.4056 

2.2334 
2.2334 
2.2505 
2.2334 

Exact 3D 
Ritz method * 

Mindlin ** 
Higher-order *** 

0 0.2 

7.2487 
7.2487 
7.2792 
7.2488 

4.4150 
4.4150 
4.4452 
4.4150 

2.2539 
2.2539 
2.2722 
2.2539 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

10 0.2 

7.2948 
7.2948 
7.3373 
7.2948 

4.4986 
4.4986 
4.5409 
4.4986 

2.4300 
2.4300 
2.4591 
2.4300 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

102 0.2 

7.7191 
7.7191 
7.8938 
7.7191 

5.2285 
5.2285 
5.4043 
5.2285 

3.7111 
3.7111 
3.8567 
3.7112 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

103 0.2 

10.033 
10.033 
12.067 
10.033 

7.2934 
7.2934 
10.644 
7.2934 

4.6127 
4.6127 
10.076 
4.6127 

Exact 3D 
Ritz method 

Mindlin 
Higher-order 

 

104 0.2 

3.8268 
3.8268 
3.8268 

2.6851 
2.6851 
2.6851 

1.6462 
1.6462 
1.6462 

Exact 3D 
Ritz method 
Higher-order 

0 0.5 

3.8274 
3.8274 
3.8274 

2.6879 
2.6879 
2.6879 

1.6577 
1.6577 
1.6577 

Exact 3D 
Ritz method 
Higher-order 

 

10 0.5 

3.8321 
3.8321 
3.8321 

2.7096 
2.7096 
2.7096 

1.7437 
1.7437 
1.7437 

Exact 3D 
Ritz method 
Higher-order 

102 0.5 

3.8578 
3.8578 
3.8578 

2.8033 
2.8033 
2.8033 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

 

103 0.5 

3.8866 
3.8866 
3.8866 

2.8739 
2.8739 
2.8739 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

104 0.5 

3.8927 
3.8927 
3.8927 

2.8857 
2.8857 
2.8857 

1.8451 
1.8451 
1.8451 

Exact 3D 
Ritz method 
Higher-order 

105 0.5 

* Zhou et al. (2004) 
** Xiang et al. (1994) 
*** Matsunaga (2000) 

      From Tables 2 and 3 it can be observed that although both of the Ritz method and special higher-
order plate theory can provide accurate results, Mindlin plate theory is unable to predict eigen-
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frequencies accurately. It is obvious that the accuracy of Mindlin plate theory decreases when the 
thickness-width ratio or the magnitude of the foundation stiffness increases. This deviation is 
predictable since in the Mindlin plate theory, the foundation is assumed to be acting on the median 
surface of the plate. Therefore, increasing the plate thickness or foundation stiffness reduces the 
accuracy of the Mindlin plate theory. From Tables 1 to 3, it is obvious that the special higher-order 
plate theory and the Ritz method can provide very accurate results for vibration of simply supported 
rectangular thin, moderately thick and thick plates on elastic foundation. However, it is worth noting 
that these methods need solving a set of simultaneous partial differential equations or complicated 
numerical calculations, while the presented solution is exact, simple and straightforward. Therefore, it 
is more efficient to use the presented solution instead of the higher-order plate theory or the Ritz 
method.  
      Tables 4 and 5 show the eigen-frequencies for simply supported thick square plates (h/b=0.6) on 
Winkler foundation for case (iii), (v) respectively. It is obvious from Tables 1 to 5 that eigen-
frequencies of the flexural modes generally increase with increasing the foundation stiffness. 
However, as the foundation stiffness is increased, the eigen-frequencies exhibit less variation and 
converge to a constant value. This constant value is independent of the foundation type (Winkler or 
Pasternak). This is because for higher foundation stiffness, the displacement w of the lower surface 
becomes nearly zero. For example, for case (i), these trends are presented in Fig. 2. 
 
 Table 4 Simply supported thick square plates on Winkler foundation (2=0, case (iii)) 

Method 1 h/b 

2.33161 
2.37615 

Exact 
Mindlin * 

0 0.6 

2.67481 Exact 103 0.6 
2.72326 Exact 104 0.6 
2.72836 Exact 105 0.6 

* Levinson (1985) 

                           
Table 5 Simply supported thick square plates on Winkler foundation (2=0, case (v)) 

 Method 1 h/b 

3.13308 Exact 0 0.6 
3.24329 Exact 103 0.6 
3.25076 Exact 104 0.6 
3.25151 Exact 105 0.6 
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Fig 2. Variations of eigen-frequencies 1,3  in terms of  foundation parameter (1)(case (i)) 

4. Conclusions 

The exact, linear elasto-dynamic analysis for certain modes (those are consistent with the kinematic 
assumptions of Eq. (6)) of vibration of a simply supported, rectangular plate resting on the Pasternak 
foundation has been presented. The conclusions are summarized as: 

 The Novier equations of motion were decoupled using a new and simple method.  
 These new decoupled equations were then employed in the semi inverse method by the 

displacement field presented in Eq. (6) as an initial assumption. It was shown that depending 
on the magnitude of the natural radian frequencies, three important different cases in 
mechanical behavior of the plate may be arising.    

 In each case, satisfaction of the equilibrium equations and boundary conditions of the problem 
yielded an eigenvalue problem. After solving this problem, the natural radian frequencies and 
corresponding mode shapes of vibration can be obtained. 

 Using the presented exact solution, natural radian frequencies for thin, moderately thick and 
thick square plates with simply supported edges on Pasternak foundation were calculated. 
Then, the obtained results were compared with the predictions of the other theories and the 
main trends were discussed. 

 The presented solution is exact, simple and straightforward. Therefore, it is more efficient to 
use this method instead of the complicated numerical methods or approximated plate theories.  
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In Eq. (19) q (=1, 2, 3, 4) are:  
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in which   has been written for and  
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p2= 2(M) 2- 
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