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 Finite element method is used to study the free vibration analysis of functionally graded skew 
plates. The material properties of the skew plates are assumed to vary continuously through 
their thickness according to a power-law distribution of the volume fractions of the plate 
constituents. The first order shear deformation theory is used to incorporate the effects of 
transverse shear deformation and rotary inertia. Convergence study with respect to the number 
of nodes has been carried out and the results are compared with those from past investigations 
available in the literature. Two types of functionally graded skew plates - Al/ZrO2 and 
Al/Al2O3 are considered in this study and the effects of the volume fraction, different external 
boundary conditions and thickness ratio on the natural frequencies are studied in detail. 
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1. Introduction 

       Functionally graded materials are a class of composites that have continuous variation of material 
properties from one surface to another and thus eliminate the stress concentration found in laminated 
composites. A typical functionally graded material is made from a mixture of ceramic and metal. 
These materials are often isotropic but nonhomogeneous. The gradation of properties in an FGM 
reduces the thermal stresses, residual stresses, and stress concentrations found in traditional 
composites. The reason for interest in functionally graded materials (FGMs) is that it may be possible 
to create certain types of FGM structures capable of adapting to operating conditions. The increase in 
FGM applications requires accurate models to predict their responses. 
 
      There are many approaches used to describe the material gradient of FGMs which are 
manufactured from two phases of materials. In general, most of the approaches are based on the 
volume fraction distribution rather than developed from actual graded microstructures (Bao and 
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Wang 1995, Frostig and Shenhar 1995).  Reddy (2000) presented a theoretical formulation and finite 
element models for functionally graded plates (FGPs) based on the third-order shear deformation 
theory. The formulations accounted for the thermo mechanical coupling, time dependency, and von 
Ka´rma´ n-type geometric nonlinearity of the plates. A review on the stress and vibration analysis of 
composite plates is studied by Sharma and Mittal (2010). Free vibration analysis of laminated 
composite plates with elastically restrained edges using FEM is studied by Sharma and Mittal (2013). 
The governing equations employed are based on the first order shear deformation theory including 
the effects of rotary inertia. Several combinations of translational and rotational elastic edge 
constraints are considered.  
 
      Fukui and Yamanaka (1992) examined the effects of the gradation of components on the strength 
and deformation of thick-walled functionally gradient material tubes under internal pressure. Fukui et 
al. (1993) further extended their previous work by considering a thick-walled FGM tube under 
uniform thermal loading, and investigated the effect of graded components on residual stresses. They 
generated an optimum composition of the FGM tube by minimizing the compressive circumferential 
stress at the inner surface.  Neves et al. (2013) developed a higher order shear deformation theory 
(HSDT) with cubic and parabolic variations for in-plane and transverse displacements, respectively, 
based on Carrera’s unified formulation. With the use of polynomial functions in aforementioned 
works, trigonometric functions are also employed in the development of HSDTs. The frequency 
characteristics of thick annular FGPs of variable thickness were analyzed by Efraim and Eisenberger 
(2007), who utilized the first-order shear deformation theory and exact element method to derive the 
stiffness matrix.  
 
      Recently, Matsunaga (2008) carried out an analysis of the free vibration and stability of FGPs 
using the two-dimensional higher-order deformation theory.  Xiang et al. (2011) and Xiang and Kang 
(2013) proposed a n-order shear deformation theory in which Reddy’s theory can be considered as a 
specific case. The methods employed in the paper included a higher order shear deformation theory 
and two novel solutions for FGM structures. According to this paper, the application of the normal 
deformation theory may be justified if the in-plane size to thickness is equal to or smaller than 5. 
Researchers have also turned their attention to the vibration and dynamic response of FGM’s 
structures (Yang and Shen 2003, Huang and Shen 2004). Wu et al (2007) presented exact solutions 
for free vibration analysis of rectangular plates using Bessel functions with three edges conditions. 
Matsunaga (2008) presented in his paper, the analysis of natural frequencies and buckling of FGM’s 
plates by taking into account the effects of transverse shear and normal deformations and rotary 
inertia. For plates with cutouts, Chai (1996) presented finite element and some experimental results 
on the free vibration of symmetric composite plates with central hole. Thus, needs exist for the 
development of shear deformation theory which is simple to use. From the review of the above 
literature it is observed that very little work has been done yet on the natural frequencies of the 
functionally graded skew plates.  
 
     The aim of this paper is to develop a simple first order shear deformation theory for the free 
vibration analysis of functionally graded skew plates. The first order shear deformation theory is used 
to incorporate the effects of transverse shear deformation and rotary inertia. Numerical examples are 
presented to verify the accuracy of the present theory. This work, thus, aims to study the free 
vibration problem of functionally graded skew plates which have not been studied in detail as yet. An 
FGM’s gradation in material properties allows the designer to tailor material response to meet design 
criteria. The developed formulation is validated by extensive convergence and comparison studies of 
functionally graded - Al/ZrO2 and Al/Al2O3 skew plates. The variation of natural frequencies is 
studied with respect to the volume fraction exponent, different external boundary conditions and 
thickness ratio. These results are presented through graphical plots. 
 
2. Functionally Graded Material Properties 
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Fig. 3. SOLID 187 element 

     The geometry, node locations, and the coordinate system for this element are shown in Fig. 3. In 
addition to the nodes, the element input data includes the orthotropic or anisotropic material 
properties.  

3. Mathematical Formulation   

      Fig. 1 shows the geometry of a Functionally Graded Plates plate. Considering the first order shear 
deformation theory, the displacement fields are expressed as follows (Reddy, 1997). 
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where ( 0u , 0v , 0w , x , y ) are unknown functions to be determined. As before, ( 0u , 0v , 0w ) denote the 

displacements of a point on the plane z = 0; Note that 
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which indicate that x  and y  are the rotations of a transverse normal about the y and x axes, 

respectively. The strain displacement relations can be expressed as follows. 

In-plane strains at the mid-plane are: 
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The shear strains in xz and yz planes are: 
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The strain components at any point can thus be expressed as: 
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4. Numerical Results and Discussion 

      The present study gives the free vibration results of moderately thick functionally graded skew 
plates. The effects of volume fraction index, boundary conditions and length to thickness ratio are 
studied. To verify the results, the convergence study of functionally graded skew plates is first 
examined with respect to the mesh dimensions (M×N).  Plates with the length-to-thickness ratios (a/h 
=10) and the values of the volume fraction exponent, n = 0, 0.5,1, 3, 5, 10, 200 are considered. The 
default parameter values of the functionally graded plates are as given in Table 1. 
 
Table 1. Properties of the FGM components: 

Material 
Properties 

E (N/m2) ν  ρ (Kg/m3) 
Aluminum (Al) 70.0x109 0.30 2707 
Alumina(Al2O3) 380x109  0.30 3800 
Zirconia(ZrO2) 151x109  0.30 3000 
 
       The accuracy and convergence behaviors of the first eight frequency parameters are tested in 
Tables 2 and 3 for the functionally graded skew plates with clamped edges. In order to show the 
accuracy of methodology used for free vibration analysis of FG skew plates, the fundamental natural 
frequencies of different plates are compared with the solutions presented by Zhao et al. (2009). To 
validate the isotropic skew plate with respect to the volume fraction index, n=0 and skew angle, 
α=30, the convergence study is as given in Table 2, and to validate the isotropic skew plate with 
respect to the volume fraction index n=0 and α=15, the convergence study is as given in Table 3. It 
can be seen in these Tables that convergence is achieved at the mesh size of (20 x 20). It is obvious 
that by increasing the number of grid points, the accuracy of the results is also increases. It is found 
that the results of this study show a trend of monotonic convergence trend, and the solutions are 



  234

slightly larger than those given in the literature. The difference ranges from 1 % to 4% for the plates 
with a/h=10. These discrepancies may be due to the different types of plate theories and the solution 
strategies adopted.  
 
Table 2. Convergence study with respect to the results given by Zhao et al. (2009) for a isotropic 
skew plate with the volume fraction index n=0, skew angle α=30 and a/h=10 (fully clamped for 
external boundaries)  
M=N 

cc Eha  2  

 =1 
2 3 4 5 6 7 8 

4 13.8579  24.0821 30.4328  34.4091  38.8752  45.6571  46.1185  47.856  
6 13.0626  22.0612 27.7627  31.0500  38.7255  41.3194  41.4549  45.3463  
8 12.8571  21.5661 27.0754 30.1671  38.6724  39.9043  39.9583  44.4235  
10 12.7633  21.3855  26.7761  29.8456  38.6494  39.3915  39.4154  43.6804  
12 12.7243  21.2898  26.6592  29.6906  38.6387  39.1232  39.1435  43.4103  
14 12.6960  21.2305  26.5972  29.6021  38.6316   38.9832  39.0142  43.2864  
16 12.6561  21.1676  26.5202  29.4985  38.6237  38.8229  38.8398  43.1340  
18 12.4896  20.7912  26.0118  28.8945  37.9311 37.9621  38.6157  42.0890 
20 12.4790  20.7744  25.9835  28.8697  37.8895  37.9232  38.6122  42.0341  

Zhao et al. (2009) 12.2116 20.349 25.452 28.226     
 

Table 3. Convergence of non-dimensional fundamental frequencies of isotropic skew plate with the 
volume fraction index n=0 and α=15, for (n=0, a/h=10) (fully clamped for external boundaries)  

 cc Eha  2  

M=N i=1 2 3 4 5 6 7 8 
4 11.9264 22.0603 25.531 32.2828 37.305 40.433 43.452 45.604 
8 10.822 19.647 21.9753 28.2684 34.7757 36.252 37.019 38.8327 

10 10.7494 19.4664 21.768 27.9389 34.2798 35.7331 36.9924 38.2898 
12 10.7051 19.3433 21.6511 27.7423 34.0124 35.4869 36.9729 37.9276 
14 10.6892 19.2955 21.6131 27.6396 33.9043 35.3664 36.9632 37.7425 
16 10.6378 19.2034 21.4678 27.474 33.6882 35.0512 36.9534 37.3998 
18 10.5271 18.9138 21.1614 27.0205 33.0187 34.4481 36.7719 36.9446 
20 10.528 18.92 21.1712 27.0232 33.0355 34.4507 36.7799 36.9419 

Zhao et al. (2009) 10.308 18.539 20.75 26.398   

 
     The comparison of the results for the non dimensional fundamental frequency for clamped 
Al/ZrO2 FG skew plates with length-to-thickness ratio, a/h =10 and skew angle, α =30 and the 
volume fraction exponent (n=0 and n=3.0) are shown in Table 4. To compare the solutions the results 
of Zhao et al. (2009) is cited. 

Table 4. Comparison of the non dimensional fundamental frequency   for clamped skew Al/ZrO2 
FG plates (a/b =1, a/h =10, α =30) 
 
Mode 

n=0   n =3.0  
Present Zhao et al. (2009)  Present Zhao et al. (2009) 

1  12.4790  12.2116  9.2953  9.9388 
2  20.7744  20.349  15.4732  16.5315 
3  25.9835  25.452  19.3539  20.659 
4  28.8697  28.226  21.5033  22.902 
5  37.8895    28.2214   
6  37.9232    28.2462   
7  38.6122    28.7599   
8  42.0341    31.3086   

 
       Table 5 shows the variation of the non-dimensional frequency parameter with the volume 
fraction exponent for the Al/ZrO2 FG skew plates (a/b=1, a/h=10, α=15). Only the results for the first 
eight modes are computed. For the plates with the CFCF, CFFF and CCCC boundary conditions 
(where C and F denote Clamped and Free, respectively), the frequencies in all eight modes decreaseas 
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as the volume fraction exponent n increases. This is clear that a larger volume fraction exponent 
means that a plate has a smaller ceramic component and that its stiffness is thus reduced.  

Table 5. Non-dimensionalized frequencies of the skew plate for a fully clamped Al/ZrO2 plate 
(a/b=1, a/h=10, α=15) 

Boundary 
condition  

n 
cc Eha  2  

 =1 2 3 4 5 6 7 8 

 
 
CFCF 

0 6.6073 7.5543 12.0619 16.8716 18.1070 18.2859 20.5937 23.7252 
0.5 5.9463 6.7985 10.8557 15.1836 16.2950 16.4571 18.5330 21.3509 
1 5.5459 6.3407 10.1242 14.1607 15.1978 15.3492 17.2851 19.9127 
5 4.7843 5.4692 8.7355 12.2239 13.1157 13.2256 14.9197 17.1939 

   10 1.4998 1.7144 2.7384 3.8320 4.1116 4.1458 4.6769 5.3899 
 
 
CFFF 

0 1.0745 2.5000 6.3454 6.6325 7.4851 9.3634 14.0412 15.4936 
0.5 0.9671 2.2499 5.7105 5.9694 6.7364 8.4266 12.6366 13.9438 
1 0.9020 2.0983 5.3260 5.5674 6.2828 7.8592 11.7856 13.0050 
5 0.7774 1.8091 4.5920 4.7969 5.4170 6.7779 10.167 11.2055 
10 0.2437 0.5671 1.4395 1.5037 1.6981 2.1247 3.1872 3.5126 

 
 

CCCC 

 0 10.5085 18.8695 21.1145 26.9417 32.9195 34.3383 36.6426 36.9366 
 0.5 9.4573 16.9823 18.9988 24.2460 29.6251 30.8968 32.9753 33.2419 
 1 8.8201 15.8390 17.7200 22.6129 27.6298 28.8165 30.7551 31.0031 
 5 7.6133 13.679 15.3067 19.5372 23.8873 24.9119 26.5910 26.7177 
 10 7.5474 13.5612 15.1739 19.3681 23.680 24.6958 26.3608 26.4856 

 

     Table 6 and Table 7 show the frequencies of the first eight modes for clamped functionally graded 
Al/ZrO2 and Al/Al2O3 skew plates (a/h =10, a/b = 1). The volume fraction exponent n varies between 
0 and 3, and the skew angle ranges from 150 to 600. It is observed that, for plates with a fixed volume 
fraction exponent, the non-dimensional frequencies in all eight modes increase with increasing the 
skew angle, whereas for plates with a fixed skew angle, the non-dimensional frequencies gradually 
decreases as the volume fraction exponent increases. 

Table 6. Non-dimensionalized frequencies with the skew angle α for a fully clamped Al/ZrO2 plate 
(a/b=1, a/h=10) 
    =  cc Eha /)/( 2   

N α     i=1   2       3       4    5     6    7      8 
 
 
0 

15  10.5085 18.8695 21.1145  26.9417  32.9195  34.3383  36.6426  36.9366  
30  12.4790  20.7744  25.9835  28.8697  37.8895  37.9232  38.6122  42.0341 
45  17.0815  25.9366 34.3524 36.1750  43.3563  43.5166  48.8586  52.3168  
60  28.5190  38.6945  47.9597  55.4766  57.4560 59.2493  66.9009  73.7599  

 
 
0.5 

15  9.4741  17.0230  19.0475  24.3124  29.7252  31.0004  33.0896 33.2472  
30  11.2312  18.6959  23.3843  25.9817  34.1000  34.1301  34.7501  37.8302  
45  15.3652  23.3285  30.9004  32.5033  38.9939  39.1648  43.9337  47.0608  
60  25.6665  34.8253  43.1615  49.9275  51.7075  53.3237  60.2084  66.3925  

 
 
1 

15  8.8361  15.8770  17.7651  22.6749  27.7228  28.9131  30.8614  31.0084  
30  10.4749 17.4375  21.8097  24.2327  31.8037  31.8311  32.4094  35.2823  
45  14.3308  21.7574  28.8192  30.3141  36.3680  36.5275  40.9749  43.8912  
60  23.9378  32.4803  40.2549  46.5648  48.2253   49.7326  56.1541  61.9212  

 
 
3 

15  7.8409  14.0890 15.7646  20.1217  24.6011  25.6567  27.3854  27.5156  
30  9.2953  15.4732  19.3539 21.5033  28.2214  28.2462  28.7599  31.3086  
45  12.7163  19.3079  25.5735  26.9010  32.2721  32.4138  36.3610  38.9487  
60  21.2420  28.8227  35.7216  41.3212  42.7940  44.1321  49.8301  54.9479  

 

      In addition to the observations made from Tables 6 and 7, it is clear that the variation in the non 
dimensional frequencies is less when the skew angle varies from 00 to 300, but the variation in the non 
dimensional frequencies is more when the skew angle rises from 300 to 600. The variation in 
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frequencies in the FG skew plates with different volume fraction exponents also increase as the skew 
angle increases.  

 

Table 7. Non-dimensionalized frequencies with the skew angle α for a fully clamped Al/Al2O3 plate 
(a/b=1, a/h=10) 
    =  cc Eha /)/( 2   

N α     i=1   2       3       4    5     6    7      8 
 
0 

15  10.5273  18.9153  21.1653  27.0148  33.0290  34.4465  36.7674  36.9427  
30  12.4795 20.7744  25.9838  28.8702  37.8902  37.9235  38.6128  42.0352  
45  17.0762 25.9398  34.3679  36.1360  43.3660  43.5180  48.8354  52.3200  
60  28.5196 38.6970  47.9595 55.4773  57.4552  59.2515  66.9024  73.7699  

 
 
0.5 

15  7.8696 14.1395  15.8215  20.1939  24.6901  25.7494  27.4848  27.6155  
30  9.3285  15.5293 19.4236  21.5812  28.3242  28.3487  28.8639  31.4224  
45  12.7654 19.3903  25.6910  27.0123  32.4170  32.5308  36.5054  39.1104  
60  21.3192 28.9268  35.8514  41.4703  42.9494  44.2921  50.0103  55.1468  

 
1 

15  6.8555 12.3174  13.7826  17.5921  21.5083  22.4313  23.9430  24.0567  
30  8.1266  13.5281  16.9204  18.8003  24.6737  24.6957  25.1443  27.3730  
45  11.1198  16.8915 22.3804  23.5315  28.2400  28.3387  31.8013  34.0707  
60  18.5716  25.1990  31.2308  36.1266  37.4146  38.5839  43.5658  48.0400  

 
3 

15  5.6567 10.1642  11.3730  14.5165  17.7479  18.5094  19.7572  19.8508  
30  6.7060 11.1632 13.9623  15.5136  20.3604  20.3780  20.7487  22.5877  
45  9.1758  13.9384  18.4679  19.4173  23.3028  23.3844  26.2414  28.1144  
60  15.3251  20.7939  25.7714  29.8108  30.8733  31.8384  35.9494  39.6413  

  

       Fig. 4 shows a comparison of the fundamental natural frequency parameters of two Al/Al2O3 and 
Al/ZrO2 clamped functionally graded skew plates. It can be seen that both the curves shows a similar 
behavior. It is clear that as the volume fraction exponent increases, the frequency parameter starts 
decreasing. The curves for the plates made of a combination of Al/Al2O3 and Al/ZrO2 shows that the 
Al/ZrO2 FG skew plate has the higher values of frequencies than the Al/Al2O3 FG skew plates. A 
prominent drop in frequency occurs when the volume fraction exponent varies between 0 and 2, but 
beyond the values of the volume fraction exponent 5, both the curves become flatter.  
 

Fig. 4. Variation of the fundamental natural 
frequency parameter with the volume fraction 
exponent for fully clamped plates (CCCC) 

Fig. 5.Variation of the frequency parameter    
with the skew angle for fully clamped Al/ZrO2 
skew plates 

 
 

      Fig. 5 shows the variation of the non dimensional fundamental frequencies with the skew angle 
for the clamped plates. In addition to the observations made from Tables 7 and 8, it is clearly noticed 
that the frequencies gradually increases as the skew angle varies from 0 o to 30o, but the variations in 
the frequencies is more when the skew angle varies from 30o to 60 o.  The frequency discrepancies 
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among the plates with different volume fraction exponents also increase as the skew angle grows. Fig. 
6 shows the effects of the volume fraction exponent and length-to-thickness ratio on the fundamental 
natural frequency parameter of functionally graded clamped skew Al/ZrO2 plates. It shows that, for 
plates with a certain volume fraction, the frequency rises as the length-to-thickness ratio increases up 
to around 25, but when it increases further no variation in the frequency occurs. It is therefore 
concluded that the effects of the length-to-thickness ratio on the frequency of plates is independent of 
the variation in the volume fraction. 

 
Fig. 6.Variation of the fundamental natural frequency parameter ( ) with the length-to-thickness 
ratio for Clamped skew Al/ZrO2 plates (α=15) FG Plates. 
 
5. Conclusion 

 
     The free vibration analysis of functionally graded skew plates is carried out using the finite 
element method. The first-order shear deformation plate theory is used to consider the transverse 
shear effect and rotary inertia. The properties of functionally graded skew plates are assumed to vary 
through the thickness according to a power law. The results derived with this method are compared 
with the solutions available in the literature to validate the accuracy. It is found that when the length-
to-thickness ratio of functionally graded skew plates is increases beyond 25, the variation in the 
frequency parameter is very negligible and also found that a volume fraction exponent that ranges 
between 0 and 5 has a significant influence on the frequency. 
From this study, it is clear that the effects of the length-to-thickness ratio on the frequency of a FG 
plate are independent of the volume fraction. For a skew plate, a fast frequency increment trend is 
observed when the skew angles are greater than 30o.  
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