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1. Introduction

The composite materials are good alternatives to metals because of their low weight, high
strength and stiffness, and environmental resistance. Fiber metal laminates (FMLs) are hybrid
materials comprising interleaved metal sheets and fiber-reinforced polymer layers. They were
developed as lightweight alternatives to structural metals (Langdon et al., 2009). One of the
advantages of FML materials when compared with conventional carbon fiber/epoxy composites is the
low moisture absorption, due to the barrier of the outer aluminum layers (Botelho et al., 2006). The
only commercially used FML is Glare, which comprises thin aluminum sheets and glass-fiber-
reinforced epoxy. Although the initial use of Glare in aircraft was to improve the fatigue properties of
aircraft components, Glare has also been used because of its improved impact properties, relative to
aluminum of the same areal density. Presently, there is a motivation in the aerospace industry to
produce lighter aircraft, as the costs of fuel increase. Glare is currently used as a material in the upper
fuselage and leading edges of the Airbus A380 (Langdon et al., 2009).

* Corresponding author. Tel.: +98 8118272410
E-mail addresses: shooshta@basu.ac.ir (A. Shooshtari)

© 2014 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.esm.2014.4.002



210

Nowadays, Glare materials are commercialized in six different standard grades; for the Glare 1,
Glare 2, Glare 4 and Glare 5 the composite laminae are stacked symmetrically. In the case of Glare 3
composite, the composite lamina have a cross-ply fiber layer stacked to the nearest outer aluminum
layer of the laminate, in relation to the rolling direction of the aluminum. For the Glare 6 composite,
the composite layers are stacked at +45° and — 45° (Botelho et al., 2006).

Rashidi et al. (2012) used homotopy perturbation method to study the nonlinear free vibration of
rectangular isotropic plates. Zhang and Zhao (2012) investigated the nonlinear vibrations of a
composite laminated cantilever rectangular plate subjected to thin-plane and transversal excitations.
They used Reddy’s third-order plate theory along with Galerkin method to obtain the equations of
motion and used the method of multiple scales to solve these equations. Asymptotic numerical
method is used to study the nonlinear forced vibration of thin isotropic rectangular plates by
Boumediene et al. (2009). Wei et al. (2012) studied the nonlinear free vibration of hybrid composite
plate with an initial stress on elastic foundations. They used Mindlin plate theory to model the
problem and after implementing the Galerkin method to reduce the governing nonlinear partial
differential equations to ordinary nonlinear differential equations, they employed the Runge—Kutta
method to obtain the nonlinear frequencies.

Ribeiro (2004) used the hybrid finite element method (HFEM) based on the first order shear
deformation theory to study nonlinear forced vibration of isotropic beams and plates. Amabili(2004)
investigated nonlinear forced vibration of isotropic rectangular plates numerically. Ribeiro (2005)
studied the nonlinear forced vibration of simply supported rectangular plates and obtained the
backbone curves and the nonlinear mode shapes for three first modes. Abe et al. (1998) studied the
sub-harmonic resonance of moderately thick anti-symmetric angle-ply laminated rectangular plates
by using the multiple scales method. Ribeiro (2006) studied the nonlinear forced vibration of
laminated rectangular, taking into account the rotary inertia term and transverse shear deformation.
Singha and Daripa (2009) used the finite element method for studying nonlinear forced vibration of
composite rectangular plates. Amabili and Farhadi (2009) studied nonlinear forced vibration of
simply supported rectangular plates and laminated plates by using Lagrange method. Harras et al.
(2004) investigated the linear and nonlinear dynamic of a five-layered Glare 3 rectangular plate both
experimentally and theoretically. Shooshtari and Razavi (2010) investigated linear and nonlinear free
vibration of laminated and FML rectangular plates.

It is seen that in most of the published papers, the obtained equations are solved numerically.
Moreover, there is not sufficient study about the nonlinear forced vibration of Glare rectangular
plates. Thus, it is needed to find an analytical relation for the frequency response of laminated
composite and Glare rectangular plates in order to determine the effects of various lamination and
plate parameters on the steady-state motion in the primary and secondary resonances.

In the present study, the nonlinear forced vibration in the primary and secondary resonances is
investigated. The analytical relations of the frequency response equations in the steady-state motion
are obtained by using the multiple time scales method. The present procedure is only valid for finite
amplitude vibrations. The effects of layup scheme, aspect ratio, moduli ratio, length-to-thickness
ratio, and number of layers on the frequency responses of symmetric laminated and Glare FML
rectangular plates are studied. The nonlinear forced vibration of various grades of Glare rectangular
plates is also investigated.

2. Formulation of nonlinear differential equation of motion in the forced vibration case

Equations of motion of rectangular plates, based on the first order shear deformation theory are
(Reddy, 2004):

Ny + Nyyy = Il + Iy by (D
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Nyyx + Nyy = lgVg e + 11¢y,tt (2

Qux t Qyy + N (W) + g = Igwg 1t (3)
Mx,x + Mxy,y —Qx = Iz¢x,tt + Iluo,tt 4)
Mxy,x + My,y - Qy = 12¢y,tt + L1V i (5)

where subscript ¢, denotes partial differentiation with respect to the following parameter (or
parameters).u,, vy, and w, are the displacements of a material point on the mid-surface along x —,
y — , and z —axes, respectively. ¢,and¢p,, are the rotations of a transverse normal about the y — and
x —axes, respectively. Ny, Ny, and N,,, are the in-plane force resultants,Q, and @, are the transverse
force resultants, M,, My, and M, are the moments resultants and Iy, /;, and I, are the mass moments

of inertia. gis the applied transverse force which is harmonic in time (i.e., ¢ = g, cos(Qt)), with g,
and Qhaving constant values. V' (w,)is in the following form:

N(wo) = (NxWox + NyWoy)  + (NxyWox + Nywo,) | (6a)
The immovable boundary condition is expressed by:

W=We =Py =Uu =0 (x=0,a)
(6b)
W:W,yy:lp,xyzvozo (y =0,b)

wherey is force function and defined by:
N, = lp,yy; Ny = w,xx' ny = _w,xy- (7)

Assuming the density of plate material (p,) as an even function of thickness (z) and neglecting
in-plane inertia effects (uq ¢+ and vy ¢ ), Eq. (1) to Eq. (5) reduce to the following equations, which are
written in terms of the displacements and the force function:

K[Ass(Wyy + @yy) + Ass(Wacx + @) + Yy Wi + YxWyy = 2¥yWay + GocOSQt = oW, (8)

D11@xxx + D120y xy + Dse(‘Px,yy + ‘Py,xy) - KAss(W,x + fo) = L (y, )

D12@xxy + Doz Py yy + D66((px,xy + ‘Py,xx) - KA44(W,y + QUy) = L@,. (10)
Along with a compatibility equation in the following form (Chia, 1980):

AW sexrx + A%2 + A5e) P xnyy + AL yyyy = Wiy — WaxWyy, (11)

where K is the shear correction factor,4;;is the component of extensional stiffness matrix, andD;;is
the component of bending stiffness matrix. The constant coefficients of Eq. (11) are obtained by:

Ajy = Ay (A4, — A7, Aty = —A1 (41145, — A3) 7Y Asy = A1 (Ag145, — AS) 7Y, A =
(Ase)~~(Chia, 1980).

Eq. (9) and Eq. (10) lead to a set of equations with two unknown parameters which areg, and ¢,,.
This set of equations gives ¢,and ¢, in the following form:
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KAssax (Dseaxz + DZZayz Izatz KA44) KA44ay ((DIZ + Dse)axay>
bx = w  (12a)
(Dnaxz + Doty — Loy — KAss ) (Dss oo + Daziles — Lo — KAss) — K2 AuAssygas,

. KA446 (D116x2 + D66ayz Izatz KA55) - KA5566 ((D12 + D66)axay> (12b)
y - 92 w
(Dllaxz + D66ay2 Izatz KASS) (Dseaxz + DZZayz Izatz KA44) - K? A44A55m_

Substituting the obtained ¢, and ¢, into Eq. (8) gives the following nonlinear partial differential
equation in terms of w and y:

{K [Assa(Lst —L3L5) + A44@(L3L4 —LiLg) + (ASSm + A4-4a_y2) (L3Ly — L1L5)]
92y 9% | %P 9% 0% 0% 1 02\ rpegx _ pu g 13
T (63/2 0x?2 + dx2 9y? Zaxay dx0y Ioﬁ) (L2L4 L1 5)}W ( )
+ (L5, — LiLy)qocosQt =0

where L;(i = 1, ...,6) are the partial differential operators and are given in Appendix A.w and ¢ for
the immovable simply-supported boundary condition can be written in the form of (Chia, 1980):

w= hf(t)sm( )sm(by) (14)

W = kyx? + kpy? + 22O {(“/b)z cos(2) 4 G/ar cos(z”y)}
11

22

2 £2
ky = -2 f © [(n) A12 (n) A11] (A11A22 Aizz) (15)

h2f2(t) [(71:) A (%)ZAIZ] (AI:LA;Z - A;ZZ _17

where a, b, and h are the length, width, and thickness of the plate, respectively and f(t) is an
unknown time function.

The Galerkin method is applied by using [[ , L-wdxdy = 0, in which 4 is the area of the rectangular

plate and L is the left hand of Eq. (13). This transforms the nonlinear partial differential equation of
Eq. (13) to the following nonlinear ordinary differential equation in terms of the unknown time
function:

Zif + Zof + Zof3 4+ Zuf f2 + Zsf2f = § cos(Qt). (16)

where § = [I,Q2K (A4 + Ass) — K2A44As51q0, and Z;(i = 1,...,5) are constant coefficients which
are functions of plate parameters (i.e., length, width, thickness, and density) and stiffness
components. These coefficients are obtained in terms of plate parameters and stiffness components,
and are given in Appendix B, in which it is seen that Z5 = 2Z,.

According to Appendix B, the units of Z;, Z,, and Z5 are kg3mms'4, while the units of Z, and Z; are
kg’mms™®. Since the coefficients of f, ff2, and f2f are from the same dimension,all of them are

inertia terms. On the other hand, ff2 and f2f are nonlinear terms. Therefore, ff2 and f2f are called
nonlinear inertia terms.

Adding on the viscous damping effect (Abe et al. 1998) and assuming the dimensionless time to be in
the form of T = a—lzx/Kt,the dimensionless form of Eq. (16) is:
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f:rr + waf,‘r + wzf + a%f3 + ﬁlzfrrfz + Vlzf‘?f =Q COS(QKT)' (17)

where ¢ is the damping ratio, w is the dimensionless natural frequency, a? is the coefficient of
nonlinear stiffness term because it only contains stiffness components, and f? and yZ are the
coefficients of nonlinear inertia terms because they contain density term in addition to stiffness
components. It is simply noticed from Eq. (16) and Eq. (17) that, B2 =Z,/Z,, and y% =
Z</Z,.Considering Zs = 2Z,, it is obtained that y? = 27 which is utilized throughout the paper.

For cross-ply laminated rectangular plates,A = (E,h?/p,), and for the FML plates,A = D;, /I, are
defined (Shooshtari & Razavi, 2010).The other unknown parameters of Eq. (17) are defined by
following equation:

Q = [a*ql/(Z1), A= a*/VA. (18)

The present method is only valid for finite amplitude vibrations, since in large amplitude vibrations
even combination or internal resonances can occur at excitation frequencies other than 0 = w;;.

3. Primary resonance
3.1 Solution of the primary resonance by using the method of multiple scales

In the primary resonance, excitation force and nonlinear terms are of the same order (Nayfeh &Mook,
1995). So if the small, positive and dimensionless parameter ¢ is taken to be (h/a)?(Shooshtari &
Razavi, 2010), Eq. (17) is rewritten in the following form:

f:‘[‘[ + (‘)Zf + S(Zﬂfr + a2f3 + ﬁzf:r‘rfz + yzf:_?f - Q COS(QKT)) =0, (19)

where a? = af x (a/h)?, B* = Bf x (a/h)*, y*=v{ x (a/h)?*, Q= Q/e, and u = §w/e.
In the primary resonance, a detuning parameterg, which is used to show the nearness of natural
frequency to excitation frequency, is defined as (Nayfeh & Mook, 1995):

QO =wy+eo (20)
where w is the circular natural frequency in rads™.

Substituting Eq. (20) into Eq. (19) results in

for + 02 f + e(2ufe + @23 + B2 fref2 + v2f2f — Q cos(wTy + AcTy)) = 0, (21)
where Ty and T; are independent time variables and are defined by Nayfeh and Mook (1995):
T,=¢"t for n=01,.. (22)
fcan be writtenin the following form:

fwe) = fo(To, T1) + efs(To, Ty) + -+ (23)
The derivatives with respect to T can be written in terms of partial derivatives of T,, according to:

da
E = DO + SDI,

(24)
dZ

= = D§ + 2eD, Dy,
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where D, and D, denote d/0T, and 0/0T;, respectively.

Substituting Eq. (23) and Eq. (24) into Eq. (21) and equating the coefficients of £° and &! to zero,
gives:

D§fo + w?fy =0, (25)
D§fy + w®fy = —=2DoD1 fo — 2uDofo — a*f5 — B*f¢(D§fo) — v*fo(Dofo)? + Q cos[wTy + AaTy].  (26)
General solution of Eq. (25) is:

fo = A, (T exp(iwTy) + cc, (27)

where A, is an unknown complex function of 7; and cc denotes the complex conjugate of the
preceding terms.

Substituting Eq. (27) into Eq. (26) and by using the complex form of Q cos[wT, + AcT;], Eq. (26)
becomes:
D3fy + w?fy = |—2iwAy — 3A3A,a? — 2iwpA; + W A3A, 2

~ — (28a)
+ %Qexp(iAaTl)] exp(ioTy) + (Bw?p? — a?)Asexp(3iwT,) + cc,

where superscript (') denotes d/0T;. Coefficients of exp(iwTy), which are called secular terms, lead
to non-periodic solution. In order to have a periodic solution, the secular terms must be equated to
zZero:

[—2iwA} — 34340 — 2iwpd, + w?A34,5% + 1Qexp(ifaTy)| = 0. (28b)
Eq. (28b) is called the solvability condition.

If A, is defined in the polar form of (i.e.,A; = srexp(is) and is substituted in the solvability
condition, first approximation of f can be written in the following form:

f =rcos(wt +s) + 0(¢e), (29)
where the amplitude () and phase (s) are obtained by:

r'=—ur+ %sin(KJT1 —5), (30a)

rs' = 1(iocz - a)ﬁz) r3 — %cos(l_\aT1 —5). (30b)

8 \w
For an autonomous system, by definingn = AcT; — s, Eq. (30a) and Eq. (30b) are transformed to:

r'=—ur+ %sin 1, (3la)

rn’ =rol —%(%az - wﬁz) r3+ %cos n. (31b)
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3.2 Steady-state motion

Steady-state motion occurs when r’ = n’ = 0, which corresponds to the singular points of Eq. (31a)
and Eq. (31b) (Nayfeh & Mook, 1995). Thus:

ur = % sinn, (32a)
_ 143 Q (32b)
_ (2,2 _,,p2)\,3 - _<
raA+8(wa wf )r szOSTI-
Squaring and adding Eq. (32a) and Eq. (32b) gives the frequency response equation:
e (Lpr gx V] = O G3)
[,u + (8 Pir aA) ]r = o
where P; = i
1 o

4. Secondary resonance

In the secondary resonance, the amplitude of excitation is hard (Nayfeh and Mook, 1995). So Eq. (17)
is transformed to:

fro + @2 f + e(2ufe + a3 + B2 frof? + Y2 f2f) = Q cos(QAT) (34)

Substituting Eq. (23) into Eq. (34) and equating the coefficients of €% and ! on both sides, it is
obtained that:

D§fo + w*fo = Q cos(QAT), (35)
Dify + w*fy = =2DoD1 fo — 2uDofo — a*fs — B2 £ (DG fo) — v* fo(Dofo)?. (36)
Complete solution of Eq. (35) is:
fo = Az (TDexp(iwTy) + Qexp(iQAT,) + cc (37)
where Q = 2Q[w? — (QA)?] ™.

Substituting Eq. (37) into Eq. (36), results in two cases of secondary resonance depending on the
definition of detuning parameter. That is, the secondary resonance may be either super-harmonic or
sub-harmonic depending on the definition of the detuning parameter.

4.1. Super-harmonic resonance

In the super-harmonic resonance, the detuning parameter is defined by3Q = w, + €0. So the
solvability condition of Eq. (36) becomes:

B?w?(A%4; + 2Q%4,) — (3a2434, + 6a%4,0? + 2iwA} + 2iwpd,) + (38)
[352%(QA)? — a?]Q%exp(iAaT;) = 0.

Substituting A, = Zrexp(is) into Eq. (38) gives:

!

362(QA)? — a? -
= —ur+

Q3 sin(AcTy — ), (39)
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—B2y2 2 2_
rs' = 3a? :8 (Q2+1r2)r —3'8 @A)*—a COS(AUTl_S)

(40)
Defining a new parameter as 7 = AcT; — s results in:
A2—a? ~
_ 2_p2,,2 200M\2_ 2
In the steady-state motion Eq. (41a) and Eq. (41b) are changed to:
3B2(QN)? —a? ., (42a)
= Q3sinn
)
_ 3ar=PPwt ., 3B%(QN)% — a? (42b)
_ 22 P % (52 2\, — 3
rol + > (Q + ) T > Q° cosn
from which the frequency response equation is obtained:
(43)

~ 2 ~
[M2+[P1Q2+%P1T2—O'A] :|T'2 =P2Q6
3,82(01_\)2—052]2

w

whereP, = [

4.2. Sub-harmonic resonance

In the sub-harmonic resonance, the detuning parameter is defined by Q = 3w, + €0, which gives
the following solvability condition:

B?w?(A%4; + 2Q%4,) — (3a?434, + 6a%4,0? + 2iwA} + 2iwud,) — [3a? +

B?(4wQA — 4w? — (QN)?)]0A%exp(iAoT,) = 0. )

By a similar procedure which is introduced in the primary and the super-harmonic resonances, the
following equations for free vibration amplitude(r) and phase(n) of an autonomous system are
obtained:

=—ur+ > PsQ r251n77, (452)
! A N2 1
™ =raA—3P1(Q +§r )r+ —ZrZcos, (45b)
where P; = —3a? — B2[4wQA — 4w? — (QA)?].
Eq. (452) and (45b) give the frequency response equation:
_ .3 2 3P0\’ (46)
2 _ 2 _° 2| — 3 2
u* + [O‘A 3P;Q 8P1r ] ( 10 > T
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5. Numerical study

The determination of the shear correction coefficient K for laminated structures is still an
unresolved issue (Reddy, 2004). For moderately thick (a/h = 10) laminated plates K = 5/6 gives
fairly accurate results (Ribeiro, 2009). So, due to the thinness of the analyzed plates in this paper,
K = 5/6 is used in the frequency response equations.

In this study, Q is approximated to wg, ;wo, and 3w, in primary, super-harmonic, and sub-
harmonic resonances, respectively. This is approved by Fig. 1 for a five-layered Glare 3 square plate
in the primary and secondary resonances, where the dimensionless excitation amplitude (f; = %) is

taken to be 56. It is noticed that, because the curves are too similar, the pictures do not succeed in
showing the difference. So the proposed approximation of Qare acceptable.
0.8/
06/
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0.2¢

O L L L L J
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0.04; (b)
0035/
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0.025

clo,

(c)

Fig. 1. Comparison of exact and approximate frequency response curves of a five-layered square
Glare 3 plate in the: (a) primary resonance, (b) super-harmonic resonance, and (¢) sub-harmonic
resonance; exact frequency response curve, -------- approximate frequency response curve

The total thickness and length of plates are taken to be 1 mm and 100 mm, respectively. The
thicknesses of aluminum sheets and each fiber-reinforced layer of studied FML rectangular plates are
given in Table 1. Table 2 gives the material properties of studied plates.
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Table 1. Glare grades studied in this paper (Botelho et al., 2006)

Glare grade Al. sheet Egch fiber layer Prepared orientation in Main characteristic
thickness (mm)  thickness (mm) each fiber layer
Glare 2B 0.3 (2024-T3) 0.1 90°/90° fatigue, strength
Glare 3 0.3 (2024-T3) 0.1 0°/90° fatigue, impact
Glare 4B 0.7/3 (2024-T3) 0.1 90°/0°/90° fatigue, strength in 0° direction
Glare 5 0.2 (2024-T3) 0.1 0°/90°/90°/0° shear, off-axis properties

Table 2. Material properties of the aluminum alloy (Botelho et al., 2006) and GFRC (Lu & Li, 2009)

Materials E (GPa) G (GPa) po (kem™) v
Aluminum alloy 2024-T3 72.4 28 2700 0.33
_ Glz = 5.5898
GFRC oz ig'g%z Gys = 5.5898 2550 0.277
- G,3 = 4.9033

5.1 Primary resonance

To verify the accuracy of the proposed method, the frequency response curve of an isotropic
square plate in the primary resonance is obtained and compared with the published results (Fig. 2).

+ 7
Present 5,
1L+ Amabili [g] v
+  Ribeiro [from ref. 5] e f ¥
+
0.8¢ T+ -
iy
+ +
- 06/ il
¥ i
+ .
0.4r + N
LTW
.
0.2 Fy .
0 | | | | | |
0.6 0.8 1 1.2 14 1.6 1.8
Q/(DO

Fig. 2. Frequency response curve of an isotropic square plate by using several methods

It is seen that there is an acceptable agreement between the results of the present approach and the
published ones. The variations of dimensionless amplitude of motion with respect to excitation
frequency (i.e., the frequency response curve) of a laminated square GFRC plate with different
number of layers and layup is studied and the results are shown in Fig. 3, where it is seen that there is
a very small different between these curves. Eq. (47), which is obtained by using Eq. (33), verifies
this claim.
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o = 359266.829r2 + 13812.172[(q,/1)? — 67.378]?for  [0°/90°/0"]

o = 359289.571r% + 13811.493[(q,/7)? — 67.390]'/% for  [0°/90°/0°/90°/0°] (47)
o = 359291.189r% + 13811.387[(q, /)% — 67.391]%2 for  [0°/90°/90°/90°/0°]

It is also seen that the responses of [0°/90°/0°] and [0°/90°/0°/90°/0°]are the same as those of
[90°/0°/90°] and [90°/0°/90°/0°/90°] layups, respectively.

----- [0°/90°/0°] .
12 0/6n°/1°/0N°/NO - r’!
[0°/907/07/90°/07] o e
1 - ‘
0.8 .
y:‘
#
0.6 E.
0.4
02 | | | | |
0 2000 4000 6000 8000 10000

G/(DL

Fig. 3. Frequency response curve of a laminated GFRC square plate for different lamination schemes
with dimensionless excitation amplitude being 72.8 and ¢ = 0.2

The effects of excitation amplitude and aspect ratio on the frequency response curve of a
rectangular plate are studied and the results are shown for a five-layered rectangular Glare 3 plate in
Figs. 4(a) and 4(b), respectively. Although for higher excitation amplitudes, the maximum amplitude
of motion (r) increases, there is not any change in the degree of hardening nonlinearity. It is also
seen that higher aspect ratios result in smaller amplitudes of motion. The frequency responses of five-
layered Glare 3, GFRC, Glare 2B, and Glare 4Bsquare plates are studied and the resulted curves are
shown in Figs. 4(c) and 4(d). It is observed that for GFRC plate, amplitude of motion is bigger than
that of the Glare 3 plate and the degree of hardening nonlinearity is a little higher for the GFRC plate.
This arises from the fact that the used aluminum sheets in Glare plates have higher elasticity module
compared with GFRC layers, which simply results in lower transverse deflection in Glare plates. Fig.
4(d) shows that the frequency responses of Glare 3 and Glare 2B plates are almost the same, where
the amplitude of motion for the Glare 4B plate increases with higher rate compared with those of the
Glare 2B and Glare 3 plates. The layups of studied Glare 2B, Glare 3, and Glare 4B plates are in the
following form, respectively (Botelho et al., 2006):

Al (2024-T3) /[90°/90°] GFRC / Al (2024-T3) / [90°/90°] GFRC / Al (2024-T3),
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Al(2024-T3) / [0°/90°] GFRC / Al (2024-T3) / [90°/0°] GFRC / Al (2024-T3),

Al (2024-T3) / [90°/0°/90°] GFRC / Al (2024-T3) / [90°/0°/90°] GFRC / Al (2024-T3).
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Fig. 4. Frequency response curve of: (a) a five-layered square Glare 3 for two excitation
amplitudes, (b) a five-layered Glare 3 panel for two aspect ratios (f; = 56), (c) two types of
five-layered square plates (f; = 56), and (d) three grades of five-layered square Glare plates
(f; = 56), for £ = 0.05

This is obvious from the layups of Glare plates, that the responses of Glare 2B and Glare 3 are
nearly the same, but because the ratio of the GFRC layers is less in Glare 4B, the amplitude of motion
is increased comparing with those of the Glare 2B and Glare 3 plates. The effects of length-to-
thickness ratio (a/h) and moduli ratio (E;/E,) on the frequency response are investigated and the
results are shown in Figs. 5(a) and 5(b), respectively. Fig. 5(a) shows that the backbone curves(which
represent the relation between the free-vibration amplitude and the natural frequency) of different
length-to-thickness ratios are the same, which means that there is not any change in the degree of
hardening nonlinearity for different length-to-thickness ratios. Moreover, it is seen that when the
length-to-thickness ratio increases, the frequency response curves bends away from theo/w; = 0
axis.It is seen from Fig. 5(b) that the higher is moduli ratio, the greater are the coefficients of
nonlinear terms in the equation of motion (i.e., Eq. (17)), and subsequently frequency response
curves bends away more from the o/w; = 0. In Figs. 5(c) and 5(d) the frequency responses of five-
layered Glare 3 and Glare 5 square plates are compared for h = 1.4 mm, while the thickness of all
GFRC layers are 0.1 mm. The layup of Glare 5 plate is in the following form (Botelho et al., 2006):

Al (2024-T3) / [0°/90°/90°/0°] GFRC / Al (2024-T3) / [0°/90°/90°/0°] GFRC / Al (2024-T3).
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Fig. 5. Frequency response curve of a three-layered GFRC for: (a) two a/h ratios, (f; = 72.8),
and (b) two E\/E, ratios, (f; = 72.8). (c) Frequency response curve for five-layered square Glare
3 and Glare 5 plates (f; = 52 and BEC stands for backbone curve), and (d) amplitude of the
response as a function of amplitude of the excitation for five-layered square Glare 3 and Glare 5
plates, (6 /w; = 500), and for all cases £ = 0.05

Fig. 6 shows the effects of several parameters on the variation of the amplitude of response in
terms of the excitation amplitude, which is called amplitudes curve hereafter for brevity. The jump
phenomenon only occurs at excitation frequencies, which are greater than natural frequencies of
plates. For example, for a five-layered Glare 3 square plate, 0 /w; > Ocauses jump in the amplitudes
curvewhich is shown in Fig. 6(a). The amplitudes curves of five-layered Glare 3 and GFRC square
plates are compared with each other and shown in Fig. 6(b). As it is predictable, it is noticed that by
increasing the excitation amplitude, the response amplitude of the GFRC plate increases with higher
rate. It is seen from Fig. 6(c) that for higher aspect ratios, by increasing the excitation amplitude, the
response amplitude increases with lower rate.
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Fig. 6. Variation of the amplitude of response with respect to the excitation amplitude
(amplitudes curve) of: (a) a square Glare 3 plate for different excitation frequencies (& =
0.05), (b) two different square plates (¢ = 0.05), (c) a square Glare 3 plate for two aspect
ratios (¢ = 0.05), (d) a square Glare 3 for three different damping ratios, (e¢) two three-
layered GFRC plates with different moduli ratios (¢ = 0.05), and (f) two three-layered
GFRC plates with different aspect ratios (¢ = 0.05)

Fig. 6 shows the effects of several parameters on the variation of the amplitude of response in
terms of the excitation amplitude, which is called amplitudes curve hereafter for brevity. The jump
phenomenon only occurs at excitation frequencies, which are greater than natural frequencies of
plates. For example, for a five-layered Glare 3 square plate, 0 /w; > Ocauses jump in the amplitudes
curvewhich is shown in Fig. 6(a). The amplitudes curves of five-layered Glare 3 and GFRC square
plates are compared with each other and shown in Fig. 6(b). As it is predictable, it is noticed that by
increasing the excitation amplitude, the response amplitude of the GFRC plate increases with higher
rate. It is seen from Fig. 6(c) that for higher aspect ratios, by increasing the excitation amplitude, the
response amplitude increases with lower rate. Fig. 6(d) shows that for un-damped rectangular plates,
one of the bifurcation points is located on the r-axis indicating that the response amplitude never
decays during vibration. The effects of moduli ratio on the amplitudes curve is similar to the effect of
aspect ratio on this curve which can be noticed by comparing the curves of Figs. 6(c) and 6(e).Fig.
6(f) shows that for rectangular plates with higher length-to-thickness ratios (a/h), the response
amplitude is larger for specific excitation amplitude. Equation of motion in time domain (i.e., Eq.
(17)) is solved numerically for a five-layered Glare 3 square plate by using the Rung-Kutta method.
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The numerical solution is compared with the analytical solution (i.e., Eq. (33)) and shown in Fig. 7. It
is observed that there is a good agreement between the numerical and analytical solutions of
nonlinear ordinary equation of motion.

5.2 Super-harmonic resonance

The effects of various parameters on the frequency responses of laminated rectangular plates are
investigated and the results are shown in Fig. 8. The number of layers has negligible effect on the
frequency response of laminated rectangular plates. This is shown in Fig. 8(a). Fig.8(b) shows that
Glare 2B and Glare 3 plates have almost the same frequency response curves, but unlike the primary

01 L L L L
-1000 -500 0 500 1000 1500

G/(,OL

(a)

-1000 -500 0 500 1000 1500

Fig. 7. Comparison of numerical solution with analytical solution: (a) when
increasing excitation frequency, and (b) when decreasing excitation frequency for a
five-layered square Glare 3.—— stable, -------- unstable, *&= numerical

resonance, in the super-harmonic resonance the Glare 4B plate has smaller peak amplitude than the
peak amplitudes of Glare 2B and Glare 3 plates. It is seen from Fig. 8(c) that for higher excitation
amplitudes, the frequency response curves bend away more from the vertical axis and unstable region
occurs at larger detuning parameters. The effects of the aspect ratio on the frequency response curve
are shown in Fig. 8(d). It is noticed that by increasing the aspect ratio, the degree of hardening
nonlinearity and the peak amplitude decrease. Fig. 8(e) shows the effect of moduli ratio on the
frequency response of a five-layered GFRC square plate. It is observed that for higher moduli ratios,
the peak amplitude decreases. The comparison between numerical and analytical solutions is also
done and shown in Fig. 8(f) in which it is seen that there is a good agreement between them.
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Fig. 8. Frequency response curve of: (a) two square GFRC plates with different number of layers
(f; = 72.8), (b) several five-layered square Glare plates (f; = 56), (c) a five-layered square Glare 3
plate for different excitation amplitudes, (d) a five-layered rectangular Glare 3 plate for different
aspect ratios (f; = 56), (e) a five-layered square GFRC plate for different moduli ratios (f; = 72.8),
and (f) a five-layered square Glare 3 plate with numerical solution compared with it (f; = 56), and
for all cases § =5 x 10~*

It is seen from Fig. 9 that after the jump, the amplitude of the response decreases firstly. Then it
increases as the amplitude of the excitation increases. This can also be seen by comparing Eq. (33)
with Eq. (43); in Eq. (43) there is an extra term multiplying the amplitude(r), P;Q2.As f; is increased
for specifica/w,, the effect is to decrease the apparent detuning. Thus when f; increases, there are
two influences competing simultaneously: one tends to increase the amplitude of the response while
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the other tends to decrease the amplitude of the response (Nayfeh & Mook, 1995). The effects of the

015 N 0.12;
olw_ =100 0.1/
0.1} olw, =50 0.08,
- -~ 0.06'
0.05 N e 0.04 |
0.02}
O .... . L . o > L L |
0 100 200 300 0 100 200 300
f f
1 1
(a) (b)
0.12; N /,. 0.15;
01! WS — &=0
Vv S eEpe N T g =0.0005
0.08} 0.1}
-~ 0.06/ ‘ -
T | NS
0.04} i‘: 0.05}
Iy~
0.02}1
1
o ) Glare 4B o
0 50 100 150 200 0 50 100 150 200
f f

(c) (d)
Fig. 9. Variation of the amplitude of response with respect to the excitation amplitude (amplitudes curve) of a
five-layered: (a) square Glare 3 plate for different o /w,, ratios (¢ = 0.0005), (b) a rectangular Glare 3 plate for
two aspect ratios (¢/w;, = 50,& = 0.0005), (c) square Glare 3 plate compared with the Glare 4B and GFRC
plates (6/w;, = 50,& = 0.0005), and (d) square Glare 3 plate for undamped and damped cases (¢/w, = 50)

excitation frequency on the amplitudes curve are shown in Fig. 9(a). Fig. 9(b) shows that after initial
decrease, the response amplitude of lower aspect ratios increases with higher rate. It is also seen that
jump phenomenon in plates with lower aspect ratios occurs at smaller amplitudes of excitation. It can
be understood from Fig. 9(c) that the jump phenomenon in the GFRC plate occurs in smaller
excitation amplitudes comparing with the Glare 3 and Glare 4B plates. Therefore, GFRC plate
reaches unstable region in smaller excitation amplitudes. Fig. 9(d) shows that changing of the
damping ratio only changes the locus of one of bifurcation points. It is seen that for £ = 0, this point
is located on the r-axis, meaning that the plate continues to vibrate in the un-damped case even after
elimination of the external force.

5.3 Sub-harmonic resonance

The effects of several parameters on the frequency response of laminated rectangular plates are
investigated and the results are shown in Fig. 10. Similar to primary and super-harmonic resonances,
the number of layers has negligible effect on the frequency response curve, which is shown in Fig.
10(a). Fig. 10(b) shows that the frequency responses of the Glare 2B and Glare 3 rectangular plates
are almost the same. Fig. 10(c) shows the effects of excitation amplitude on the frequency response of
laminated rectangular plates in which it is seen that for higher excitation amplitudes, smaller
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excitation frequencies are needed to have a steady-state motion. It is seen from Fig. 10(d) that for
lower aspect ratios, smaller excitation frequencies are needed to have a steady-state motion. Fig.
10(e) shows that for higher moduli ratios response amplitude increases with lower rate. Numerical
and analytical solutions of nonlinear ordinary differential equation of motion are compared with each
other and the results are shown in Fig. 10(f).

6. Conclusion
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Fig. 10. Frequency response curve of: (a) two square GFRC plates with different number of
layers (f; = 72.8), (b) three grades of five-layered square Glare plate (f; = 56), (c¢) a five-
layered square Glare 3 plate under different excitation amplitudes, (d) two five-layered

rectangular Glare 3 plate with different aspect ratios (f; = 56), (e) two square GFRC plates with
different moduli ratios (f; = 72.8), and (f) a five-layered square Glare 3 plate compared with the
numerical solution (f; = 56), where for all cases & = 107

Nonlinear forced vibration of symmetric laminated composite and Glare rectangular plates, with
immovable simply supported boundary conditions is studied analytically by using the first order shear
deformation theory, Galerkin method, and the method of multiple scales. The frequency response
equations in steady-state motion of primary and secondary resonances are obtained. The effects of
lamination parameters and plate properties on the steady-state motion of symmetric rectangular plates
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are investigated. It is seen that the number of layers and layup scheme have negligible effects on the
frequency response of symmetric rectangular plates. It is also apparent that due to the presence of
aluminum layers in Glare plates, these plates have smaller response amplitudes comparing with the
same-sized GFRC plates.
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