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 Beams are the constituent elements of several machine parts and sophisticated 
structures. In this paper, efforts are made to develop suitable methods that can serve 
as the basis to detect crack location and to crack size from measured axial vibration 
data. This method is used to address the inverse problem of assessing the crack 
location and crack size in various beam structure. The method is based on 
measurement of axial natural frequencies, which are global parameter and can be 
easily measured from any point on the structure. In theoretical analysis, the 
relationship between the natural frequencies, crack location, and crack size has been 
developed. For identification of crack location and crack size, it was shown that data 
on the variation of the first two natural frequencies is sufficient. The experimental 
analysis is done to verify the practical applicability of the theoretical method 
developed. 
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1. Introduction 

       Mostly modal frequencies are used for monitoring the crack because modal frequencies are 
properties of the whole component. The natural frequency of the component decreases as a result of 
crack. Many methods have been developed to detect and locate the crack by measuring the change in 
the natural frequencies of the component due to crack. One of the earliest works regarding the crack 
detection using vibration is given by Adams and Cawley (1978). They consider the crack at the fixed 
end of the beam. A theoretical model based on the receptance technique for analysis of structures that 
can be treated as one-dimensional is presented. The crack is modelled as a massless liner spring. The 
natural modes of cantilever beams with symmetric cracks were investigated by Christides and Barr 
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(1984) who used a two-term Rayleigh-Ritz solution to obtain the variation in fundamental frequency 
of beams with a mid-span crack.  

         Ostachowicz and Krawczuk (1991) analysed the effect of two cracks on fundamental frequency 
of cantilever beam. Two types of cracks are considered: double-sided, which occurs in the case of 
cyclic loading, and single-sided, which occurs as a result of fluctuating loadings. Kam and Lee (1991) 
have proposed a method for identifying a crack in a structure using modal test data. Static deflection 
analysis of the structure with and without crack is performed and a strain energy equilibrium equation 
is constructed for determining the size of the crack. Rizos and Aspragathos (1990) suggested a 
method for using measured amplitudes at two points of a cantilever beam vibrating at one of its 
natural modes to identify crack location and depth. Narkis (1994) has derived a close relationship 
between crack location and eigenfrequency changes for cantilever beam in transverse vibration and 
longitudinal vibration.  

         Stubbs and Broome (1990) suggest the use of sensitivity equations resulting from a perturbation 
analysis of the equation of motion, to detect the location of structural differences in continuous 
systems. They used both bending and axial natural frequency for this identification process. An 
integrated approach for detection of multiple discrete cracks using modal parameters has been put 
forward by Liang et al. (1992). The same approach has been extended to multiple crack assessment in 
beam with different boundary conditions like simply supported beam, cantilever beam, and 
continuous beam etc. by Liang and Hu (1993). Ishak et al. (2000) conducted strip element method 
calculations and experimental results to identify the crack location. In the theoretical analysis, the 
beam is divided into domains and a harmonic load is applied on its surface. In the theoretical analysis, 
the beam is divided into domains and a harmonic load is applied on its surface. Expressions for 
bending vibrations of an Euler-Bernoulli beam were determined by Matveev and Bovsunovsky 
(2002). They studied the effects of the ratio of crack location to the length of the beam and also the 
ratio of the depth of the crack to the height of the beam. They investigated the variation of the natural 
frequency of the beam.  

         Ren and Roeck (2002) experimentally developed a methodology of structural damage 
identification through changes in the dynamic characteristics. They used concrete beams stiffness for 
damage assessment and the proposed methodology relied on the fact that damage leads to changes in 
the dynamic properties of the structure such as natural frequencies and mode shapes. Zheng and 
Kessissoglou (2004) takes rotational spring as dominant influence of the bending moment for the 
opening type of crack into consideration. The excitation of the system is characterized by the 
simultaneous interaction of the static and dynamic harmonic loads. Simulated measured data in some 
locations of the structure were obtained by the numeric solution of the nonlinear analytical model of 
the structure with a crack. The finite element method was used to obtain the natural frequencies and 
mode shapes of a cracked beam. They obtained the flexibility matrix for a cracked beam by adding 
the crack flexibility to the flexibility matrix of the intact beam element as an overall additional 
flexibility matrix instead of adding it as a local flexibility matrix. Douka and Hadjileontiadis (2005) 
considered a simple periodic function to model the time-varying stiffness of a beam. However, this 
model is limited to the fundamental mode so that the equation of motion for the beam must be solved.  

       Loya and Rubio (2006) studied the lateral vibration of a cracked Timoshenko beam. The beam 
was simulated as two beams connected by extensional and rotational massless springs at the crack 
location. The beam natural frequencies were found by direct solution for the differential equations of 
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where the origin x for both segments is at the end. The coefficients ia can be found by substituting 
this solution in the boundary conditions. The boundary conditions for a free-free beam are as follows. 
For the free vibrations of the beam, there is no external excitation and consequently no axial force at 
the ends. 

1 2 0,A CU U                                                                  (4) 

and the continuity conditions at the crack position the displacement, moments, and shear forces are. 

BB UU 21                                                               (5) 

    With the nondimensional crack section flexibility denoted by , the angular displacement between 
the two beam segments can be related to the force at this section by, 

2 1 2 .B B A BU U LU                                                                      (6) 

     Substituting above boundary conditions in Eqs. (2-3) and equating the system determinant to zero, 
algebraic equations for the natural frequencies of the cracked beam are obtained, where, A  is the 
non-dimensional axial flexibility= )/( LKEI x ,  is the non-dimensional frequency parameter = L , 
and e is non-dimensional crack location = )2//()2/( 1 LLL  . 

The linear set of equation reduces to a single trigonometric equation, 

0)]cosh(coshsin)cos(cos[sinhsinhsin4   eeA                                      (7) 

The above equation is obtained by simplifying and solving the matrix using MUPAD platform of 
MATLAB. 

For a constant crack location, a partial differentiation with respect to A leads yields, 
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         (8) 

      If it is assumed that the original beam was uncracked, with negligible equivalent flexibility, the 
nominal values of A in the Eq. (8) become zero. When 0 A and  n , we get 

4cos( / ) (cos cos ) 0.A e                                                                         (9) 

The Eq. (9) is now written as a difference equation, 
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     For the first natural mode  1 , therefore, above equation yields, 
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and for the second mode  22  , therefore, above equation yields, 
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    Dividing Eq. (13) by Eq. (12) and simplifying, 
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where, nf in Eq. (14) suggests that the ratio of the relative vibrations of two modes depends solely 

on the location of the crack and is independent of crack geometry or beam properties, no information 
is required even about the configuration of crack, that is whether it is one-sided, two-sided, or starts 
on the side faces of the beam. 

3. Identification of crack size for free-free beam 
 
      Consider a typical beam structure that has been damaged by a discrete crack. Based on the 
consideration of the characteristic equations of the physical model shown in Fig. 1, The 
eigenfrequency change ratio nn ff /  and the dimensionless stiffness K is given as, 
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where,   
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x is the non-dimensional crack location = LL /1 or 
2
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      From elementary beam theory, the mode shapes of beams with typical homogeneous boundary 
conditions can be easily calculated. For free-free beam, the mode shape is )sin( xnn   . Therefore for 

a free-free beam, the relationship between the changes in eigenfrequencies and the crack location and 
stiffness of crack based on Eqs. (15-17) is expressed as: 
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      The spring stiffness xK in the vicinity of the cracked section of a beam having width b , height h

, and a crack depth a can be determined from the crack strain energy function, given by Rizos and 
Aspragathos (1990), 

.
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     Putting this value in Eq. (18): 
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where,  
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Putting this value in Eq. (21) and neglecting higher order values, the equation becomes, 
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      Using Eq. (22), the crack depth ratio ( ha / ) can be found out if the natural frequencies of the 
cracked and uncracked beam and the crack location are known. 
 
3. Analysis of cracked beam by ANSYS FEM package 
 

      In the method of crack detection in beam by vibration signatures, it is very essential to know the 
changes in natural frequency because of the crack. In case of intact beam, natural frequencies are 
determined using standard formulas, but for cracked beam it is very difficult to determine natural 
frequencies theoretically. Hence, the frequencies of cracked free-free beam are determined either 
experimentally or by finite element method and these obtained frequencies are fed to analytical model 
to assess a crack location and crack depth ratio. The natural frequencies of the beam were calculated 
by ANSYS FEM package. An Aluminium beam of length 300L mm, height 25h mm, breadth 

10b mm, Young’s Modulus 1110*65.0E N/m2, and mass density 2700 Kg/m3 was chosen. The 

two natural frequencies are calculated for uncracked and cracked beam. The results of the ANSYS 
FEM computation and crack location and crack size evaluated by Eq. (14) and Eq. (22) are given in 
Table 1. 

Table 1  
Results of aluminium beam with crack depth ratio ha /  =0.1 by ANSYS 
Case Uncracked Crack 1 Crack 2 Crack 3 Crack4
Actual : crack location (e) - 0.2 0.4 0.6 0.8
Frequencies  
f1 (Hz) 8176 8124 8150 8167 8171
f2 (Hz) 16343 16300 16271 16296 16308
Predicted: crack location (e) from Eq. (14) - 0.2085 0.0400 0.5993 0.7708
Crack depth ratio (a/h) from Eq. (22) - 0.0924 0.0765 0.0617 0.0767
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6. Conclusions 
 

     In this paper, a method for detection of crack from measurement of natural frequencies of cracked 
free–free beam for axial vibration is developed. For identification of crack location and crack depth 
ratio, it was shown that data on the variation of the first two natural frequencies is sufficient. The 
crack is simulated by an equivalent axial spring, connecting the two segments of the beam. Analysis 
of this approximate model results in algebraic equations, which relate the natural frequencies of beam 
and crack location. These expressions are applied to studying the inverse problem, that is, 
identification of crack location from frequency measurements. For crack size an integrated approach 
is used, which gives a relation between frequencies’ changes, crack location, and crack size in the 
beam. The error in prediction of crack location and crack size by theoretical and experimental 
analysis is less than 16%. The proposed method is confirmed by comparing it with results of ANSYS 
FEM results. The proposed method is found to be both simple and accurate. 
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