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 This paper presents a perfect analytical solution of the hyperbolic asymmetric heat conduction 
equation and the related thermal displacement equation within a long hollow cylinder (plain 
strain condition) exposed to a harmonic boundary condition. The material is assumed to be 
homogeneous and isotropic with temperature-independent thermal properties. The standard 
method of separation of variables is used for solving the problem with time-independent 
boundary conditions and the Duhamel integral is used for applying the time-dependency. The 
results show the wave behavior of Non-Fourier thermal stresses and higher oscillation 
amplitude in comparison with Fourier one. The developed analytic answer can be applied for 
modeling cylindrical shell of nuclear rod and can be applied as a benchmark to validate the 
other numerical solutions. 
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1. Introduction 

      In the classical heat conduction theory, which is based on Fourier’s law, heat flux has a linear 
relation with the temperature gradient and the propagation speed of the thermal wave is estimated 
infinite. Although the Fourier’s law may still be sufficiently accurate for most of engineering 
problems under regular conditions, but it is now accepted that in situations involving extreme thermal 
gradients, and/or a nano (even micro) temporal/spatial scale, or temperatures near absolute zero, 
Fourier's heat diffusion theory becomes inaccurate and the non-Fourier effect becomes more 
important. With the non-Fourier profiles the thermal displacement and thermal stress are influenced 
and the modified thermoelasticity must be used. The governing equation for classical thermoelasticity 
is followed from known Fourier constitutive relation of heat flux which is the linear relation between 
heat flux vector q to temperature gradient in solids 



  294

( )k   q , (1) 

where is temperature and k is the thermal conductivity of material. By implementing Eq. (1) to the 
energy equation, the parabolic heat conduction equation is derived as:  

2k c
t

  
 


, 

(2) 

where c  is the material heating capacity. The parabolic Eq. (2) estimates an infinite speed for heat 
propagation. In other worlds, a thermal disturbance on a point of solid body will be senesced 
immediately on all points. Solving this physically unrealistic phenomenon, attracts too many efforts 
to itself in recent years. New theories estimate the finite speed and wavy behavior for heat 
propagation. The hyperbolic equation is based on the constitutive relation of heat flux, which was 
firstly introduced as: (Cattaneo, 1958; Vernotte, 1958): 

 q
q k

t
 

   
 , 

(3) 

where   is the relaxation time and it shows that there is a time lag between the imposed thermal 

gradient and propagated flux. The magnitude of  is about 10-10-10-14 second for most of the 
engineering materials. It can be until 20-100 second for non-homogeneous structures and biological 
tissues (Shen & Han, 2002). Therefore, the thermal lag is important for some of engineering material. 
The resulted heat conduction equation in this state is as follows, 

2
2

2
k c

t t

   
  

     


. 
(4) 

     This equation, despite of the Fourier one, is hyperbolic and estimate the wave behavior for heat 
propagation. So the generalized thermoelasticity with new thermal profiles, must be derived.The 
generalized thermoelasticity theory in the papers consists of the Lord-Shoulman (LS) and Green-
Naghdi (GN) theories (Chandrasekharaiah, 1998). The solution of equations in these models with 
different coordinates has been derived numerically and in some cases with very simple analytical 
methods. 

     For example, Nayfeh (1977) took into consideration the LS model and studied the effects of 
coupled thermoelastic waves in a one dimensional finite environment analytically. He used the 
Laplace and Fourier transformations for solving the equations in a semi-infinite model. Using weight 
function, Nabavi and Shahani (2009) calculated the weight integral analytically and solved the 
thermal strain equation for a semi-static long cylinder to study the behavior of a crack.  

     Chen and Lin (1995) applying a combined numerical method of Laplace transformation and 
control volume scheme studied the problem of transient thermoelasticity with time delay under non-
linear radiation as a boundary condition. The finite element method for the solution of 
thermoelasticity equation in a finite ambient was used by HosseiniTehrani and Eslami (2000, 2003). 
They studied the effects of the coupler parameter on the propagation of elastics and heat waves. 

     Chandraskharaiah (1996, 1997) studied the wave propagation in a one dimensional semi-infinite 
sheet with the GN model under sudden temperature exposure of boundaries utilizing the Laplace 
transformation and found the complete solution of the equations. Taheri et.al. (2004) also solved the 
coupled thermolelasticity problem in a layer based on the GN model, using the Laplace 
transformation. Bagri and Eslami (2007) solved the generalized thermoelastic equation in a hollow 
cylinder and sphere based on LS and GN models, using the Laplace transformation and numerical 
Inverse Laplace transformation method. 
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     Two other works have been done which have been used as references for this research. Shahani 
and Nabavi (2007) solved the Fourier thermoelastic problem in a thick, long and hollow cylinder 
analytically. In this problem the boundary conditions are time-dependent and applied on the inner 
surface of the cylinder and after finding temperature profiles, the semi-static thermoelasticity 
equation was solved and a closed form solution of stresses was presented. Also in the second research 
work Radu et al. (2008), considered the Fourier heat conduction in a long cylinder with harmonic 
temperature boundary conditions on the inner surface and solved the semi-static thermoelasticity 
equation with tension-free boundary conditions, and a closed solution for strains and thermal stresses 
was offered.  

     Totally, analytical investigations into the heating problem are fruitful because of reducing the 
experimental time and cost. Harmonic boundary conditions are commonly encountered boundary 
conditions in nature and industry such as nuclear rods. The Non-Fourier heat conduction, is important 
in such cases as very high heat flux, low time of pulse implication and high relaxation time in non-
homogeneous or biological mater.  Hence, the non-Fourier theory has found its major use in 
engineering science fields such as Biomedical Engineering, Electrical Engineering like laser-material 
interaction, temperature control of superconductors, rapid drying and high heating problems such as 
in nuclear power plant rode (Atefi & Talaee, 2011). 

      In this paper, the hyperbolic heat conduction equation and the thermal stresses in a hollow 
cylinder are solved analytically under the time dependent boundary temperature. The innovations of 
the paper are: 

 It gives closed and perfect analytical answers for Fourier and Non-Fourier temperature 
profiles in cylindrical coordinates. 
 The method used for solving this paper doesn’t need any numerical solutions un-like the 
Laplace transformation for its inverse integral. 
 It gives analytical solutions for thermal stresses and displacement equation and comparing 
Fourier and Non-Fourier stresses. 
 The result can be used for approximately modeling the shielding of nuclear rod with periodic 
boundary temperature. 
 The result can be used as a verification branch of numerical solutions. 
 

2. Mathematical modeling 
 

      The hyperbolic heat conduction equation in cylindrical coordinates for a long hollow cylinder 
with inner and outer radius ݎ௜and ݎ௢is: 

2 2

2 2

1

t t r r r

    
    

       


, 
(5) 

where		α is the heat penetration coefficient. The boundary conditions of the problem are considered as 
follow: 

0( , ) (2 )

( , ) 0
i

o

r t Sin ft

r t

  



 

 
(6) 

and the initial conditions are: 
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(7) 
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where ݂	is the frequency of temperature boundary changes. Assuming plane strain conditions, which 
is a reasonable supposition for long cylinders, the coupled displacement-temperature equation in the 
cylinder is as follows, 

2 2
2

2 2 2

1u u u u

r r r r r t

    
   

   
, 

(8) 

where (1 )

(1 )

v
a

v
 



 and 2 (1 2 )

2 (1 )

v

v








and	ܽ	is the thermal expansion coefficient, υ is the Poisson's ratio, µ 

is the cutting module and ρ is the density of the material of the cylinder. Eq. (8) along with Eq. (5) 
creates a series of thermo elastic non-Fourier equations. Here the answer of Eq. (8) has been studied 
for a hollow cylinder in a semi-static condition in which the second derivatives of displacement i.e. 

2

2

u

t




is ignored. Non-zero stresses in the cylinder which is depend on displacement and temperature 

and are expressed as: (Nabavi & Shahani, 2009) 

2
(1 ) (1 )

1 2

2
(1 ) (1 )

1 2

r

u u
v v a v

v r r

u u
v v a v

v r r
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 

           


          

 

 

(9) 

where r  is the radial stress and  is the hoop stress in plane strain condition within the considered 

cylinder. The inner layer (area) of the cylinder has been affected by an inner pressure of Ρ while the 
outer area is fixed, so the stress and displacement boundary conditions are:  

( , ) ,

( , ) 0.
r i

o

r t P

u r t

  
 

 
(10) 

 

3. Solution of the temperature equation  
 

      An exact solution of the conduction Eq. (5) with periodic boundary Eqs. (6) and initial Eqs. (7) 
can take place in the following 4 phases using the separation of variables method and Duhamel 
Integration (Atefi & Talaee, 2011;  Talaee & Atefi, 2011). 

 Solving the steady equation with non-homogeneous time-independent boundary conditions. 
 Solving the transient equation with homogeneous boundary conditions and modified initial 
conditions.  
 Determining the solution of the problem with time-independent boundary conditions by 
superposition of the two solutions mentioned above.  
 Applying the time dependency of boundary conditions within the acquired result, using the 
Duhamel integration  

In continuation, the four above mentioned phases in determining thermal result are expressed.  

3.1. Solution of the steady equation 

        First, the steady problem can be rewritten independent of time and with non-homogeneous 
boundary conditions as following relations:  

2
1 1

2

1
0

r r r

  
 

 
 

(11) 
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(12) 

 

Considering the boundary conditions, the solution is: 
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 
 
 
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(13) 

3.2. Solution of transient equation 

      Within the homogeneous boundary condition and modified initial condition, the transient problem 
in this phase turns into the following form:  

2 2
2 2 2 2

2 2

1

t t r r r

    
    

       


, 
(14) 

2

2
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( , ) 0
i

o

r t
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



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 2 1

2
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r

t

 


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
 
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(16) 

       

        Utilizing the separation of variables method and applying the θଶሺݎ, ሻݐ ൌ ܴሺݎሻ	ܶሺݐሻ	 within Eq. 
(14) and considering the boundary Eqs. (15), the solution of the problem turns into:  

 2
2 0

1

( , ) ( )
t

n n n n n
n

r t e E Cos t F Sin t r 
   
 



      , 
(17) 

where 0
0 0 0

0

( )
( ) ( ) ( )

( )
n o

n n n
n o
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r Y r J r

J r

  


   ,
24 1

2
n

n

 



  



and n are the roots of the following equation:  

0 0 0 0( ) ( ) ( ) ( ) 0o i i oJ r Y r J r Y r     , (18) 

where J଴ and Y଴ are the Bessel functions of zero degree of type I and II. Using the initial condition of 
the problem i.e. equations (16), the coefficients ܧ௠௡,  :௠௡ are determined asܨ
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(19) 

 where 2
0 ( )

o

i

r

n n

r

r rdr    and all the above integrals can be performed easily. 

3.3. Superposition of the two solutions  

       Based on superposition principle, the general solution of problem (5) under time-independent 
boundary conditions is equal to the sum of the steady and transient solutions mentioned above: 
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(20) 

where	ܩ௡		ሺݐሻ is equal to: 

2 1
( )

2

t

n n n
n

G t e Cos t Sin t



 
 
 

 
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
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 (21) 

3.4. Applying time-dependent boundary conditions  

       In order to apply the time dependency of boundary conditions (i.e. ( ) (2 )f t Sin ft ),  the 
Duhamel integral is used as (Talaee & Atefi, 2011): 

0

( )
( , ) (0). ( , ) ( , )

t f
r t f r t r t d

    



  

  
(22) 

       Implying Eqs. (20-21) in Eq. (22), the complete solution of the non-Fourier temperature profile 
within a long cylinder under a periodic boundary condition turns into:  
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(23)

 

       In the same way, the Fourier temperature profiles of the above problem can be derived as:  
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(24) 

4. Solution of the displacement equation  

        Under semi-static condition, the Eq. (8) which is the displacement equation governing the 
problem becomes as follows: (Shahani & Nabavi, 2007) 

1 ( ) (1 )
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ru v
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r r r v r
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 (25) 

and the answer can be shown as: 
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(26) 

         Putting the non-Fourier temperature profile of Eq. (23), in the above equation, the 
corresponding displacement equation with non-Fourier condition is derived as:  
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where 0
1 1 1

0
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( ) ( ) ( )
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r Y r J r
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  


   and Jଵ and Yଵare the Bessel functions of first order of type I 

and II respectively. Coefficients of A(t) and B(t) are determined using Eq. (9) and Eq. (10) as:  
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      In the same way, the analytical displacement relation with Fourier profiles could be determined 
as: 
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       The coefficient A(t) and B(t) in Eq. (30)are determined for the Fourier condition too, in the 
following fashion after simplifications:  
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(32) 

         With the determination of the displacement equations such as Eq. (27) and Eq. (30), the non- 
zero thermal stresses within the cylinder (radial and hoop stresses) can be determined according to 
Eq. (9). The below dimensionless parameters are considered for plotting temperature and stresses 
profiles:  
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        The magnitude of temperature profile and thermal stresses have been plotted within 
dimensionless figures under time-dependent boundary temperature of the cylinder shell with 
frequencies of ƒ=0.1 and 0.5. In this modeling the inner and outer radius (of the cylinder) are 
considered to be equal to ݎ௜		=0.5, ݎ଴=1 and the torsion elasticity module is	ߤ ൌ 80	ሺܽܲܩሻ, while 
Poisson coefficient, thermal expansion coefficient and the internal pressure of the cylinder are 
considered as	߭ ൌ 0.3, ܽ ൌ 12 ൈ 10ି଺	ሺ1/ܥሻ	and ௜ܲ= 100 (MPa), respectively. The magnitudes 
considered here, have been acquired for nuclear fuel rod are as mentioned in article (Radu et al., 
2008).  
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before, the reason for such a phenomenon is the thermal inertia of Non-Fourier temperature profiles 
against the imposed external changes.  

  

Fig. 7. Hoop stresses under 
Fourier condition in various 
timings with excitation 
frequency function of 0.1  

Fig. 8. Hoop stresses under 
non-Fourier condition in 
various timings with excitation 
frequency function of 0.1 

Fig. 9.Hoop stresses under non-
Fourier condition in various 
timings with excitation 
frequency function of 0.5  

5. Conclusion 

      Analytical response of plane thermal stresses in the two Fourier and non-Fourier conditions were 
calculated for a long cylinder and were compared together. This solution could be used as a source of 
affirmation of numerical solutions of temperature profile and stress within the cylinder. Based on the 
diagrams the following general outcomes are observed:   

 Wavy behavior of stresses and higher level of oscillation amplitude under Non-Fourier 
condition compared to Fourier condition  
 Oscillatory convergence of transient non-Fourier profiles to the stable in comparison to rapid 
convergence under Fourier condition  
 Collision and return of the thermal wave to and from the walls in non-Fourier profiles  
 Reduction of range of fluctuations with the increase of excitation frequency function due to 
inertial behavior of non-Fourier temperature profile  
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List of abbreviations 

Temperature ࣂሺ࢑ሻ Dimensionless radius   ࢘ᇱሺെሻ 
Dimensionless 
temperature   

દሺെሻ 
Thermal capacity    ࢉ	ሺࡶ ⁄࢑ ሻ 

Time ࢚	ሺࢉࢋࡿሻ Fourier number  ࢕ࡲ	ሺെሻ 
Flux inertia time   ࣎૙ሺࢉࢋࡿሻ Vernotte number  ࢋࢂ	ሺെሻ 
Thermal flux   ࢗ	ሺࢃ ⁄૛࢓ ሻ Frequency ࢌ	ሺ࢒ ⁄࢙ ሻ 
Penetration coefficient   ࢻ	ሺ࢓૛ ⁄࢙ ሻ Stress ࣌ሺࢇࡼሻ 
Thermal conduction 
coeff. 

ࢃሺ	࢑ ⁄࢑࢓ ሻ 
Strain ࢿሺ࢓ሻ 

Radius ࢓	ሺ࢘ሻ Displacement vector     ࢛	ሺ࢓ሻ 
Elasticity module   ࡱ	ሺࢇࡼ ⁄࢓ ሻ Poisson ratio ࣏	ሺെሻ 

  

 


