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 In the present paper, the differential transformation method is employed to develop a semi-
analytical solution for free transverse vibration of single-walled carbon nanotube (SWCNT) 
with arbitrary boundary conditions. The small scale effect is taken into consideration via 
Eringen’s nonlocal elasticity theory while the transverse shear deformation effects and rotary 
inertia are taken into account in presented Timoshenko beam theory. Through variational 
formulation and the Hamilton's principle the governing differential equations and the boundary 
conditions are derived and then solved by a semi-analytical method called differential 
transformation method (DTM) for various frequency modes of beams and different edge 
conditions. Comparisons made between the present results and results reported by well-known 
references for special cases treated before, have confirmed accuracy and efficiency of the 
presented approach. The effects of several parameters such as transverse shear deformation 
effects, slenderness ratios, boundary conditions and small scale on vibration characteristics of 
SWCNT are examined. The present study illustrates that the vibration characteristics of an 
SWCNT are strongly dependent on the small scale parameters. 
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1. Introduction         
 
       The differential transformation method is an efficient and useful numerical method for the rapid 
solutions of linear and non-linear partial differential equations. It is an alternative discrete approach to 
directly solve the governing equations of various engineering problems. This method first proposed by 
Zhou (1986) in solving linear and non-linear initial value problems in electrical circuit analysis. Due to 
its simplicity and accuracy, DTM has been widely employed in many areas of industry and 
mathematics. Several researchers have addressed the linear and nonlinear static and dynamic problems 
of beams and plates by DTM but its application in micro- and nano-scale beams and tubes problems is 
scarce.  
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      Nanoscale engineering materials have significant mechanical, electrical and thermal performances 
that are superior to the conventional structural materials. They have attracted great interest in modern 
science and technology after the invention of carbon nanotubes (CNTs) by Iijima (1991). For example, 
in micro/nano electromechanical systems (MEMS/NEMS); nanostructures have been used in many 
areas including communications, machinery, information technology, biotechnology technologies. So 
far, three main methods were provided to study the mechanical behaviors of nanostructures: atomistic 
model (Baughman et al., 2002), semi-continuum (Li & Chou, 2003) and continuum models (Wang and 
Cai, 2006). However, both atomistic and semi-continuum models are computationally expensive and 
are not suitable for analyzing large scale systems. In other words, since conducting experiments at the 
nanoscale is a daunting task, and atomistic modeling is restricted to small-scale systems owing to 
computer resource limitations, continuum mechanics offers an easy and useful tool for the analysis of 
CNTs. Therefore, there are considerable efforts made to develop and calibrate continuum structural 
models for CNTs analysis and these efforts have been summarized in the previous papers.  
 
     Moreover due to the inherent size effects, at nanoscale, the mechanical characteristics of 
nanostructures are often significantly different from their behavior at macroscopic scale. Such effects 
are essential for nanoscale materials or structures and the influence on nano-instruments is great 
(Maranganti and Sharma, 2007). Generally, theoretical studies on size effects at nanoscale are by means 
of surface effects (Zhu et al., 2009), strain gradients in elasticity (Mindlin, 1964) and plasticity 
(Aifantis, 1984), and the nonlocal stress field theory (Eringen, 1983; 1972a). Unfortunately, the 
classical continuum theories are deemed to fail for these nanostructures, because the length dimensions 
at nano scale are often sufficiently small such that call the applicability of classical continuum theories 
into the question. Consequently, the classical continuum models need to be extended to consider the 
nanoscale effects and this can be achieved through the nonlocal elasticity theory proposed by Eringen 
(Eringen, 1972a) which considers the size-dependent effect. According to this theory, the stress state 
at a reference point is considered as a function of strain states of all points in the body. This nonlocal 
theory is proved to be in accordance with atomic model of lattice dynamics and with experimental 
observations on phonon dispersion (Eringen, 1983). In nonlocal theory, the nonlocal nanoscale in the 
constitutive equation could be considered simply as a material-dependent parameter.  
 
     In recent years, nanobeams and carbon nanotubes hold a wide variety of potential applications 
(Zhang et al., 2004; Wang, 2005; Wang and Varadan, 2006) such as sensors, actuators, transistors, 
probes, and resonators in NEMSs. Thus, establishing an accurate model of nanobeams is a key issue 
for successful NEMS design. As a result, nanotechnological research on vibrational properties of 
nanobeams is important because such components can be used as design components in nano-sensors 
and nano-actuators. Furthermore, many researchers worked on bending, buckling and vibration of 
beam-like elements in nanoscale (Peddieson et al., 2003; Liew et al., 2008; Amara et al., 2010) in most 
of which the nonlocal Euler-Bernoulli beam theory has been employed for vibration analysis of 
nanobeams (Lu et al., 2006; Zhang et al., 2005; Xu, 2006). Samaei and Mirsayar (2011) considered the 
small scale effects on buckling characteristics of multi-walled CNTs. Kiani (2010) presented a meshless 
approach for free transverse vibration analysis of embedded SWCNTs with arbitrary boundary 
conditions accounting for nonlocal effect. Also But since this theory does not account for transverse 
shear and rotary inertia effects, it gives unreliable results and overpredicts the vibration characteristics 
for stubby beams and especially for higher frequencies of vibration because the effect of transverse 
shear deformation become significant and cannot be neglected (Wang et al., 2000). Employing nonlocal 
Timoshenko beam model Ansari and Ramezannezhad studied the large-amplitude vibrations of 
embedded multi-walled CNTs including thermal effects (Ansari & Ramezannezhad, 2011). Kiani and 
Mehri (2010) examined the behaviour of nanotube structures under a moving nanoparticle using 
nonlocal beam theories. Besides, Torabi and Nafar Dastgerdi (2012) presented an analytical method 
for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal 
elasticity model. While Ansari et al. (2011) presented a sixth-order compact finite difference method 
for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory. 



F. Ebrahimi and P. Nasirzadeh  / Engineering Solid Mechanics 3 (2015) 
 
 

133  

Ghorbanpourarani et al. (2010) considered the cylindrical shell and beam models to study transverse 
vibration of short CNTs. Recently Ansari and Sahmani (2012) investigated the small scale effect on 
vibrational response of SWCNTs with different boundary conditions based on nonlocal beam models. 
Most recently Kiani (2013) presented the vibration analysis of elastically restrained double-walled  
 
      CNTs on elastic foundation subjected to axial load using nonlocal shear deformable beam theories.  
Motivated by these considerations, in this study, differential transformation method is applied in 
analyzing vibration characteristics of SWCNTs under various edge conditions. The superiority of the 
DTM is its simplicity and good precision and depends on Taylor series expansion while it takes less 
time to solve polynomial series. It is different from the traditional high order Taylor’s series technique, 
which needs symbolic competition of the necessary derivatives of the data functions. The Taylor series 
method is computationally taken long time for large orders. With this technique, it is possible to reach 
highly reliable results or even exact solutions for differential equations. With this method, the given 
partial differential equation and related initial conditions are transformed into a recurrence equation, 
which could eventually lead to the solution of a system of algebraic equations as coefficients of a power 
series solution. This helps obtain exact and approximate solutions of linear and nonlinear ordinary and 
partial differential equations and there is no necessary for linearization or perturbations, large 
computational work and round-off errors are avoided. It’s a proper technique to analyze beam 
vibrations. To the author’s best knowledge there is no work reported on the application of DTM on 
vibration analysis of SWCNTs based on nonlocal Timoshenko bema model. In this study, the governing 
equations and boundary conditions for the free vibration of a nonlocal Timoshenko beam have been 
extracted via Hamilton principle. Unlike the Euler beam model, the Timoshenko beam model helps for 
the effect of transverse shear deformation, which becomes significant for CNTs with small length-to-
diameter ratios. The detailed mathematical derivations are presented and numerical investigations are 
performed while the emphasis is placed on investigating the impact of different parameters such as 
transverse shear deformation effects, slenderness ratios, boundary conditions and small scale on 
vibration characteristics of SWCNT. Comparisons with the results from the existing literature are 
provided and the good agreement between the results of the proposed method of this paper and those 
available in literature validated the presented approach. Numerical results are presented to serve as 
benchmarks for the application and the design of nanoelectronic and nano-drive devices, nano-
oscillators, and nanosensors, in which CNTs act as basic elements. 
 
2. Brief statement of the differential transformation method 
 
      Differential transformation technique is one of the useful techniques to solve the differential 
solutions with small calculation errors and ability to solve nonlinear equations with boundary 
conditions value problems. Abdel-Halim Hassan (2002) used the DTM on eigenvalues and normalized 
eigenfunctions. In addition, Wang (2013) presented the axial vibration analysis of stepped bars utilizing 
DTM. The DTM is proved to be an appropriate computational tool for different engineering problems. 
Using differential transformation technique, the ordinary and partial differential equations can be 
transformed into algebraic equations, from which a closed-form series solution can be obtained easily. 
In this method, certain transformation rules are used to both the governing differential equations of 
motion and the boundary conditions of the system in order to transform them into a set of algebraic 
equations as presented in Table 1 and Table 2. The solution of these algebraic equations gives the 
desired results of the problem. The basic definitions and the application procedure of this method can 
be introduced as follows: 
 
     The transformation equation of function f(x)	 can be defined as (Chen and Ju, 2004): 
 

[݇]ܨ = 1/݇! (
݀௞݂(ݔ)
௞ݔ݀

)௫ୀ௫బ  
(1) 
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where f(x)	is the original function and F[k]	is the transformed function. The inverse transformation is 
defined as: 
 

(ݔ)݂ = ෍(ݔ − ଴)௞ݔ
∞

௞ୀ଴

 [݇]ܨ	
(2) 

 
Table 1. Some of the transformation rules of the one-dimensional DTM (Chen and Ju, 2004) 
Original function Transformed function 

(ݔ)݂ = (ݔ)݃ ± ℎ(ݔ) (ܭ)ܨ = (ܭ)ܩ ±  (ܭ)ܪ
(ݔ)݂ = (ܭ)ܨ (ݔ)݃ߣ	 =  (ܭ)ܩߣ

 
(ݔ)݂ = (ܭ)ܨ (ݔ)ℎ(ݔ)݃ = ෍ܭ)ܩ − (݈)ܪ(݈

௄

௟ୀ଴

 

(ݔ)݂ =
݀௡݃(ݔ)
௡ݔ݀

(ܭ)ܨ  =
(݇ + ݊)!

݇!
ܭ)ܩ + ݊) 

(ݔ)݂ = (ܭ)ܨ ௡ݔ = ܭ)ߜ − ݊) = o																if	k ≠ n 
                                                      =1            if k=n 

 
Table 2. Transformed boundary conditions (B.C.) based on DTM (Chen and Ju, 2004) 
X=0 X=1 
Original B.C. Transformed B.C. Original B.C. Transformed B.C. 
 

݂(0) = 0 
 

[0]ܨ = 0 
 
݂(1) = 0 ෍ܨ[݇] = 0

∞

௞ୀ଴

 

݂݀
ݔ݀

(0) = 0 
 

[1]ܨ = 	0 
 
ௗ௙
ௗ௫

(1) =0 ෍݇ܨ[݇] = 0
∞

௞ୀ଴

 

݀ଶ݂
ଶݔ݀

(0) = 0 
[2]ܨ =  0 ௗమ௙

ௗ௫మ
(1) =0 ෍݇(݇ − [݇]ܨ(1 = 0

∞

௞ୀ଴

 

݀ଷ݂
ଷݔ݀

(0) = 0 
[3]ܨ =  0 ௗయ௙

ௗ௫య
(1) =0 ෍݇(݇ − 1)(݇ − [݇]ܨ(2 = 0

∞

௞ୀ଴

 

 
Combining Eq. (1) and Eq. (2) one obtains: 
 

(ݔ)݂ = ෍
ݔ) − ଴)௞ݔ

݇!
(
݀௞݂(ݔ)
௞ݔ݀

)௫ୀ௫బ

∞

௞ୀ௢

 
(3) 

 
      In actual application, the function f(x)	is expressed by a finite series and Eq. (3) can be written as 
follows: 
 

(ݔ)݂ = ෍
ݔ) − ଴)௞ݔ

݇!
(
݀௞݂(ݔ)
௞ݔ݀

)௫ୀ௫బ

௡

௞ୀ௢

 
(4) 

 
which implies that the term in relation (5) is negligible. 

 

(ݔ)݂ = ෍
ݔ) − ଴)௞ݔ

݇!
(
݀௞݂(ݔ)
௞ݔ݀

)௫ୀ௫బ

∞

௞ୀ௡ାଵ

 
(5) 
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 3. Nonlocal Timoshenko beam equations and boundary conditions 
 
       Consider a beam with length L and the cross sectional area of A. Based on Timoshenko beam 
theory, strain-displacement and strain energy relations are as follows (Wang et al., 2000): 
 

௫௫ߝ = ݖ
݀∅
ݔ݀

, (6) 

௫௭ߛ = ∅+
ݓ݀
ݔ݀

 (7) 

ܷ = 1/2න න ௫௫ߝ௫௫ߪ) + (௫௭ߛ௫௭ߪ
஺

௅

଴
 ݔ݀ܣ݀

(8) 

 
where x is the longitudinal coordinate measured from the left end of the beam and the z is the coordinate 
measured from the mid-plane of the beam, w represents the lateral deflection and ∅	 is the bending 
slope of the beam due to bending and ε୶୶ is the normal strain and γ୶୸ is the transverse shear strain and 
U represents the strain energy. σ୶୶ and σ୶୸ are normal stress and the transverse shear stress respectively. 
After substituting Eq. (5) and Eq. (7) in Eq. (8) and putting bending moment and shear force in Eq. (8), 
strain energy is written as: 
 

ܷ = 1/2න න ݖ௫௫ߪ)
݀∅
ݔ݀

+ ∅)௫௭ߪ +
ݓ݀
ݔ݀

))
஺

௅

଴
ݔ݀ܣ݀ = ܯ)1/2

݀∅
ݔ݀

+ ܳ(∅ +
ݓ݀
ݔ݀

 ݔ݀((
(9) 

ܯ = න ௫௫ߪ
஺

 ܣ݀	ݖ
(10) 

ܳ = න ௫௭ߪ
஺

 ܣ݀
(11) 

  
where M and Q are bending moment and the shear force respectively. The kinetic energy T, by 
assuming free harmonic motion and rotary inertia effect, is written as: 
 

ܶ = 1/2න ଶݓଶ߱ܣߩ) + (ଶ∅ଶ߱ܫߩ
௅

଴
 ݔ݀

(12) 

 
where	ω is the circular frequency of vibration and  ρ and I  are the mass density and the second moment 
of area of the beam respectively. Applying Hamilton’s principle (Chow, 2013) requires: 
 

ܶ)ߜ − ܷ) = 0 = න ܯ−)
∅ߜ݀
ݔ݀

− ܳ ൬ߜ∅ +
ݓߜ݀
ݔ݀

൰ + ݓߜݓଶ߱ܣߩ + ݔ݀(∅ߜ∅ଶ߱ܫߩ
௅

଴
 

(13) 

 
and after performing integration by parts, we reach: 
 

0 = න ൤൬
ܯ݀
ݔ݀

− ܳ + ଶ∅൰߱ܫߩ ∅ߜ + ൬
݀ܳ
ݔ݀

+ ൰ݓଶ߱ܣߩ ݔ൨݀ݓߜ − ଴௅[∅ߜܯ] − ଴௅[ݓߜܳ] 	
௅

଴
 

(14) 

 
This results in the following equations: 
 
ܯ݀
ݔ݀

= ܳ −  ଶ∅ (15)߱ܫߩ

݀ܳ
ݔ݀

=  (16) ݓଶ߱ܣߩ−

 
and the boundary conditions are in two forms as below relations: 
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Either w or Q =0  (17) 
Either ∅ or (18) 0= ܯ 

 
      As it shows the equations appear to be the same as local Timoshenko beam theory, but the shear 
force and bending moment expressions for nonlocal beam theory must be different. The constitutive 
equation of classical elasticity is an algebraic relationship between stress and strain tensors while 
Eringen nonlocal elasticity includes spatial integrals which indicate the average effect of strain of all 
points of the body to the stress tensor at the given point (Eringen, 1972b; 1983). Since the spatial 
integrals in constitutive equations are mathematically difficult to solve, they can be converted to the 
equal differential constitutive equations under certain conditions. The nonlocal constitutive stress-strain 
relation for an elastic material in the one dimensional case beam can be simplified as (Eringen, 1983): 
 

௫௫ߪ − (݁଴ܽ)ଶ
݀ଶߪ௫௫
ଶݔ݀

=  ௫௫ߝܧ
(19) 

 
where E is the young modulus, ݁଴ܽ is the scale coefficient that incorporates the small scale effect and 
a represents the internal characteristic length and ݁଴ is the constant appropriate to each material which 
is measured experimentally. The local and nonlocal constitutive shear strain-stress relations are the 
same, since the form of Eringen nonlocal constitutive model cannot be applied in z direction: 
 
௫௭ߪ = ௫௭ߛܩ  (20) 

 
where G is the shear modulus. After multiplying the term (zdA) and integration over the area A Eq. 
(14) becomes: 
 

−ܯ (݁଴ܽ)ଶ
݀ଶܯ
ଶݔ݀

= ܫܧ
݀∅
ݔ݀

 
(21) 

 
      Integrating Eq. (15) over the area yields the following relation: 
 

Q = KୱGA(∅ +
dw
dx

) (22) 
 
where Kୱ	is the shear correction factor that accounts for the difference in the constant state of shear 
stress in the Timoshenko beam theory and the parabolic variation of the actual shear stress through the 
depth of the cross section (Wang et al. 2000) . Now by substituting Eqs. (15-16) in Eq. (21) the moment 
can be reached as follows: 
 

ܯ = ܫܧ
݀∅
ݔ݀

− (݁଴ܽ)ଶ(߱ܣߩଶݓ + ଶ߱ܫߩ ݀∅
ݔ݀

) (23) 
 
and by utilizing equations (22) and (23) in Timoshenko beam equations (15) and (16) the governing 
equation for the vibration of nonlocal Timoshenko beam may be obtained as: 
 

ܫܧ
݀ଶ∅
ଶݔ݀

− ܣܩ௦ܭ ൬∅ +
ݓ݀
ݔ݀

൰ + ∅ଶ߱ܫߩ − (݁଴ܽ)ଶ ቆ߱ܣߩଶ ݓ݀
ݔ݀

+ ଶ߱ܫߩ ݀
ଶ∅
ଶݔ݀

ቇ = 0 (24) 

ቆܣܩ௦ܭ
݀∅
ݔ݀

+
݀ଶݓ
ଶݔ݀

ቇ + ଶ߱ݓܣߩ = 0 
(25) 

 
On the basis of Eq. (17) and Eq. (18) and due to various ending conditions of the beam e.g. for a simply 
supported end as:  
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ݓ = ܯ   ,      0 = ܫܧ ௗ∅
ௗ௫
− (݁଴ܽ)ଶ ቀ߱ܣߩଶݓ + ଶ߱ܫߩ ௗ∅

ௗ௫
ቁ = 0 (26) 

 
and for a clamped end as:  
 
ݓ = 0 ,  ∅ = 0 (27) 

 
and for a free end as: 
 
ܯ = ܫܧ ௗ∅

ௗ௫
− (݁଴ܽ)ଶ ቀ߱ܣߩଶݓ + ଶ߱ܫߩ ௗ∅

ௗ௫
ቁ = 0  ,   ܳ = ∅ቀܣܩ௦ܭ + ௗ௪

ௗ௫
ቁ = 0 (28) 

 
4. Non-Dimensional parameters 
 
The non-dimensional parameters contributes to simplify the equations and to make comparisons in the 
studies possible. The non-dimensional parameters are introduced as following terms: 
 

ݔ̅ =
ݔ
ܮ
ഥݓ ;	 =

ݓ
ܮ

 

ଶߣ = ߱ଶ ఘ஺௅
ర

ாூ
= frequency parameter; ߗ = ாூ

௄ೞீ஺௅మ
=shear deformation parameter 

∝= ୣబୟ
୐

=scaling effect parameter; ε = ୐√୅
√୍

=slenderness ratio 
 
By applying the non-dimensional parameters to the governing Eq. (24) and Eq. (25) the following 
relations obtained: 
 

ߗ ቆ1 −
ଶߣଶߙ

ଶߝ
ቇ
݀ଶ∅ഥ
ଶݔ̅݀

+ ቆ
ଶߣߗ

ଶߝ
− 1ቇ∅ − ߗଶߣଶߙ) + 1)

ഥݓ݀
ݔ̅݀

= 0 (29) 

ቆ
݀∅
ݔ̅݀

+
݀ଶݓഥ
ଶݔ̅݀

ቇ + ഥݓߗଶߣ = 0 
(30) 

 
Also boundary conditions equations (26)- (28) appear for a simple supported end as: 
 
ഥݓ = ܯ   ,  0 = ቀߗ − ఆఈమఒమ

ఌమ
ቁ ௗ∅
ௗ௫̅
ഥݓଶߣଶߙߗ− = 0                                                            (31) 

 
And for a clamped end as: 
 
ഥݓ = 0  ,  ∅ = 0 (32) 

 
And for a free end as: 
 
ܯ = ቀߗ − ఆఈమఒమ

ఌమ
ቁ ௗ∅
ௗ௫̅
− ഥݓଶߣଶߙߗ = 0;	ܳ = ∅ቀܣܩ௦ܭ + ௗ௪ഥ

ௗ௫̅
ቁ = 0 (33) 

 
5. Solution with differential transformation method 
 
      As stated in section 2 the differential transform method, certain transformation rules are defined 
and applied to the governing differential equations and their relevant boundary conditions to transform 
them into a set of algebraic equations. Solution of these algebraic equations gives the desired solution 
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of the problem. According to the basic transformation operations introduced in Table 1, the transformed 
form of the governing Eqs. (29-20) may be obtained as: 
 
ߗ ቀ1 − ఈమఒమ

ఌమ
ቁ ܭ) + ܭ)(1 + 2)ф(ܭ + 2) + ቀఆఒ

మ

ఌమ
− 1ቁф(ܭ) −(ߙଶߣଶߗ + ܭ)(1 + 1) ഥܹ ܭ) + 1) = 0 (34) 

ܭ) + 1)ф(ܭ + 1) + ܭ) + ܭ)(1 + 2) ഥܹ ܭ) + 2) + ߗଶߣ ഥܹ (ܭ) = 0 (35) 

 
      The transformed form of boundary conditions is presented in Table 2. The frequency equations may 
be derived by incorporating the transformed boundary conditions simultaneously. As it has been 
mentioned before, three kinds of edge conditions are considered in the present research: free, simply 
supported, and clamped. It shall be noted that W(k) and Φ(k) are transforms of w(x) and ф(x), 
respectively. By substituting values for k=0,1,2,…, α=0,	ε=34.641 and Ω=0.2436 in equations (34) and 
(35), we can evaluate the amounts of W(2), W(3), … and Φ(2),	Φ(3),… in terms of ωଶ and some 
constants like cଵ,… . The values can be achieved with a computer program and after substituting W(i) 
and Φ(i) in boundary conditions the following equation may be obtained: 
 

௥ܰଵ
(௡)(߱)ܿଵ + ௥ܰଶ

(௡)(߱)ܿଶ = ݎ      	0 = 1,2, … , ݊ (36) 
 
       Here ܰs are polynomials in terms of ω corresponding to nth term. When solving the equation (36) 
in matrix form and studying the Existence condition of the non-trivial solutions yields the following 
characteristic determinant: 
 
ฬ ଵܰଵ

௡ (߱) ଵܰଶ
௡ (߱)

ଶܰଵ
௡ (߱) ଶܰଶ

௡ (߱)ฬ = 0 (37) 

 
which may be used to calculate the dimensionless frequencies. The solution of Eq. (37) gives ω୰

୬ which 
is the rth estimated dimensionless natural frequency for nth iteration. To determine the value of the nth 
natural frequency, the following convergence criterion may be used: 
 

|߱௥௡ −߱௥௡ିଵ|
|߱௥௡| <  (38) ߜ

 
where n is the iteration counter, and ߜ is a sufficiently small number that is chosen as 0.0001 = ߜ in the 
present study. With respect to the differential transformation method, an algorithm in MATLAB 
software has been developed in order to determine the vibration characteristics of the nonlocal 
Timoshenko nanobeam. 
 
6. Results and Discussion 
 
      In the present study the impact of small scale coefficient as well as the effect of slenderness on first, 
second and third frequencies of the SWCNTs have been studied. Also three types of boundary 
conditions e.g. free simply supported, and clamped ends are compared.  As a validation example, the 
first three natural frequencies of nonlocal Timoshenko beam with clamped-clamped ends, Clamped- 
simply supported and simply supported –Free edge conditions already studied analytically by Wang et 
al. (2007) are reexamined. The mechanical properties of the nonlocal Timoshenko nanobeam are 
considered as presented Table 3. Also the Timoshenko shear correction factor (݇௦) is taken as 0.563. 
Table 4 compares the first three nondimensional frequency obtained by the present method with the 
results of Wang et al. (2007) for nonlocal nanobeam with both clamped ends and L/d=10.  
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Table 3. Mechanical properties of nonlocal Timoshenko nanobeam (Wang et al., 2007)   
property Unit  

E TPa           5.5 
Ρ ݃. ܿ݉ିଷ           2.3  
 0.19           - ߥ

 
Table 4. First three nondimensional frequency √λ of nonlocal Timoshenko beam for both clamped 
ends and L/d=10 

  Mode 1   Mode 2   Mode 3  
α Present Wang et al. 

(2007) 
Diff. % Present Wang et al. 

(2007) 
Diff. % Present Wang et al. 

(2007) 
Diff. % 

0 4.530 4.450 1.76 7.19 6.95 3.33 9.62 9.21 4.1 
0.1 4.423 4.3471 1.72 6.67 6.495 2.62 8.42 8.22 2.38 
0.3 3.830 3.7895 1.05 4.99 4.942 1.14 5.95 5.84 1.74 
0.5 3.265 3.242 0.72 3.999 3.99 0.15 4.75 4.67 1.53 
0.7 2.850 2.8383 0.41 3.45 3.41 0.89 4.05 3.99 1.33 

 
      For calculating the exact difference between the results of present and available results in literature, 
relation Eq. (39) has been applied: 
 

݁ܿ݊݁ݎ݂݂݁݅݀% = 100 ×
݁ܿ݊݁ݎ݂݁ݎ| − |ݐ݊݁ݏ݁ݎ݌

ݐ݊݁ݏ݁ݎ݌
 (39) 

 
       In addition, Table 5 compares the first three nondimensional frequency of nonlocal nanobeam for 
two kinds of boundary conditions (Clamped-Simple and Simple-Free) and L/d=10 obtained by the 
present method with the results of Wang et al. (2007).  As can be seen in Tables 4 and Table 5 the good 
agreement and a close correlation among the results validate the proposed method of solution. 
 
        Moreover, the convergence of the differential transformation method is perused. In Fig. 1 the 
convergence of the third frequency of a nonlocal Timoshenko beam with both clamped ends is 
presented. It illustrates that the third frequency converges at 46th iteration, while the first and the second 
frequencies have been converged before, in this example at 29th and 37th iterations. 
 
Table 5. First nondimensional natural frequency √λ of nonlocal Timoshenko beam for two kinds of 
boundary conditions and L/d=10. 

 Clamped-Simple Simple-Free 
α Present Wang et al. 

(2007) 
Diff. % Present Wang et al. 

(2007) 
Diff. % 

0 3.82 3.7845 0.929 3.08 3.0929 0.418 
0.1 3.73 3.6939 0.967 3.059 3.0243 1.13 
0.3 3.23 3.2115 0.5727 2.91 2.6538 8.8 
0.7 2.415 2.4059 0.37 2.4 2.0106 16 

 
 

Fig. 1. Convergence of third frequency, 
L/d=10, α=0 

Fig. 2. Effect of small scale on different frequency 
modes, L/d=10, clamped ends 
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Fig. 3. Effect of small scale on frequency ratio for different frequency modes, L/d=10, simply 

supported beam 
 

      The variables in the governing Eq. (24) and Eq. (25) are	α,	ε and Ω. α relates to the small scale 
effect,ε is in terms of slenderness(L/d) and Ω relates to the mechanical properties and slenderness. So 
it is possible to investigate the effects of slenderness and small scale on various frequencies and mode 
shapes of a nonlocal Timoshenko beam. Furthermore, determination of the magnitude of 	e଴ is 
significant due to its prominent effect on small scale coefficient. Some researchers worked on 
estimating the magnitude of e଴a. For instance, Zhang et al. (2005) estimated the magnitude of the 
parameter for CNTs approximately 0.82. In this study we adopt 0 ≤ α < 0.8 in our investigations as 
reported by Lu et al. (2006).  
 

Fig. 4. Effect of small scale on frequency ratio for different 
frequency modes, L/d=10, clamped-simply beam 

Fig. 5. Small scale effect on frequency ratio with different 
values of L/d, both ends clamped 

 
       As the Figs. (2-4) show when the coefficient α equals zero, the frequency of nonlocal Timoshenko 
beam equals its local counterpart. As the coefficient increases the frequency ratio decreases, which 
means the nonlocal beam frequency become smaller than the local counterparts. This reduction is 
especially noticeable in higher modes and cannot be neglected. In sum, the small scale effect makes the 
beam more flexible since in nonlocal theory elastic springs link atoms together (Liew et al., 2008).  
 
       Fig. 5 indicates that the small scale have significant effect on short beams and as the beam gets 
longer its impact gradually become negligible. So the small scale will diminish for a very long and thin 
(slender) beam. The effects of slenderness of the nanobeam have been presented in Table 6. In this 
table the first three frequencies of nonlocal Timoshenko beam with two kinds of boundary conditions 
(Simply supported- Simply supported and clamped-simply supported) has been presented for various 
values of length to diameter ration of the SWCNT. The effect of small scale parameter on first three 
frequency ratios with different values of L/d, for the case of clamped-simply supported beam has been 
illustrated in Fig. 6. It is also noticeable that the small scale has significant effect on short beams and 
as the beam gets longer its impact gradually become negligible. Fig. 7 illustrates that the nonlocal      
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Timoshenko beam frequency approaches the local Timoshenko beam frequency as the slenderness 
increases.  
 
Table 6. First three frequencies √λ of nonlocal Timoshenko beam with two kinds of boundary 
conditions 

  L/d=10 L/d=20 L/d=3 
e0a Mode Simply supported- Simply supported beam 
0 1 3.08057 3.12577 3.13451 

0.1 1 3.08056 3.12577 3.13451 
0.3 1 3.08056 3.12577 3.1345 
0.5 1 3.08052 3.12576 3.1345 
0.7 1 3.08047 3.12574 3.13449 
0.9 1 3.0804 3.12572 3.13448 
0 2 5.94588 6.18907 6.24037 

0.1 2 5.94584 6.18906 6.24036 
0.3 2 5.94558 6.18898 6.24033 
0.5 2 5.94466 6.18882 6.24025 
0.7 2 5.94425 6.18858 6.24015 
0.9 2 5.94318 6.18826 6.24000 
0 3 8.53236 9.15198 9.29787 

0.1 3 8.53225 9.15194 9.29785 
0.3 3 8.53139 9.15165 9.29771 
0.5 3 8.52995 9.15107 9.29743 
0.7 3 8.52936 9.1502 9.29702 
0.9 3 8.52366 9.14904 9.29647 

  L/d=10 
e0a Mode Clamped-simply supported beam 
0 1 3.829744 3.901179 3.915187 

0.1 1 3.829726 3.901175 3.915186 
0.3 1 3.829653 3.901155 3.915176 
0.5 1 3.829491 3.901111 3.915155 
0.7 1 3.829248 3.901045 3.915136 
0.9 1 3.828925 3.900957 3.915086 
1 1 3.828732 3.900904 3.915063 
0 2 6.644277 6.948166 7.01359 

0.1 2 6.644219 6.948148 7.013581 
0.3 2 6.642754 6.948008 7.013516 
0.5 2 6.642824 6.947726 7.013386 
0.7 2 6.641431 6.947305 7.013191 
0.9 2 6.639576 6.94674 7.01293 
1 2 6.638475 9.946408 7.012778 
0 3 9.177342 9.888691 10.05988 

0.1 3 9.177189 9.888635 10.05986 
0.3 3 9.175962 9.888215 10.05966 
0.5 3 9.173494 9.887381 10.05925 
0.7 3 9.16983 9.886127 10.05866 
0.9 3 9.16495 9.8834452 10.05853 
1 3 9.162052 9.883461 10.05806 
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Fig. 6. Small scale effect on first three frequency ratios with different values of L/d, for Clamped-
Simply supported beam  

 

 
 

Fig. 7. Effect of slenderness on nonlocal beam frequency, α=0.7, both ends clamped 
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7. Conclusions 
 
       A semi-analytical method called differential transformation method is generalized to analyze the 
vibration characteristics of a SWCNT. The formulation is based on the assumptions of Timoshenko 
beam theory and the nonlocal differential constitutive relations of Eringen. Unlike the Euler beam 
model, the Timoshenko beam model allows for the effect of transverse shear deformation and rotary 
inertia that become significant at short beams and higher frequencies. Also the effect of small scale 
coefficient and slenderness and various boundary conditions in various frequency ratios are 
investigated. It is demonstrated that the DTM has high precision and computational efficiency in the 
vibration analysis of CNTs and nanobeams. 
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