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 This paper derives a semi-analytical solution to determine displacements and stresses in a thick 
cylindrical shell with variable thickness under uniform pressure based on disk form 
multilayers. The proposed study partitions the thick cylinder into disk-layer parts based on their 
thickness of the cylinder. According to the existence of shear stress in the thick cylindrical 
shell with variable thickness, the equations governing disk layers are acquired based on first 
shear deformation theory (FSDT), which are in the form of a set of general differential 
equations. In this study, the cylinder is partitioned into n different disks and n sets of differential 
equations are derived. The solution of these equations provides displacements and stresses 
based on the boundary conditions and continuity conditions between the layers. The results are 
compared with those obtained through the analytical solution and the numerical solution. For 
the purpose of the analytical solution, matched asymptotic method (MAM) and for the 
analytical solution, the finite element method (FEM are implemented. 
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1. Introduction         
 
       Thick cylindrical shells with variable thickness have extensively been used in various fields such 
as space flight, aviation, rocket and submarine technology. Given the limitations of the classic theories 
of thick wall shells, there has been few works associated with the analytical and semi-analytical 
solutions of these shells (Talaee et al., 2014). Naghdi and Cooper (1956) formulated the theory of shear 
deformation by considering the transverse shear effect. Mirsky and Hermann (1956) investigated the 
solution of thick cylindrical shells of homogenous and isotropic materials, using the first-order shear 
deformation theory (FSDT). Greenspon (1960) compared between the findings regarding various 
solutions obtained for cylindrical shells. Vekua (1965) built a refined theory for shallow shells with 
variable thickness. Suzuki et al. (1981) studied the axisymmetric vibrations of a cylindrical shell where 
the thickness differs in the axial direction by using the thin cylindrical shell theory and an improved 
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thick cylindrical shell theory by applying a series solution. Kang and Leissa (2001) performed an 
investigation where equations of motion and energy functional were derived for a three-dimensional 
coordinate system. The field equations were utilized to express them in terms of displacement 
components. Eipakchi et al. (2003) implemented the FSDT in order to find governing equations of thick 
cylinders with varying thickness and analyzed the equations based on perturbation theory. Using tensor 
analysis, a complete 3-D set of field equations was proposed for elastic analysis of thick shells of 
revolution with arbitrary curvature and variable thickness along the meridional direction made of 
functionally graded materials by Nejad et al. (2009). Ghannad et al. (2009) proposed to use the FSDT 
analytical solution for homogeneous and isotropic truncated thick conical shell. Ghannad and Nejad 
(2010) calculated the differential equations governing the homogenous and isotropic axisymmetric 
thick-walled cylinders with same boundary conditions at the two ends, based on the first-order shear 
deformation theory and the virtual work principle. In addition, they also solved the set of non-
homogenous linear differential equations for the cylinder with clamped-clamped ends. Finally, 
Ghannad et al. (2012) presented an analytical solution for clamped-clamped thick cylindrical shells 
with variable thickness by considering constant internal pressure. In this paper, elastic analysis is 
presented for pressurized thick cylindrical shells with variable thickness using disk form multilayers. 

2. Formulation of problem 

     According to the first-order shear deformation theory, the parts, which are straight and perpendicular 
to the mid-plane stay straight but not always perpendicular after deformation and loading. In such 
circumstances, shear strain and shear stress are considered. Fig. 1 shows geometry of a thick cylindrical 
shell where h  and L represent variable thickness and length, respectively.  

 
Fig. 1. Thick cylindrical shell with variable thickness 

     The location of a typical point m , within the shell element is as follows, 
   : , ,

0 &
2 2

-

m r x R z x
h hx L z

  



   

 (1) 

where z  is the distance of typical point from the middle surface. In Eq. (1), R  and variable thickness 
h  are 
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where   is tapering angle as 
1tan a b

L
     

 
 (3) 

      The general axisymmetric displacement field  ,x zU U , in the first-order Mirsky-Hermann's theory 
(1956) could be stated on the basis of axial displacement and radial displacement, as follows, 
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where ( )u x  and ( )w x  are the displacement components of the middle surface. Also, ( )x  and ( )x  
are the functions applied to determine the displacement field. The kinematic equations (strain-
displacement relations) in the cylindrical coordinates system are 
 

x
x

z

z
z

x z
xz

U du d z
x dx dx

U w z
r R z R z
U
z
U U ddw z
z x dxdx








 


 

    
               


  

 
            

 (5) 

 
     The stress-strain relations (constitutive equations) for homogeneous and isotropic materials are as 
follows, 
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 (6) 

where i  and i , , ,i x z  are the stresses and strains in the axial  x , circumferential   , and 

radial  z  directions.   and E  are Poisson’s ratio and modulus of elasticity, respectively. In Eqs. (6), 
  is 

  1 1 2
E

 


 
. (7) 

     The normal forces ( , ,x zN N N ), bending moments ( , ,x zM M M ), shear force ( xQ ), and the 
torsional moment ( xzM ) in terms of stress resultants are 
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where K  is the shear correction factor that is embedded in the shear stress term. In the static state, 
5 6K  for cylindrical shells (Vlachoutsis, 1992). On the basis of the principle of virtual work, the 

variations of strain energy are equal to the variations of work of external forces as follows; 
 

U W  ,  (12) 
 
where U  is the total strain energy of the elastic body and W is the total work of external forces due to 
internal pressure P . With substituting strain energy and work of external forces, we have, 
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     Substituting Eqs. (5) and (6) into Eq. (13), and drawing upon calculus of variation and the virtual 
work principle, we will have, 
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 (14) 

 
and the boundary conditions are 
 

 
0

0
L

x x x xz RN u M Q w M         . (15) 
 
     Eq. (15) states the boundary conditions which must exist at the two ends of the cylinder. In order to 
solve the set of differential equations (14), with using of Eqs. (5) to (11), and then using Eq. (14), we 
have 
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The coefficients matrices  4 4iB


, and force vector  4 1F   are as follows, 
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where the parameters are as follows, 
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     The set of differential Eqs. (16) has been solved by perturbation technique (Ghannad & Nejad 2010). 
In the next section, a new method is presented for solving set of Eqs. (16). 

3. Solution with disk form multilayers 

      In this technique, the thick cylinder with variable thickness is divided to disk layers with constant 
height h as shown in Fig. 2. Therefore, the governing equations are converted to nonhomogeneous set 
of differential equations with constant coefficients.  kx  and  kR  are length and radius of middle of 
disks, respectively and k  is the number of disks. The modulus of elasticity and Poisson’s ratio of disks 
are assumed to be constant. The length of middle of an arbitrary disk shown Fig. 3 is as follows, 
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where n  is the number of disks and k  is the corresponding number given to each disk. 
 

 

 
 
 

 

Fig. 2. Dividing of thick cylinder with variable 
thickness to disk form multilayer 

Fig. 3. Geometry of an arbitrary disk layer 

 
The radius of middle point of each disk is as follows, 

 
 

     
2

tan

k
k

k k

i
hR r

h a x


 


  

 (23) 
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      By considering shear stress and based on FSDT, nonhomogeneous set of ordinary differential 
equations with constant coefficient of each disk is obtained. 
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      The coefficients matrices   
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where the parameters are as follows, 
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      Defining the differential operator  P D , Eq. (25) is written as follows, 
 

            2
1 2 3

2
2

2 ,

k k k kP D B D B D B

d dD D
dx dx

     

  


 (31) 

 
Thus, 
 

        k k kP D y F     (32) 
 
      The above differential Equation has the total solution including general solution for homogeneous 
case   k

h
y  and particular solution  k

p
y , as follows: 

        k k k

h p
y y y   (33) 
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For the general solution for homogeneous case,        kk k m x
h

y V e  is substituted in

      0
k kP D y    . 

        2
1 2 3 0k k km B m B B    (34) 

 
Thus 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

B B B B
B B B B
B B B B
B B B B

  (35) 

     
11 1 k kB h R   (36) 

 
  3
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13 31
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   

14 41
k kB B h R    (39) 

 
     

2

21 1 3tan
12

k

k
h

B mh     (40) 

 
               

2
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k
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h

B m R h m R h h R          (41) 

   
23

k kB m h R   (42) 
  

   

2

24 2 6 tan
12

k

k
h

B m h          (43) 

     
 

32 tan
2

k
k k k hB mh R R 

  
        

 (44) 

     
 

   2
33 tan 1

2

k
k k k khB m h R m R   

  
          

 (45) 

              
2

2
34 43 3 tan 1
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k

k k k k
h

B B m h m h R


         
 (46) 

  
    

2

42 2 3 tan
12

k

k
h

B m h       (47) 

                  
2

2
2

44 2 6 tan 1
24

k

k k k k k k
h

B m h R m R h R


          (48) 

 
      The result of the determinant above is a six-order polynomial which is a function of m , the solution 
of which is a 6 eigenvalues im . The eigenvalues are 3 pairs of conjugated root. Substituting the 
calculated eigenvalues in following equation, the corresponding eigenvectors  i

V  are obtained. 
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           2
1 2 3 0k k k km B m B B V   

 
. (49) 

       Therefore, the homogeneous solution for is  

         6

1

k
i

k kk m x
ih i

i

y C V e


  (50) 

       The particular solution is obtained as follows.  

        1

3
k k k

p
y B F


   

 (51) 

       Therefore, the total solution for is follows, 

       
     6 1

3
1

k
i

k k k km x
i i

i

y C V e B F




  
   (52) 

        In general, the problem for each disk consists of 8 unknown values of iC , including 0C  (first 

relation of Eq. 14), 1C  to 6C  (Eq. 52), and 7C  (Eq.     
7

kku du dx dx C  ). 

4. Boundary and continuity conditions 

        In this problem, the boundary conditions of cylinder is clamped-clamped ends, then we have, 
 

0

0
0
0
0x x L

u u

w w
 

 
 

     
     
           
     
          

 (53) 

 
Therefore, 
 

 
 

0,

, 0
, 0

x

z x L

U x z
U x z



        
    

 (54) 

 
       According to continuity and homogeneity of the cylinder, at the boundary between two layers, 
forces, stresses and displacements must be continuous. Given that the applied shear deformation theory 
is an approximation of one order and also all equations related to the stresses include the first derivatives 
of displacement, the continuity conditions are as follows, 
 

   
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   
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 (56) 

and 
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 (57) 
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 (58) 

      Given the continuity conditions, in terms of z , 8 equations are achieved. In general, if the cylinder 
is divided into n  disk layers,  8 1n  equations are obtained. Using the 8 equations of boundary 
condition, 8n  equations are obtained. The solution of these equations yields 8n  unknown constants. 

5. Results and Discussion 

     A cylindrical shell with 40ir   mm, 20a   mm, 10b   mm, and 800L   mm will be considered 
in this paper. For analytical and numerical results the properties used are 200E  GPa and 0.3  . 
The applied internal pressure is 80 MPa. The thick cylindrical shell with variable thickness has 
clamped-clamped boundary conditions. 
 
     The effect of the number of disk layers on the radial displacement is presented in Fig. 4. It is 
observed that if number of disk layers is fewer than 50, it will have a substantial impact on the response. 
However, if the number of layers is above 60 disks, there will be no substantial impact on radial 
displacement. In the problem in question 75 disks are applied. Fig. 5 shows the distribution of axial 
displacement at different layers. At points away from the boundaries, axial displacement does not show 
significant differences in different layers, while at points near the boundaries, the reverse holds true. 
The distribution of radial displacement at various layers is plotted in Fig. 6. The radial displacement at 
points away from the boundaries depends on radius and length. According to Figs. 5 and 6, the change 
in axial and radial displacements in the lower boundary is greater than that of the upper boundary and 
the greatest axial and radial displacement occurs in the internal surface ( 2)z h  . 
 

  
Fig. 4. Effect of the number of disk layers on the radial 
displacement 

Fig. 5. Axial displacement distribution in different layers 

  
Fig. 6. Radial displacement distribution in 

different layers 
Fig. 7. Circumferential stress 
distribution in different layers 

Fig. 8. Shear stress distribution in 
different layers 
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       Distribution of circumferential stress in various layers is shown in Fig. 7. The circumferential stress 
at all points depends on radius and length. The circumferential stress at layers close to the external 
surface is negative, and at other layers is positive. The greatest circumferential stress occurs in the 
internal surface ( 2)z h  . Fig. 8 demonstrates the distribution of shear stress at different layers. The 
shear stress at points away from the boundaries at different layers is the same and trivial. However, at 
points near the boundaries, the stress is significant, especially in the internal surface, which is the 
greatest. In the Figs. 9-13, displacement and stress distributions are obtained using multilayer method 
(ML) and compared with the solutions of FEM. Figs. 9 to 13 show that the disk layer method based on 
FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial stress 
and circumferential stress. However, they are not useful for axial stress and not useful at all for radial 
displacement. It is possible to compensate for this by increasing the order of shear deformation theory. 
 

  
Fig. 9. Axial displacement distribution in middle layer Fig. 10. Radial displacement distribution in middle layer 

  
Fig. 11. Axial stress distribution in middle layer Fig. 12. Radial stress distribution in middle layer 

 
Fig. 13. Circumferential stress distribution in middle layer 
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      In Table 1, the values of stresses and displacements resulting from analysis of thick cylindrical shell 
with variable thickness through ML, MAM and FEM for clamped-clamped condition under uniform 
internal pressure in the middle layer have been presented. 
 
Table 1. Comparison of values of ML, FEM and MAM 

Method ,ru mm  ,xu mm  ,r MPa  ,x MPa  ,MPa  
ML 0.04817 0.0146 -30.03 53.41 210.03 

FEM 0.04846 0.0004 -30.59 51.33 210.24 
MAM 0.04832 0.0002 -30.16 51.42 209.79 

 

6. Conclusions 

In the present study, 
 
(1): based on FSDT and elasticity theory, the governing equations of thick-walled disks were derived. 
 
(2): Thick cylindrical shells with variable thickness were divided into disks with constant height. 
 
(3): With considering continuity between layers and applying boundary conditions, the governing set 
of differential equations with constant coefficients was solved. 
 
(4): The results obtained for stresses and displacements are compared with the analytical solutions and 
the solutions carried out through the FEM. Good agreement was found among the results. 
 
     Adventures of the semi-analytical using disk form multilayers are 
 
 First shear deformation theory and perturbation theory result in the analytical solution of the 

problem with higher accuracy and within a shorter period of time.  
 The solutions are not complicated and time-consuming. 
 The shells with different geometries and different loadings and different boundary conditions, 

with even variable pressure, could be more easily solved. 
 The method is very suitable for the purpose of calculation of radial stress, circumferential stress, 

shear stress and radial displacement. 
 
     Due to complex mathematical relations existing for analytical methods, governing them cannot be 
easily solved. Therefore, the multilayer disc form method can be considered as a good replacement for 
the analysis of thick-walled shells. 
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