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 This work shows a free-body model for tolerance analysis, that uses the force free-body diagrams 
and the functional equations’ sensitivities, by simulating the geometrical tolerances together with 
the dimensional ones. The geometrical tolerances were related to the deviations due to the 
manufacturing process (i.e. the manufacturing signature). Moreover, weight and friction forces 
were simulated too. A sensitivity analysis on the developed free body model aimed to evaluate the 
number of points to discretize the circular bodies and how to calculate the point clouds barycentre 
in order to reduce the simulation time. A case study was used to exemplify the application of the 
proposed free-body method with and without considering the manufacturing signature. The results 
show that the free body model is able to solve assembly problems and the manufacturing signature 
significantly influences the values of the functional requirement on the product and, therefore, it is 
impossible to neglect it. 
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1. Introduction 
 

 
     Engineering design widely uses tolerance analysis in order to verify the functionality, the 
manufacturability and the perceived quality of a product. Tolerance analysis estimates the resultant 
variation of the assembly geometry, due to the tolerances applied to the components and to the functional 
relationship between the components and the assembly requirements. It is needed to design and to 
manufacture a product. In fact, the standardization of production and the correct function of the assembly 
require an assignment of dimensional and geometric tolerances to assembly components. Lower costs 
per assembly and higher probability of fit, by reducing the number of rejected parts or the amount of 
rework required on components, are due to a right allocation of tolerances on the components of an 
assembly. 
 
    The literature presents many models for tolerance analysis. that are not completely and univocally 
accepted (Polini, 2012). Those tolerance analysis models for rigid assemblies are the variation model 
(Gupta & Turner, 1993), the TTRS model (Desrochers, 2002), the matrix model (Desrochers & Rivière, 
1997), the vector loop (Gao et al., 1998), the jacobian model (Laperrière & Lafond, 1999), the torsor 
model (Bourdet at al., 1996), the jacobian-torsor model (Ghie et al., 2003), the T-Map model (Davidson 
et al., 2002), the deviation domain model (Giordano et al., 1999). In the same time many commercial 
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software packages, that are based on some of the previously cited models,  are available for tolerance 
analysis of rigid assemblies, such as MECAMaster®, Sigmund®, 3DCS®, VisVSA®, CeTol® and 
PolitoCAT® (Prisco & Giorleo, 2002). They efficiently deal with simple geometrical feature of 
mechanical assemblies, such as plane, hole-pin, while they hardly consider free-form surfaces to connect 
or form deviations. Skin Model Shape is a more recent model for tolerance analysis of rigid assemblies. 
It allows to deal with form deviation by discretizing the part surfaces by points (Schleich et al., 2014). A 
further recent tolerance analysis method uses the free-body diagrams of force analysis (Armillotta, 2014), 
thus translating a tolerance chain into a mechanical static problem, that is solved by common algebraic 
or graphical procedures. The proposed model, that takes advantage from its ease application with minimal 
software assistance, was applied to 2D tolerance analysis problems with only dimensional tolerances.  
Moreover, to bring the tolerance analysis methods near to reality, it is needed that they consider working 
conditions and operating windows (Armillotta & Semeraro, 2013). Furthermore, a complete and coherent 
tolerancing process should incorporate all activities of geometric variations management (Charpentier et 
al., 2011).  As a response to those needs the most important methods for tolerance analysis of rigid bodies 
were modified to take into account the manufacturing signature, i.e. the pattern left on the manufactured 
part surfaces by the adopted process, and the operating conditions during the assembly sequence (Corrado 
and Polini, 2017a, 2017b). This was possible thanks to the development of a Matlab® algorithm that, 
once generated, assembles bodies after evaluation of the contact stability between them. This algorithm 
was tested on a given case study to estimate the dimensional and form parameters in the actual contact 
points of the involved geometries. Once estimated these parameters, they were inserted in the equations 
of the considered rigid models. 
 
     The aim of this work was to propose a free body model that takes into account the manufacturing 
signature and the operating conditions during assembly. The new free body model deals with geometric 
tolerances together with dimensional ones. Finally, a sensitivity analysis was carried out to decrease the 
simulation time involved by the new free body model for tolerance analysis. The paper is organized as 
follow: in Section 2 the new free body model that deals with geometric and dimensional tolerances is 
presented. In section 3 the new free-body that deals with the manufacturing signature and the operating 
conditions involved by assembly is deeply described and tested. Finally, in section 4 an analysis of 
sensitivity is carried out. 
 
2. New free-body model with geometric tolerances 
 
     The free-body model for tolerance analysis of rigid bodies uses the free-body diagrams of force 
analysis (Armillotta, 2015). It uses the sensitivity coefficients to evaluate the tolerance range of the 
functional requirement in the assembly by the tolerances applied to the single components.  Those 
coefficients are sought from properties of equilibrium conditions on a rigid part, that reacts to an applied 
external force F0 through the N forces Fi (i=1 to N) of the constrains. The contact points have small 
displacements δi along the directions of the reaction forces that involve a displacement δ of the body 
along the direction of the external force proportional to the reaction forces. This is similar to tolerance 
analysis, if the displacements δi are the manufacturing deviations and the resulting displacement δ is the 
stack-up of these deviations. The sensitivity coefficient of the resulting displacement to a deviation is 
evaluated through the equilibrium conditions of free-body diagrams developed for the assembly parts. 
Two unitary external forces with the same line of action and opposite orientations are associated on a 
couple of parts involved in a functional requirement.  
 
     This method was proposed to solve problems of tolerance analysis in which the parts were affected 
only by dimensional tolerances. The present work introduces a modified model able to consider 
geometric tolerances too under particular conditions. In fact, the proposed method translates the applied 
geometrical tolerances into translational variations, by taking into account the rotational and translational 
variations associated with the corresponding geometric tolerance-kinematic joint combinations (Polini & 
Corrado, 2016), as explained in (Chase et al., 1996). 
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     A planar body is considered into contact with adjacent bodies in three frictionless points, that constrain 
its degrees of freedom; to its boundary an external force F is applied and the three constraints react with 
the forces F1, F2, and F3. Once assumed rigid the body, by neglecting any force-induced deformations, 
the small displacements 1, 2, and 3 of the contact points along the directions of the reaction forces 
involve a displacement  of the point of force application, which is assumed to be positive if it is opposite 
to F. The body does not change its potential or kinetic energy, and, therefore, the total work of the four 
forces equals zero for the principle of virtual work of rigid bodies, yielding the following relationship 
among the four displacements: 
 

31 2
1 2 3.

FF F

F F F
       

(1) 

 
     Considering the rotational and translational variations due to the corresponding geometric feature 
tolerance-kinematic joint combinations, Eq. (1) becomes: 
 

     31 2
1 1 2 2 3 3

FF F

F F F
            , 

(2) 
 

where 1, 2, 3 are the small displacements of the contact points due to the applied geometrical tolerances 
and 1, 2, and 3  are the small displacements of the contact points due to the applied dimensional 
tolerances. 1, 2, 3  may be derived by the manufacturing signature, while 1, 2, and 3  may be found 
by the applied dimensional tolerances.  
 
2.1 Application example 
 
     In order to illustrate how the new free body model works, an assembly was used. The case study 
considers both dimensional and geometrical tolerances and, in the same time, it may be solved manually. 
This assembly was constituted by five components: a hollow rectangular box and four circular profiles 
inserted in it, as shown in Fig. 1. The aim is to measure the gap g between the fourth circular profile and 
the top side of the box, once assigned the tolerances applied to the components. 

 
Fig. 1. Case study to be solved by free-body method (dimensions in mm) 
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     The functional requirement g depends on the dimensions a and b of the box, on the radius R1, R2, R3, 
R4 of the circular profiles and on the applied tolerances. The free-body diagram imposes the equilibrium 
conditions of the five parts and it obtains the decomposition of forces, as shown in Fig. 2. In this way it 
is possible to have the projection of the reaction forces along the directions of the functional dimensions. 
At this point, two kinds of sensitivities can be distinguished: a sensitivity due to the dimensional 
tolerances and a sensitivity due to the geometric tolerances. The sensitivity values of the dimensional 
tolerances are found through the following equation: 
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(3) 

 
   The values of the sensitivities due to the geometric tolerances are evaluated in the points of the parts 
that affect the requirement, as shown in Fig. 1, and they are: 
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(4) 

because the geometric tolerances are considered as translational variations. The points A, B and 1C belong 

to the profile 1, 3C , 3D and 3E belong to the profile 3, 2D , F and G belong to the profile 2, 2E , H and I 

belong to the profile 4. 
 

 
Fig. 2. Graphical calculations of the reaction forces 
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     The tolerance Δg of the functional requirement g may be evaluated from the tolerances assigned to 
parts and the sensitivity coefficients Si by using the worst-case or the statistical (root sum square - RSS) 
stack-up: 

    
1

2 2
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n
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i
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(5) 

where n is the number of considered tolerances, S and T are the total sensitivities and all dimensional and 
geometrical tolerances of parts respectively. In particular, S and T are equal to: 
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(6) 

 
with Td and Tg that are considered as following: 
 

 
1 3 3 3 2 4

1 2 3 40 0
T

d
T

g A B C C D E D F G E H I

T r r r r

T d d d d d d d d d d d d



   
 

 
(7) 

 
where r1, r2, r3 and r4 are the parameters connected to the dimensional tolerance (±0.0145) of the four 
circular profiles, di is the form tolerance ( 0.0145 2 ) parameter applied to the points i = A, B and 1C of 

the profile 1, 3C , 3D and 3E of the profile 3, 2D , F and G of the profile 2, 2E , H and I of the profile 4. 

So, solving Eq. (3), Δg is equal to: 
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(8) 

     Moreover, a Monte Carlo simulation may be used to estimate the functional requirement and its 
variation. In this case, the stack-up function is: 
 

 6.8808
T

g S T    (9) 

and the parameters connected with the dimensional (r1, r2, r3 and r4) or the form (di) tolerances have a 
Gaussian probability density function with a mean value equal to zero and a standard deviation equal to 
a sixth of the tolerance range. 50,000 simulation runs were carried out and the obtained functional 
requirement was equal to 6.8807 ± 0.0702 mm. The same tolerance chain solved by dealing with only 
dimensional tolerances gives: 
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(10) 

     Therefore, the results due to the geometrical tolerances involve an increase of Δg of about 50% and 
5% regards to the results due to the dimensional tolerances, if worst-case and statistical methods are 
applied respectively. 
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3. New free body method with geometrical tolerances, manufacturing signature and operation 
conditions 

 
3.1 Manufacturing signature and operating conditions  
 
    The new free body model was modified to insert the manufacturing signature and the operating 
condition. Moreover, since an analysis on the number of points used to discretize the bodies was carried 
out too, a subpart of the previous assembly was used (see Fig. 3a) to better explain the implementation 
by preserving the generality of the approach. This sub-assembly was constituted by three components: a 
hollow rectangular box into which two circular profiles are inserted. The aim was the measurement of 
the gap g between the top side of the box and the second circular profile even in this case. 
 
    For this sub-assembly, the decomposition of the forces carried out by the free body diagram (see Fig. 
3b) allows to determine the following sensitivity coefficients connected with dimensional and geometric 
tolerances:  
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and the stack-up function: 
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 The results of the sub-assembly are: 
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considering as Td and Tg the following relation: 
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where r1 and r2 are the parameters of the dimensional tolerance (±0.0145) assigned to the two circular 
profiles, di is the parameter of the form tolerance ( 0.0145 2 ) applied to the points i = A, B and 1C of the 

profile 1, 2C , D and E of the profile 2. 
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Fig. 3. - a) Sub-assembly of the case study (dimensions in mm), b) Graphical calculations of the reaction 
forces. 
 
     The first step was the generation of each circular profile to put into the hollow rectangular box and 
their casual rotation. The circular profiles were discretized by 7,150 evenly distributed points. For each 
point of the circular profile it is valid the following model: 
 

iP O R r d    , (16) 

where Pi was the circular profile generic point, O was the circle centre, R was the nominal value of the 
circular profile radius, r was the dimensional tolerance parameter of the circular profiles, and d was the 
ARMAX model parameter representing the manufacturing signature. In fact, the manufacturing signature 
affected mainly by both bi-lobe and three-lobe contours was represented by an autoregressive (AR) 
moving-average (MA) model with exogenous (X) variable (Moroni and Pacella, 2008). It is constituted 
by an harmonic term representing the systematic pattern left by the turning process on the manufactured 
surface and the a random contribution that may not be expected by a second-order autoregressive of the 
noise term. Therefore, the manufacturing signature represents the values of the form tolerance of the four 
circular profiles. These obtained values were used to define the values of the parameters in the vector Tg. 
The parameters in the vector Td, due to the dimensional tolerance, were simulated as before. 
 
     The coordinates of the centres of gravity were also evaluated. In fact, being known the x and y 
coordinates of the 7,150 points of a generic profile, it was possible to determine the coordinates of the 
centre of gravity. The profiles were discretized as the set of (7,150-1) triangles whose vertex coordinates: 
v1, v2, and [0, 0] were known. Note the position of the vertices, the side lengths a, b and c of the triangles 
were determined (Fig. 4). At this point, it was possible to evaluate the centres of gravity (G), the semi-
perimeters, the areas (by Heron's Formula) and the static moments of inertia of the triangles. With this 
information, the area and the static moment of the generic profile were calculated as the sum of the areas 
and the static moments of the triangles and so it was possible to evaluate the centre of gravity of the 
generic profile. 
 
     Once assembled, to evaluate if the general position of each circular profile was stable, the model 
evaluates the balance condition between the forces by requiring that they pass through the same point. 
Therefore, the weight force was applied in the centre of gravity of the profiles (barycentres G1 and G2 in 
Fig 5), the reactions were applied to the points of contact between the contours, and they were directed 
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toward the centre of gravity of the relevant profile. β1, β2, β3, β4 and β5 were the angles among these 
reactions and the normal vectors to the surfaces as shown in Fig. 5, whose values should be smaller than 
the static friction limit angle in order to have a stable position of the circular profiles. Otherwise, the 
circular profile rotated until the values became smaller. Once verified the two circular profiles were 
stable, the coordinates of the actual contact points among the four circular profiles and the box were 
obtained by considering the dimensional and form deviations. The values of the parameters di, r1 and r2 

were substituted into Eq. (11) in order to have the value of the g gap. Also in this case, 50,000 Monte 
Carlo simulation runs were carried out and the obtained functional requirement was equal to 1.2702 ± 
0.0535 mm. 
 

 
 
 
 

 

 
Fig. 4. Evaluation of the centre of gravity Fig. 5.  β angles to evaluate if each circular profile is stable 

 
 
4. Sensitivity analysis 
 
     The simulation time is the main limit of the free body model with geometric tolerances, manufacturing 
signature and operating conditions. In fact, as previously shown in (Corrado et al., 2017), the free body 
model without manufacturing signature and operating conditions, employs very few seconds to make 
50,000 simulation runs. In contrast, the free body model with manufacturing signature and operating 
conditions employs about 3 hours to carry out the same number of simulation runs. For this reason, a first 
attempt to reduce the simulation time consisted in calculating the centres of gravity of the profiles in a 
different way. In fact, by calculating the coordinates of the centres of gravity with the following equation: 
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G i
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
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(17) 

 
where xGj and yGj are the centre of gravity coordinates of a generic profile j, Npoints are the number of 
points that constitute the profile (7,150 in this case), xi and yi are the coordinates of the profile points 
(with i = 1 to Npoints) and, repeating the simulations with the same number of discretization points (7,150 
for each profile) and simulation runs (50,000), the simulation time decreases, as shown in Fig. 6, if 
compared to the reference model (Reference). Moreover, this change does not alter the outcome of the 
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functional requirement (g gap) and the angular values (β) in the points of contact, as shown in Figs. 7 
and 8. 
 

 
 

 
Fig. 6. Simulation times Fig. 7. Results of the functional 

requirement g for all used models 
Fig. 8. Results of the angles β for all 

used models 
 

 
     Then, simulations considering 7,150 (Evolution 1), 748 (Evolution 2) points and 80 (Evolution 3) 
points to discretize each circular profile were carried out, repeating 50,000 runs. Analysing the results of 
the functional requirement (g gap) in all simulations that are carried out, there are no significant 
variations. Instead, the angular values (β) in the contact points tend to increase, when the points used to 
discretize the profiles decrease, as shown in Fig. 7 and Fig. 8. Moreover, the simulation times decrease 
with the number of points, as shown in Fig. 6. This aspect happens due to the reduced number of points 
used to discretize the profiles that determine a less accurate evaluation of the centre of gravity and, then, 
the angles in the contact points. In particular, the use of 748 discretization points allows to reduce the 
simulation time and to have very similar results to the simulations carried out considering 7,150 points, 
in term of the functional requirement and angles. 
 
     Another step is to consider only the points of contact among the components on the circular profiles 
(Evolution 4). This means that the profile 1 is exclusively represented by points A, B and C, and the 
profile 2 is exclusively represented by the points C, D and E. The random rotations to assign to each 
profile and the evaluation of the stability cannot take into count if only three points are considered on 
each profile. To overcome this drawback, the model was modified even further. In fact, in this case, the 
three points on each profile are located in their nominal position and the nominal centre of gravity of 
each profile was evaluated by means of Eq. (15). Subsequently, the points on each profile are rotated 
randomly and in this position, the form errors, to be included in Eq. (11), and the coordinates of the centre 
of gravity in the actual position are obtained. The angles between the nominal and real centres of gravity 
and the nominal coordinates of the points represent the friction angles for the evaluation of stability. 
 
    Repeating 50,000 runs of simulation, the simulation time decreases, as shown in Fig. 6. Considering 
all simulation times, an asymptotic trend is highlighted, then an inferior limit in the computation cost of 
the involved operations in the Matlab® algorithm rises. Analysing the result of the functional requirement 
(g gap), there is no significant variations compared to other model, as shown in Fig. 7. Instead, the angular 
values (β) in the contact points increase significantly both in terms of mean and standard deviation, as 
shown in Fig. 8. However, the ranges of variation of the angular values in the contact points is very small, 
0.4°, and significantly smaller than the friction angle used in this work. 
 
    A sensitivity analysis was carried out by varying the number of simulation runs, such as shown in Fig. 
9. The mean value and the standard deviation of all the obtained results are stable for 50.000 runs, that is 
the value considered in all the investigations of this paper. 
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Fig. 9. Results vs simulation runs 

4.1 Sensitivity analysis results applied to the case study 
 
     The sensitivity analysis shows that by using only the points of contacts for each profile, the simulation 
times are reduced without losing accuracy on results. For this reason, the case study was solved with this 
approach. Eq. (7) was also solved by considering the manufacturing signature, i.e. the form tolerance 
values of four circular profiles were substituted by the manufacturing signature values due to the 
ARMAX model. These obtained values were used to define the values of the parameters in the vector Tg. 
The parameters in the vector Td, due to the dimensional tolerance, were simulated as before. Because by 
3 points are considered on each profile, but one of these is in contact with no body (point A shown in Fig. 
1), the β angles to be controlled are 11 and they are indicated on the basis of the designation of the contact 
point (for example, βC, βD, etc). Also in this case, 50,000 Monte Carlo simulation runs were carried out 
and the obtained functional requirement was equal to 6.8808 ± 0.0727 mm. The free-body model gives 
a value of the standard deviation that is lower of about 4% than that due to free-body model with 
manufacturing signature (Free-body modified), since this model considers nominal contact points among 
the components during assembling and it does not take into account the manufacturing signature. This 
conclusion is verified by the Levene test too (see Fig. 10) and it is in agreement with what was said in 
previous works. A first indication on the possible stability of the bodies involved in the assembling is 
given by the angular values (β) in the contact points, as shown in Fig. 11. 
 

  
Fig. 10. Tests for equal variances Fig. 11. Results of the angles β for the modified 

free-body method 
 
 
5. Conclusions 
 
     This paper proposed a free-body model that simulate the geometrical tolerances applied to the 
assembly components under particular conditions. In fact, it translates the applied geometrical tolerances 
in translational variations, by considering the rotational and translational variations associated with 
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corresponding geometric feature tolerance-kinematic joint combinations. Moreover, the new free body 
model simulates the manufacturing signature and the operating conditions during the tolerance analysis 
too. A sensitivity analysis on the new free body model demonstrated that the model that considers only 
the points of contact for tolerance analysis with manufacturing signature and operating conditions gives 
good performances in terms of simulation time and reliability in the evaluation of the stability of the 
contacts among the parts. The results show that considering manufacturing signature and operating 
conditions inside the free-body model allows to improve the digital twin of the actual machined circular 
profiles assembling; in fact, the standard deviation of the functional requirement is greater of about 4 % 
than that without manufacturing signature. Future works aim to make the free-body model able to 
simulate all geometric tolerances together with the dimensional ones without the considered constrains 
taken into account in the present work.  
 
References 
 
Ameta, G., Serge, S., & Giordano, M. (2011). Comparison of spatial math models for tolerance analysis: 

tolerance-maps, deviation domain, and TTRS. Journal of Computing and Information Science in 
Engineering, 11(2), 021004.  

Armillotta, A., & Semeraro, Q. (2013). Critical operating conditions for assemblies with parameter-
dependent dimensions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, 227(5), 735-744.  

Armillotta, A. (2014). A static analogy for 2D tolerance analysis. Assembly Automation, 34(2), 182-191.  
Armillotta, A. (2015). Force analysis as a support to computer-aided tolerancing of planar 

linkages. Mechanism and Machine Theory, 93, 11-25.  
Bourdet, P., Mathieu, L., Lartigue, C., & Ballu, A. (1996). The Concept of the Small Displacement Torsor 

in Metrology. Series on Advances in Mathematics for Applied Sciences, 40, 110–122. 
Charpentier, F., Ballu, A., & Pailhes, J. (2011). A scientific point of view of a simple industrial 

tolerancing process. Procedia Engineering, 1, 1-10. 
Chase, K.W., Gao, J., Magleby, S.P., & Sorensen, C.D. (1996). Including geometric feature variations in 

tolerance analysis of mechanical assemblies. IIE Transactions, 28, 795–807.  
Corrado, A., & Polini, W. (2017). Manufacturing signature in variational and vector-loop models for 

tolerance analysis of rigid parts.  International Journal of Advanced Manufacturing Technology, 88(5-
8), 2153–2161.  

 Corrado, A., Polini, W., & Moroni, G. (2017). Manufacturing signature and operating conditions in a 
variational model for tolerance analysis of rigid assemblies. Research in Engineering Design, 28(4), 
529-544.  

 Corrado, A., & Polini, W. (2017). Manufacturing signature in jacobian and torsor models for tolerance 
analysis of rigid parts. Robotics and Computer-Integrated Manufacturing, 46, 15-24.  

Davidson, J.K., Mujezinović, A., & Shah, J.J. (2002). A New Mathematical Model for Geometric 
Tolerances as Applied to Round Faces. Journal of Mechanical Design, 124(4), 1-10.  

Desrochers, A., & Rivière, A.A. (1997). Matrix approach to the representation of tolerance zones and 
clearances. International Journal of Advanced Manufacturing Technology, 13(9), 630–36.  

Desrochers, A.A. (2002). CAD/CAM representation model applied to tolerance transfer methods. 
Journal of Mechanical Design, 125(1), 1-10.  

Gao, J., Chase, K.W., & Magleby, S.P. (1998). Generalized 3-D tolerance analysis of mechanical 
assemblies with small Kinematic adjustments. IIE Transactions, 30(4), 367–77.  

Ghie, W., Laperrière, L., & Desrochers, A.A. (2003). Unified Jacobian-Torsor Model for Analysis in 
Computer Aided Tolerancing. In G. Gogu, D. Coutellier, P. Chedmail, & P. Ray (eds.), Recent 
Advances in Integrated Design and Manufacturing in Mechanical Engineering (p. 63-72). Dordrecht: 
Springer Netherlands.  

Giordano, M., Pairel, E., & Samper, S. (1999). Mathematical representation of tolerance zones. In F. van 
Houten, & H. Kals (Eds.), Global Consistency of Tolerances: Proceedings of the 6 Th CIRP 
International Seminar on Computer-Aided Tolerancing, University of Twente, Enschede, The 



 290

Netherlands, 22--24 March, 1999 (p. 177-186). Dordrecht: Springer Netherlands. 
Gupta, S., & Turner, JU. (1993). Variational Solid Modeling for Tolerance Analysis.  IEEE Computer 

Graphics and Applications, 13(3), 64–74.  
Laperrière, L., & Lafond, P. (1999). Tolerance Analysis And Synthesis Using Virtual Joints. In F. van 

Houten, & H. Hubert Kals (Eds.), Global Consistency of Tolerances (p. 405-414). Dordrecht: Springer 
Netherlands, 1999, pp. 405–14. 

Moroni, G., & Pacella, M. (2008). An approach based on process signature modeling for roundness 
evaluation of manufactured items. Journal of Computing and Information Science in 
Engineering, 8(2), 021003. 

Polini, W. (2012). Taxonomy of models for tolerance analysis in assembling. International Journal of 
Production Research, 50(7), 2014-2029.  

Polini, W., & Corrado, A. (2016). Geometric tolerance analysis through Jacobian model for rigid 
assemblies with translational deviations. Assembly Automation, 36(1), 72-79.  

Prisco, U., & Giorleo, G. (2002). Overview of current CAT systems. Integrated Computer-Aided 
Engineering, 9(4), 373-387. 

Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2014). Skin model shapes: A new paradigm shift 
for geometric variations modelling in mechanical engineering. Computer-Aided Design, 50, 1-15.  

.  
 

   

© 2019 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


