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 One of the major successes in the field of Linear Elastic Fracture Mechanics (LEFM) is the 
groundwork of the stress intensity factor (SIF) computation. The approaches used to carry out SIF 
values may be analytical, semi-analytical, experimental or numerical. Each one of the above methods 
has its own benefits however the use of numerical solutions has become the most frequent and popular. 
Numerous schemes for the numerical computation of SIF have been developed, the J-integral method 
being the most popular one. In this article we examine the SIFs of an edge cracked two dimensional 
(2-D) steel plate subjected to tensile loading. Extended finite element (XFEM) computational scheme 
has been employed to estimate the values of SIF. The SIF values of cracks with different lengths and 
inclination angles (different configurations) have been examined by utilizing the domain based 
interaction integral approach. The effect of crack inclination and crack position on SIFs (KI and KII) 
has also been studied. The results obtained in this study were compared with those from literature and 
theoretical values and observed that they are in close agreement.  
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1. Introduction 
 
      Fracture is one of the most challenging failure modes in engineering and resulted from material 
instability in mechanical or structural components normal to the discontinuity (Belytschko et al., 2014). 
In many engineering fields, several terrible accidents are mainly originated from defects like micro-
cracks and voids. Thus, research developments in the area of fracture mechanics are crucial. One of the 
key achievements in the field of Linear Elastic Fracture Mechanics (LEFM) is the concept of the stress 
intensity factor (SIF). The basic and fundamental stress intensity factor was introduced by Irwin (1957) 
and he investigated that SIF is a crucial parameter that uniquely describes the stress field in the 
neighborhood of crack tip. Additionally, SIF provides information about the direction and speed of 
moving crack, hence its determination is quite convenient to decide crack growth rate (Paris & Erdogan, 
1963). In general, SIF is a function of crack size, crack location, geometry of specimen and magnitude 
and distribution of load intensity (Pais, 2011). Currently there are numerous techniques in the calculation 
of SIF, but the energy release approach and the field variable approach are the most frequently adopted 
numerical approaches to extract SIFs (Murakami & Keer, 1993; Lins et al. 2015). The energy release 
approach includes the J-integral (Rice, 1968) the stiffness derivative method (Parks, 1974) the Interaction 
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Integral Method (Moran & Shih, 1987) the virtual crack extension method (Hellen, 1975) the Contour 
Integral Method (Stern et al., 1976; Szabo & Babuška, 1988) and the virtual crack closure technique as 
developed by (Rybicki & Kanninen, 1977). The field variable approaches on the other hand can be 
segmented into stress based techniques and displacement based techniques. The displacement based 
technique encompasses the quarter-point displacement method (Barsoum, 1974; Henshell and Shaw, 
1975) and the displacement correction method (Shih et al., 1976). Based on the principles of LEFM, 
Finite Element Method (FEM) (Han et al., 2015; Fayed, 2017; Leung et al., 2014; Bhadauria et al., 2010; 
El Fakkoussi et al., 2019) and Boundary Element Method (BEM) (Gonzalez et al., 2015; Ortiz & Cisilino, 
2006; Portela et al., 1992) have been widely employed for years to determine SIFs.  
  
     It is well known that flaws like scratches, micro-cracks or other forms of discontinuities are inevitable 
during the fabrication of mechanical components. These discontinuities considerably affect the 
performance of a component by creating theoretically infinite stresses near the crack tip. The presence 
of discontinuities also creates interruption of operation, failure or even terrible accidents. Therefore, it 
is vital to give attention to the design and analysis of mechanical components with flaws. One of the 
most versatile and flexible numerical tools that solve a variety of engineering problems in the history of 
computational mechanics is the finite element method (FEM). While FEM is an effective and well 
established method of solving engineering problems, it has got its own constraints in the modeling and 
analysis of fracture problems (Belytschko & Black, 1999). One major constraint of the method is its 
dependency on mesh density.  To capture the field variables near the crack tip FEM requires a fine and 
conformal mesh. Furthermore in the case of moving cracks FEM demands remeshing whenever the 
crack moves. To bypass the above restrictions faced by standard FEM, researchers proposed both 
meshless and mesh based (Belytschko et al., 1994; Belytschko et al., 1994; Lu et al., 1994; Liu et al., 
1995; Rabczuk & Belytschko, 2004; Ching & Yen, 2005; Gu et al., 2011; Lee et al., 2016) numerical 
schemes. (Moes et al., 1999) pushed forward the standard FEM by adding an enrichment function with 
additional degrees of freedom at the crack surfaces and crack tip. For the last two decades researchers 
have significantly studied XFEM as a solution tool in area of engineering and science due to its 
versatility in simplifying problems with discontinuities (Belytschko & Black, 1999; Moes et al., 1999; 
Menk & Bordas, 2011; Singh et al., 2012; Bouhala et al., 2013; Ameri et al., 2021; Mirmohammad et 
al., 2018, Aliha et al., 2016;2020,2021). In XFEM the standard FEM equations are supplemented with 
additional functions called enrichment functions. SIF computation of a slanted central crack of 
aluminum plate using ABAQUS XFEM package has been demonstrated in (Hedayati & Vahedi, 2014). 
In this article the authors estimated the life of the structure using ABAQUS XFEM tool. Similarly 
(Laftah, 2016) used the general finite element software ABAQUS to study the influence of crack length 
on the determination of SIF of corrugated plate. Therefore, the aim of this article is to develop XFEM 
formulation to compute the stress intensity factor of 2-D steel plates with edge cracks at different 
locations and angular positions.  In this study, the effect of crack orientation angles and positions on the 
SIFs will also be considered. Mode I/II SIFs at different crack locations along the height of the plate 
were studied. In this article the domain based interaction integral scheme has been implemented on 
MATLAB to compute the SIFs. To the best of the authors’ knowledge no one studied the SIF 
determination of slant cracked steel plate using XFEM by taking into account the indicated parameters. 
 
2. Properties and Model Geometry of Plate 

     For demonstration purpose a plate having an edge crack with different inclination angles β subjected 
to tensile loading has been considered as shown in Fig. 1. Inclined crack geometry and its boundary 
conditions are also illustrated in Fig. 1. The bottom edge of the plate is constrained in the y direction and 
the top edge is subjected to uniform tensile stress of 0σ =  10 MPa. The following dimensions and material 
properties are considered. The dimensions and material properties of the plate for this study are adopted 
from (Fayed, 2017) where the height of the plate (2D) is 20 cm, and its width (L) is 10 cm. Furthermore, 
the elastic modulus (E) and Poisson’s ratio (ν) are 206 GPa and 0.3, respectively. In this study, crack 
length to width ratios (a/L) of 0.1, 0.2, 0.3, 0.4, and 0.5 has been considered with that of variations in the 
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crack angle β between 0° and 75°. The crack angle β measured counterclockwise with reference to the 
horizontal axis. The other parameter considered in this study was the relative crack positions along the 
height (d/D) ranging from 0 to 0.7 with 0.1 increments were analyzed. 

   

a) Edge crack b) Inclined crack c) discretization 
 

Fig. 1. Dimensions and boundary conditions of an edge cracked tension plate.  
 

3. Numerical implementation and Governing Equation  
 
      Consider a body with domain Ω  which is bounded by ( )Γ . The boundary ( )Γ  comprises displacement
( )uΓ , traction free ( )cΓ  and traction ( )tΓ  boundary conditions as depicted in Fig. 2. According to 
(Pommier et al., 2011) the equilibrium equations are expressed as: 
 

0=+⋅∇ bσ  Ωin  (1) 
tn =⋅σ     tΓon  (2) 
0=⋅nσ     cΓon  (3) 

where,σ ,b , ⋅∇ and n  represent stress tensor, body force per unit volume divergence operator and 
outward normal respectively. The following kinematic equations may be applied for small displacements: 

uε(u)ε s∇==   (4) 
      Its boundary condition is       

 
uu =        uΓon   (5) 

where, u ε, and s∇  denote strain, displacement vector and the symmetric portion of gradient operator 
respectively.  

 

 
Fig. 2. Domain with crack and different boundary conditions. 



 366 

      For linearly elastic materials the constitutive relation is given as: 
εDσ =          (6) 

where ε  is the strain and D  is Hook's tensor and it is given as follows:  
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      In Eq. (7) and Eq. (8) ν  and E represent Poisson’s ratio and Young’s modulus respectively. The 
weak form of governing equilibrium equation can be written as: 


ΓΩΩ

Γ+Ω=Ω
t

ddd: .vtb.vε(v)(u)σ   (9) 

       Fig. 3 shows the graphical representation of split elements that are enriched with Heaviside function 
(red circles) and tip elements enriched with complex functions (blue squares).  

 
Fig. 3. Nodes enriched with Heaviside and crack tip functions.  

 
3.1 Edge Crack Modeling using XFEM 
 
     The XFEM mesh does not require conforming to the geometry of the crack unlike standard FEM 
where remeshing is mandatory and hence XFEM is quite efficient in modeling discontinuities. According 
to (Sukumar et al., 2001; Moes et al., 1999) displacement function for 2-D crack modeling is 
approximated as: 
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where ju is a vector related to standard FEM degrees of freedom (DOF). n represents the entire nodes 
of the mesh, sn  stands for those node sets entirely crossed by the crack, tn  signifies node sets belong to 
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elements partly cut by the crack. ja represents the nodal DOF supplementing Heaviside function and α
jb  

represents the nodal DOF supplementing tip enrichment, ( )xαβ .  
     The tip enrichment function ( )( )xαβ  is given by: 

( ) 



= θθθθθθβ sin

2
sin,sin

2
cos,

2
sin,

2
cos rrrrx       (11) 

      In Eq. (11) θ  and r  are local polar coordinates.  After substituting the test and trial functions into 
Eq. (9) and employing nodal variations arbitrariness, the following discrete equations are obtained: 
 

[ ]{ } { }fdK =  (12) 
 
     Here d is nodal unknowns’ vector, f and K are externally applied force vector and global stiffness 
matrix respectively. By making use of the approximation functions for a crack, which are defined in Eq. 
(10), the element stiffness matrix e

ijK  and nodal vector force ef are obtained as follows:  
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From Eq. (13) and Eq. (14), the following sub matrices are given:  
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jΨ is standard FEM shape function, u
iΒ , a

iΒ , b
iΒ  and αb

iΒ are shape function derivatives matrices and 
given below:

 

 

83,

,

,

, 0
0

×








Ψ
Ψ









Ψ

Ψ
=

xi

yi

yi

xi
u
iB  (19) 

( )( )

( )( )
( )( )
( )( ) 








−Ψ
−Ψ









−Ψ

−Ψ
=

xi

yi

yi

xi

HH
HH

HH

HH

,

,

,

,

)()(
)()(

0

)()(
0

)()(

i

i

i

i
a
i

xx
xx

xx

xx
B  (20) 

[ ]b4
i

b3
i

b2
i

b1
i

b
i BBBBB =  (21) 

( )( )

( )( )
( )( )
( )( )

4,3,2,1

)()(
)()(

0

)()(
0

)()(

,

,

,

,

=









−Ψ
−Ψ









−Ψ

−Ψ
=

α

ββ
ββ

ββ

ββ

αα

αα

αα

αα
α

xi

yi

yi

xi

i

i

i

i
b
i

xx
xx

xx

xx
B  (22) 

 



 368 

     The basic and fundamental conception of LEFM is applicable if and only if the plastic deformation at 
the crack tip is small. According to (Anderson, 2017) the stress state at the neighborhood of the crack 
front is given as 

[ ])()()(
2
1 θθθ
π

σ III
ijIII

II
ijII

I
ijIij fKfKfK

r
++=  (23) 

where KI, IIK  and IIIK are SIFs for mode I (opening), II (Shear) and III (out-of-plane shear) respectively. 
)(θijf denotes dimensionless trigonometric function ofθ . Stress and displacement field equations in the 

vicinity of the tip for the three fracture modes are summarized in Table 1 and Table 2 respectively 
(Anderson, 2017) . 
 
Table 1. Crack Tip Stress Fields for Modes I and II (Anderson, 2017) 
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Table 2. Displacement Fields in front of Crack Tip for Modes I and II (Anderson, 2017) 

 Mode I Mode II 
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     The symbols in the Tables are as follows: ν denotes Poisson’s ratio, E signifies modulus of 
elasticity,κ  denotes Kolosov constant and μ  denotes the shear modulus.  κ  and μ  can be written as: 
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4. Results and discussion  

     The first example considered straight edge configuration shown in Figure 1by comparing XFEM 
results with the closed form solution as proposed in (Tada et al., 2000).  

432 )/(382.30)/(72.21)/(55.10)/(231.0122.1 LaLaLaLaf
afK oI

+−+−=

= πσ  (27) 

 
     In this example the mixed mode SIFs (KI and KII) are computed using domain based interaction 
integral (Moran and Shih, 1987; Sukumar et al., 2000). Firstly, normalized SIF (KI) with respect to a/L 
ratio for horizontal edge crack (β=0 and d/D=0) was estimated and the result compared with that of the 
closed form solution from reference (Tada et al., 2000). From Fig. 4, the theoretical results are in 
agreement with the present result.  

  
Fig. 4. Comparative study on the variation of Normalized SIF with normalized crack length (Tada et al., 

2000) 
     Fig. 5 and Fig. 6 present the convergence and error estimation for mode-I SIF for different number of 
nodes respectively. From Fig. 5, the estimated value of KI converges to the closed form solution as the 
number of nodes increases. Similarly the percentage error gets reduced and closer to zero as number of 
nodes increases, as depicted in Fig. 6. Therefore the number of nodes considered in this study is 50 by 
100.  

 

Fig. 5. Comparative study of KI values between XFEM and closed form solution for different number 
of nodes. 
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Fig. 6. Percentage error in relation to number of nodes 
 
      To demonstrate the effectiveness of XFEM, a comparative study between applied stresses (σo) and 
SIF (KI) has been conducted. SIF is plotted against the applied stress (σo) and it is observed that results 
from XFEM show good agreement with (Tada et al., 2000) as depicted in Fig. 7. The stress contours σxx, 
σxy and σyy are also shown in Fig. 8 (a), Fig. 8 (b) and Fig. 8 (c) and witnessed that the stress values at 
the crack tip are maximum as expected.  

 

Fig. 7. Comparative analysis of KI values with closed form solutions for different values of applied 
tensile stresses 

      Fig. 9 and Fig. 10 demonstrate how the normalized crack size (a/L) and inclination angle of the crack 
affect mode I SIFs and mode II SIFs respectively. In this particular example d/D ratio is considered to be 
0. As observed from Fig. 9 for each and discrete normalized crack size (a/L) mode I SIF decreases and 
approaches to zero as the crack inclination angle (β) increases. In other words for each and every 
inclination angle β as crack size increases so does the mode I SIF. It is also noticed from Fig. 9 that the 
effect of crack inclination angle on the level of increase of the normalized mode I SIF is more dominant 
at smaller crack angles. For crack inclination angles greater that 60o it is observed that crack size has no 
significant effect on the normalized SIF (KI), this is possibly due to the decrease in the normal force 
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contribution on the crack surface. XFEM result has been compared with results from literature (Fayed, 
2017) and good agreements have been observed as in Fig. 9.  
 

        
a) σxx                                           b) σxy                                                    c) σyy 

 

Fig. 8. Stress contour for an edge crack 

 

Fig. 9. Effect of crack inclination angle on normalized mode I SIF. 
 

      Fig. 10 shows a comparative study among the normalized mode II SIF (KII) and crack inclination 
angle β. It is clear from Fig. 10 that the values of the normalized mode II SIF (KII) escalates from its 
minimum value zero where β = 0 to its maximum value and then decline towards zero when β approaches 
90o. The normalized mode II SIF (KII) attains its maximum value when β is between 30o and 50o. Here 
again, XFEM result has been compared with results from literature (Fayed, 2017) and good agreements 
has been observed as in Fig. 10.  Furthermore Fig. 11 illustrates a comparative study between mode I SIF 
(KI) and crack inclination angle β. In this example d/D ratio was considered to be 0. It is clearly observed 
from Fig. 11 that the values of the normalized mode I SIF (KI) keeps declining from its maximum value 
where β = 0 to its minimum value close to zero when β approaches 80o. Here also a close agreement 
between XFEM result and results from literature was noticed (Fayed, 2017). Similarly Figs. 12 (a), (b) 
and (c) show stress contours σxx, σxy and σyy in the case of inclined crack respectively. 
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Fig. 10. The effect of crack inclination angle on normalized SIF (KII). 

 

 
Fig. 11. Effect of crack length to width ratio (a/L) on normalized SIF (KI) 

 
 (b)            (c)      (d) 

Fig. 12. Stress contour for an edge crack. 
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(a) 

 
(b) 

 
(c) 

Fig. 13. The effect of crack position on KI and KII, (a) β = 0,  (b) β = 15 and (c) β = 30. 
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      The other parameter we considered in this study was the effect of crack position on the SIFs (I and 
II) as presented in Fig. 13 for different crack inclination angles and crack size. The results obtained from 
XFEM have been compared with results from the reference (Fayed, 2017). As it is illustrated in Fig. 13 
(a) the change in crack positioning in the vertical axis results in an increase in KI. It is also observed that 
the rate of increase of KI is not noticeable for some d/D ratio until a certain d/D ratio for each crack size 
and inclination angle beyond which it increases faster. This rate of increase in SIF is a function of crack 
inclination angle and size as it is clearly observed from Fig. 13. The increase in KI and KII between 0 and 
0.6 d/D ratio when a/L=0.1 is not noticeable whereas at a/L ratio of 0.8 and above it attains its maximum 
value. But in case of a/L ratio of 0.3 and 0.5 the increase in SIF (KI and KII) become more noticeable at 
higher angles.   
 
5. Conclusions  

      Extended Finite Element Method (X-FEM) was implemented in this study for estimation of crack 
propagation in a material. The approach employed in this study is extremely vital due to the fact that it 
does not require multiple remeshing which is quite mandatory in the case of FEM when the cracks start 
moving. In this article, tensile load has been applied on the top face of a slanted edge cracked plate 
remotely to compute the mixed mode SIFs (KI/KII). The effects of different parameters like cracking 
angle and its location, crack position along the vertical axis and crack length to width ratio (a/L) have 
been considered in the determination of SIFs. By taking into account the aforementioned parameters, the 
mixed mode SIFs (KI/KII) has been determined. The results obtained from XFEM remarkably agreed 
with those from literature and hence justified the prominent performance of the method to compute SIF 
for mode I and mode II.   

 
References 
 
Aliha, M.R., Bahmani, A., & Akhondi, S. (2016). Mixed mode fracture toughness testing of PMMA with 

different three-point bend type specimens. European Journal of Mechanics-A/Solids, 58, 148-162. 
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the Geometrical Discontinuity 

effect on Mixed-Mode I/II Fracture Load of FDM 3D-Printed Parts. Theoretical and Applied Fracture 
Mechanics, 113, 102953. 

Anderson, T. L. (2017). Fracture mechanics: fundamentals and applications. CRC press. 
Barsoum, R. S. (1974). Application of Quadratic Isoparametric Finite Elements in Linear Fracture 

Mechanics. International Journal of Fracture, 10(4), 603-605. 
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. 

International Journal for Numerical Methods in Engineering, 45, 601–620. 
Belytschko, T., Gu, L., & Lu, Y. Y. (1994). Fracture and crack growth by element free Galerkin methods. 

Modelling and Simulation in Materials Science and Engineering, 2(3A), 519. 
Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. I. (2014 ). Nonlinear Finite Elements for 

Continua and Structures. 2nd ed . Chichester: Wiley. 
Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Elementfree Galerkin methods. International Journal for 

Numerical Methods in Engineering, 37(2), 229-256. 
Bhadauria, S. S., Pathak, K. K., & Hora, M. S. (2010). Finite element modeling of crack initiation angle 

under mixed mode (I/II) fracture. Journal of Solid Mechanics, 2, 231-247. 
Bouhala, L., Shao, Q., Koutsawa, Y., Younes, A., Núñez, P., Makradi, A., et al. (2013). An XFEM crack-

tip enrichment for a crack terminating at a bi-material interface. Engngineering Fracture Mechanics, 
102, 51–64. 

Ching, H. K., & Yen, S. C. (2005, ). Meshless local petrov-Galerkin analysis for 2D functionally graded 
elastic solids under mechanical and thermal loads. Composites Part B: Engineering, 36(3), 223–40. 

El Fakkoussi, S., Moustabchir, H., Elkhalfi, A., & Pruncu, C. I. (2019). Computation of the stress 
intensity factor KI for external longitudinal semi-elliptic cracks in the pipelines by FEM and XFEM 
methods. International Journal of Interaction Design Manufacturing, 13, 545–555. 



M. A. Zeleke et al. / Engineering Solid Mechanics 9 (2021) 
 

375

Fayed, A. S. (2017). Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked 
plates. Engineering Solid Mechanics, 5(1), 61-70. 

Gonzalez, M., Teixeira, P., Wrobel, L. C., & Martinez, M. (2015). A new Displacement-based Approach 
to Calculate Stress Intensity Factors With the Boundary Element Method. Latin American Journal of 
Solids and Structures, 12(9), 1677-1697. 

Griffith, A. (1920). The Phenomena of Rupture and Flow in Solids. Philosophical Transactions, Series 
A, 221, 163-198. 

Gu, Y., Wang, W., Zhang, L. C., & Feng, X. Q. (2011). An enriched radial point interpolation method 
(e-RPIM) for analysis of crack tip fields. Engineering Fracture Mechanics, 78(1), 175–90. 

Han, Q., Wang, Y., Yin, Y., & Wang, D. (2015). Determination of stress intensity factor for mode I 
fatigue crack based on finite element analysis. Engineering Fracture Mechanics , 138, 118-126 . 

Hedayati, E., & Vahedi, M. (2014). Using Extended Finite Element Method for Computation of the Stress 
Intensity Factor, Crack Growth Simulation and Predicting Fatigue Crack Growth in a Slant-Cracked 
Plate of 6061-T651 Aluminum. World Journal of Mechanics, 4, 24-30. 

Hellen, T. K. (1975). On the Method of Virtual Crack Extension. International Journal for Numerical 
Methods in Engineering, 9(1), 187-207. 

Henshell, R. D., & Shaw, K. G. (1975). Crack Tip Finite Elements Are Unnecessary. International 
Journal for Numerical Methods in Engineering, 9(3), 495-507. 

Irwin, G. (1957). Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal 
of Applied Mechanics, 24, 361-364. 

Laftah, R. M. (2016). Study of Stress Intensity Factor in Corrugated Plate Using Extended Finite Element 
Method (XFEM). Engineering & Technical Journal, Part (A), 34(15), 2982-2992. 

Lee, S. H., Kim, K. H., & Yoon, Y. C. (2016). Particle difference method for dynamic crack propagation. 
International Journal of Impact Engineering, 87, 132–145. 

Leung, A. Y., Zhou, Z., & Xu, X. (2014)). Determination of stress intensity factors by the finite element 
discretized symplectic method. International Journal of Solids and Structures, 51(5), 1115-1122 . 

Lins, R., Ferreira, M., & Proença, S. e. (2015). An a-posteriori error estimator for linear elastic fracture 
mechanics using the stable generalized/extended finite element method. Computer Mechanics, 56, 
947-965. 

Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods. International Journal 
of Numerical Methods Fluids, 20(8–9), 1081–11066. 

Lu, Y. Y., Belytschko, T., & Gu, L. (1994). A new implementation of the element free Galerkin method. 
Computational Methods in Applied Mechanical Engineering, 113(3-4), 397–414. 

Menk, A., & Bordas, S. P. (2011). Crack growth calculations in solder joints based on microstructural 
phenomena with x-fem. Computational Materials Science, 50(3), 1145–1156. 

Mirmohammad, S. H., Safarabadi, M., Karimpour, M., Aliha, M. R. M., & Berto, F. (2018). Study of 
composite fiber reinforcement of cracked thin-walled pressure vessels utilizing multi-scaling 
technique based on extended finite element method. Strength of Materials, 50(6), 925-936. 

Moes, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without 
remeshing. International Journal for Numerical Methods in Engineering, 46, 131-150. 

Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy 
balance. Engineering Fracture Mechanics, 27(6), 615-642. 

Murakami, Y., & Keer, L. M. (1993). Stress Intensity Factors Handbook (Vol. 3). 
Ortiz, J. E., & Cisilino, A. P. (2006). Boundary element method for J-integral and stress intensity factor 

computations in three-dimensional interface cracks. International Journal of Fracture, 133(3), 197-
222. 

Pais, M. (2011). Variable Amplitude Fatigue Analysis Using Surrogate Models and Exact XFEM 
Reanalysis. University of Florida. 

Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic 
Engineering Transaction of ASME, 85, 528-534. 

Parks, D. M. (1974). A Stiffness Derivative Finite Element Technique for Determination of Crack Tip 
Stress Intensity Factors. International Journal of Fracture, 10, 487-502. 



 376 

Pommier, S., Gravouil, A., Combescure, A., & Moës, N. (2011). Extended finite element method for 
crack propagation. London, UK: ISTE. 

Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: effective 
implementation for crack problems. International Journal for Numerical Methods in Engineering, 
33(6), 1269-1287. 

Rabczuk, T., & Belytschko, T. (2004). Cracking particles: a simplified meshfree method for arbitrary 
evolving cracks. International Journal for Numerical Methods in Engineering, 61(13), 2316-2343. 

Rice, R. J. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentrations 
by Notches and Cracks. Journal of Applied Mechanics, 35, 379-386. 

Rybicki, E. F., & Kanninen, M. F. (1977). A Finite Element Calculation of Stress Intensity Factors by a 
Modified Crack Closure Integral. Engineering Fracture Mechanics, 9(4), 931-938. 

Shih, C. F., De Lorenzi, H. G., & German, M. D. (1976). Crack Extension Modeling with Singular 
Quadratic Isoparametric Element. International Journal of Fracture, 12(4), 647-651. 

Singh, I. V., Mishra, B. K., Bhattacharya, S., & Patil, R. U. (2012). The numerical simulation of fatigue 
crack growth using extended finite element method. International Journal of Fatigue, 36(1), 109-119. 

Stern, M., Becker, E. B., & Dunham, R. S. (1976). A contour integral computation of mixed-mode stress 
intensity factors. International Journal of Fracture, 12, 359-68. 

Sukumar, N., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modeling holes and inclusions by level 
sets in the extended finite element method. Computer Methods in Applied Mechanical Engineering, 
190(46-47), 6183–6200. 

Sukumar, N., Moes, N., Moran, B., & Belytschko, T. (2000). Extended Finite element method for three-
dimensional crack modelling. International Journal of Numerical Methods in Engineering, 48, 1549 
-1570. 

Szabo, B. A., & Babuška, I. (1988). Computation of the Amplitude of Stress Singular Terms for Cracks 
and Reentrant Corners. In Fracture mechanics: nineteenth symposium (pp. 101-124). West 
Conshohocken: ASTM International. 

Tada, H., Paris, P., & Irwin, G. (2000). The Stress Analysis of Cracks Handbook. 3rd ed., New York.  
 
  

   

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


