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 We propose and develop a new G-optimality criterion using the concept of weighted optimality 
criteria and certain additional generalizations. The goal of the weighted G-optimality is to 
minimize a weighted average of the maximum scaled prediction variance in the design region 
over a set of reduced models. A genetic algorithm (GA) is used for generating the weighted G-
optimal exact designs in an experimental region for mixtures. The performance of the proposed 
GA designs is evaluated and compared to the performance of the designs produced by our genetic 
algorithm and the PROC OPTEX exchange algorithm of SAS/QC. The evaluation demonstrates 
the advantages of GA designs over the designs generated using exchange algorithm, showing 
that the proposed GA designs have better model-robust properties and perform better than the 
designs generated by the PROC OPTEX exchange algorithm. 
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1. Introduction 

 
The increasing use of experimental design in the industry has resulted in the widespread utilization of 
mixture experiments. Mixture experiment is a special case of the response surface design a that aims to 
optimize the end product by combining several components in a mixture. It has been applied for purposes 
of developing, improving and optimizing processes such as chemical formulation, pharmaceutical drug 
formulation, textile fiber production and food processing, etc. For example, if an engineer would like to 
optimize the burning rate of propellant in aircrew escape systems, the factors or the components of 
interest could be the proportions of fuel, oxidizer, and binder. Frequently, the components are constrained 
and the experimental region is an irregularly shaped polyhedron within the simplex, the optimal designs 
are commonly used. Optimal designs are usually constructed by specifying the model, choosing an 
optimality criterion, and using an algorithm to select ݊ design points from a finite set of candidate points. 
 
The true model is unnecessarily known in many applications, but can be assumed to be an unknown 
element of a known set of models. Frequently, after the data are collected, the model may be subsequently 
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changed because the experimenter finds that some model effects may be small and insignificant leading 
to a decision of choosing a model containing fewer terms (i.e., a “reduced model”) in the analysis phase. 
If the initial model does not turn out to be the final model in the analysis phase, then the initial design 
will generally not be optimal. Therefore, the experimenter would opt for a design that allows model 
modification for a class of specific models. Consequently, the robustness of a design to model change, 
known as model robustness, plays an imperative role for addressing this problem.  
 
In this study, we propose a genetic algorithm (GA) that can be used to create a mixture design with a 
robustness property. Genetic algorithm is a type of heuristic search motivated by the biological evolution 
theory of Charles Darwin. This algorithm is far more powerful and efficient than random search and 
exhaustive search algorithms, yet requires no extra information about the given problem (Kinnear, 1994). 
The effectiveness of the genetic algorithm depends on the choice of design region, encoding scheme, 
evaluation function, and genetic operators. Although the global optimal solution is not guaranteed, the 
chance of getting trapped in a local optimum region is smaller than some gradient-based search methods 
in a case that there are multiple local optima or the objective function is not smooth, noisy, or stochastic. 
Novel applications of genetic algorithms provide an alternative approach to classic exchange-point 
algorithms to generate designs. In some situation, the genetic algorithm gives an answer that is as good 
as the exchange algorithms. Examples of applying genetic algorithms to generate designs can be found 
in Borkowski (2003), Heredia-Langner et al. (2003, 2004), Drain et al. (2004), Park et al. (2006), 
Rodriguez et al. (2009) and Limmun et al. (2013). 
 
Although there have been many studies on the problem focused on how to find the best or optimal design, 
relatively little attention has been paid to the problem of the robustness of the design to model 
misspecification, known as model robustness. A researcher is generally interested in generating designs 
that have good efficiency across a set of candidate models to assist him/her in choosing the best design 
regardless of the final model selected. In this work, we employ a genetic algorithm to extend the work of 
Limmun et al. (2013). The difference is that in Limmun et al. (2013), a single model was employed to 
generate model-robust mixture design, while in the current work, all possible reduced models are 
employed to generate model robust-mixture design. However, the experimental region remains to be an 
irregularly-shaped polyhedral region within the simplex. This proposed procedure offers a degree of 
flexibility in constructing designs that allows it to overcome restrictions that may limit the applicability 
of other more commonly used algorithms.  
 
The paper is structured as follows. Section 2 gives the theoretical background of this research, while 
Section 3 gives the review of literature. The development of the weighted G-optimality criterion is 
presented in Section 4. The genetic algorithm implementation is delineated in Section 5, followed by 
numerical study with examples in Section 6. Finally, the main conclusions of the paper are presented in 
Section 7. 
 
2. Theoretical background 

 
2.1 Notation and mixture models 
 
Mixture experiment is an experiment in which the measured response depends only on the relative 
proportions of the different components of a mixture, and the design factors are the proportions of the ݍ 
components of a mixture. In a standard mixture experiment, the proportion of component ሺݔ௜	ሻ needs to 
satisfy the following simplex properties: 

∑ ௜ݔ
௤
௜ୀଵ ൌ 1  and  0 ൑ ௜ݔ ൑ 1. (1) 

Because of these constrained proportions, an alteration of the proportion of one component must cause a 
change in the proportion of at least one of the other components. The shape of the design space for 
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mixture experiments given by Eq. (1) is a regularly ሺݍ െ 1ሻ-dimensional simplex. In many mixture 
experiments, the single-component proportions must also satisfy single-component constraints (SCCs) 
expressed as:  

0 ൑ ௜ܮ ൑ ௜ݔ ൑ ௜ܷ ൑ 1					; ݅ ൌ 1,2,… , (2) ,ݍ

and possibly multiple-component constraints (MCCs) expressed as: 

௝ܥ ൑ ଵݔଵ௝ܣ ൅ ଶݔଶ௝ܣ ൅ ⋯൅ ௝ݔ௤௝ܣ ൑ ௝ܦ ; ݆ ൌ 1,2, … , ݄, (3)

where ܮ௜ and ௜ܷ are lower and upper bounds of the SCCs, respectively, and ܣ௜௝ are scalars defining 
multivariate linear with ܥ௝ and ܦ௝ being the lower and upper bounds of the MCCs, respectively. If the 
SCCs and/or MCCs are placed on the component proportions, then the experimental region will alter 
from a simplex to an irregularly shaped polyhedron within the simplex. For additional information of 
constrained mixture experiments, see Cornell (2002) and Smith (2005). 
 
Typically, mixture experiment models are of the Scheffé type which are no-intercept models with matrix 
form given by the following: 

࢟ ൌ ࢼࢄ ൅ (4) ,ࢿ

where ࢟ ൌ ሺݕଵ, ,ଶݕ … , ݊ ௡ሻ′ is theݕ ൈ 1 vector of measured responses, ࢄ is the ݊ ൈ  matrix with columns ݌
associated with the ݌ model effects (such as component proportions and cross-products terms), ࢼ is the 
݌ ൈ 1 vector of model parameters, and ࢿ ൌ ሺߝଵ, ,ଶߝ … ,  ௡ሻ′ is the vector of random error associated withߝ
natural variation of ࢟ around the underlying surface assumed to be independent and identically normally 
distributed with zero mean and variance ߪଶࡵ௡. Consider the ݍ-component (Scheffé) quadratic mixture 
model below as an example: 

ݕ ൌ෍ߚ௜ݔ௜

௤

௜ୀଵ

൅෍෍ߚ௜௝ݔ௜ݔ௝

௤

௜ழ௝

൅ (5) .ߝ

In the full matrix, the information matrix, ′ࢄ , is non-singular matrix and the least squares estimate of ࢼ 
is ࢈ ൌ ሺࢄᇱࢄሻିଵ࢟′ࢄ which is equivalent to the maximum likelihood estimator under normal error. Also, 
the variance-covariance of the regression coefficients is ܸܽݎሺ࢈ሻ ൌ  ሻିଵ. The design matrix forࢄᇱࢄଶሺߪ

the Scheffé quadratic model is defined as ࢄ ൌ ൫ݔଵ, ,ଶݔ … , ,௤ݔ ,ଶݔଵݔ ,ଷݔଵݔ … , ൯	௤ିଵݔ௤ݔ
ᇱ
. In this paper, we 

concentrate on the Scheffé quadratic mixture model. For further information on the mixture model, see 
Cornell (2002). 
 
2.2 G-optimality criterion 
 
The design optimality criteria are single value criteria that represent different variance properties of a 
design. The theory of optimality criteria was first developed by Kiefer and Wolfowitz  (1959). The 
alphabetic optimality criteria including the D, A, G and IV criteria are the commonly used design 
optimality criteria. These optimality criteria involve selecting the row of ࢄ so as to optimize some 
function of Fisher’s information matrix ሺࢄ′ࢄሻ. The Fisher’s information matrix ሺࢄ′ࢄሻ is a scaled version 
of the inverse of the variance-covariance matrix of the least square estimators of the model parameters 
for optimizing the desired properties. D- and A-optimality are focused on parameter estimation, while 
G- and IV-optimality are focused on prediction variance. The G- and IV-efficiency are calculated over a 
continuous design region. For a discussion of the composite design optimality criteria, see Atkinson et 
al. (2007) and Zaharn et al. (2003). 
 
The best known and most often used design optimality criterion is D-optimality. The G-efficiency is 
particularly appealing when the experimenter is interested in the prediction variance property of the 
response. The G-optimally criterion is not differentiable; G-optimal designs are harder to construct and 
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study than D-optimal designs. The equivalence theorem says that these two design criteria are identical 
when the design is expressed as a probability measure (Kiefer and Wolfowitz, 1960). The equivalence 
of the two criteria does not hold for the exact designs. All designs used by experimenters in practice are 
the exact designs by definition because the number of trials for any design point is a specified integer ݊. 
 
The design optimality criterion that we focus on is the G-criterion because there is no commercially 
available software that currently constructs designs using it. The G-optimality criterion seeks to find a 
set of points that will minimize the maximum scaled prediction variance (SPV) over the entire design 
region. Formally, if the prediction equation is expressed as ݕොሺ࢞ሻ, we define the SPV as: 

SPV ൌ
ሻ൯࢞ොሺݕ൫ݎܸܽ݊

ଶߪ
ൌ ሻ, (6)࢓ሺ࢞ሻି૚ࢄ′ࢄሻሺ࢓ᇱሺ࢞݊

where ܸܽݎ൫ݕොሺ࢞ሻ൯ is the variance of the prediction response at a given point ࢞,  ݊ is the number of design 
points, ߪଶ is the process variance, and ࢞ሺ࢓ሻ is a vector of a point in the design region expanded to model 
form. For example, if there are three components and the model is the Scheffé quadratic model, then 
ᇱሺ௠ሻ࢞ ൌ ሺݔଵ, ,ଶݔ ,ଷݔ ,ଶݔଵݔ ,ଷݔଵݔ ݊ has the dimension of ࢄ ଷሻ andݔଶݔ ൈ 6. The G-efficiency of a design is 
defined as follows: 

Gୣ୤୤ ൌ
݌100

max࢞ሺ࢓ሻఢோSPV
	, (7)

where ݌ is the number of parameters in the model and ܴ is the constrained design region. The G-
efficiency is based on the performance of SPV. The G-criterion is a minimax criterion, that is, the design 
should minimize the maximum prediction variance in the design region. A G-optimal design is the one 
that maximizes G-efficiency over the region of interest.  
 
In this paper, the G-efficiency is approximated over a set of points from an extreme vertices design 
because the maximum scaled prediction variance typically occurs at a boundary point such as a vertex, 
face centroid or edge centroid. As a practical rule of thumb, Wheeler (1972) suggested that a mixture 
design with G-efficiency ≥ 50% is a good design for practical purposes and showed that pursuit of higher 
efficiencies is not generally justified in practice. Our algorithm guarantees this much efficiency as shown 
in Section 6. 
 
2.3 Genetic algorithm 
 
A genetic algorithm is basically a search heuristic or optimization technique that is inspired by Charles 
Darwin’s theory of natural process of evolution, which states that an organism that can adapt best to their 
environment compared with other members of their species will survive. This algorithm was developed 
by John Holland in 1975 and was popularized through the work of Goldberg in 1989. The development 
and success of genetic algorithms have greatly contributed to a wider interest in computational 
approaches based on natural phenomena and it is now a major strand of the wider field of Computational 
Intelligence (Engelbrecht, 2002). 
 
Genetic algorithm serves as an initial population of potential solutions (parent chromosomes) to a 
problem, and with the best one being the fittest member of the population. Then through evolutionary 
reproduction operators, the current parent population passes some of its properties (genes) to offspring 
chromosomes. A subset of the best parent and offspring will be passed onto future generation, and the 
reproduction process is repeated for many generations until a termination criterion is satisfied. The 
genetic algorithm is commonly used to generate high quality solutions to optimization and search 
problems by relying on genetic operators such as selection, crossover, and mutation. The objective of the 
selection operator is to emphasize the fitter chromosomes in a population in hopes that their offspring 
will in turn have even higher fitness level while keeping the population size constant. The selection 
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operator is used to choose the best and the fittest chromosomes for reproduction based on a probability 
distribution defined by the user. The crossover operator is the main process of the genetic algorithm to 
vary the chromosomes from one generation to the next. This operator chooses one or more crossover 
points that separate the encoded chromosomes, and then swaps a subsequence of two of the chosen 
chromosomes to create two offspring. The mutation operators act on an individual chromosome to flip 
one or more allele values. This process helps overcome trapping at local optimum. Typically, the 
mutation happens with a very low probability. For an introduction and review of genetic algorithms, see 
Goldberg (1989), Michalewicz (1992), Kinnear (1994), and Haupt and Haupt (2004). 
 
3. Related works 
 
Model robustness was addressed by several researchers. DuMouchel and Jones (1994) presented a 
Bayesian approach for choosing an optimal design robust to the modeling assumptions. This approach 
considered model terms as either primary or potential terms. Li and Nachtsheim (2000) constructed a 
model robust design by considering a class of factorial designs that can be used for efficient estimation 
of main effects and any combination of g interactions where g is specified by the experimenter. Two 
weighted criteria that are based on a design’s estimation capacity and the D-criterion are combined. 
Heredia-Langner et al. (2004) implemented a genetic algorithm approach to optimize a weighted D-
optimality criterion from a very large search space for finding the robust design. This approach creates a 
design that minimizes the volume of the joint confidence region for the vector of model coefficients for 
a given set of possible models. Chung et al. (2007) employed a genetic algorithm to generate designs that 
simultaneously optimize the scaled prediction variances (SPVs) for both the mean-SPV model and the 
slope-SPV model for mixture-process experiments with control and noise variables. They show how 
designs that are robust to levels of control-by-noise interaction can be obtained. Anderson-Cook et al. 
(2009) developed graphical approach for assessing the model robustness of the designs to model 
misspecification using the expected mean square error (EMSE) over cuboidal regions of interest. 
Smucker et al. (2011) developed modified Fedorov exchange algorithm for creating the exact robust 
design when the true model form is unknown. This approach optimizes the determinants of the 
information matrices for a given set of possible models.  
 
Genetic algorithm has been used in design of experiments to solve a variety of problems. Borkowski 
(2003) presented a genetic algorithm technique for generating near-optimal D, A, G, and IV exact ݊-
point response surface designs for the second-order model in the hypercube. The local grid search 
algorithm is adopted to these near-optimal designs for finding the optimal exact designs. Heredia-
Langner et al. (2003) developed genetic algorithm for generating D-optimal designs. This approach is 
able to implicitly search vast spaces and it eliminates the need to explicitly consider a candidate set of 
experimental points. They found that the performance of the genetic algorithm was at least as good as 
the other procedures such as the coordinate exchange, k-exchange, and modified-Fedorov algorithms. 
Goldfarb et al. (2005) used a genetic algorithm to generate statistical designs for experiments involving 
mixture variables and process variables using either the mean or slope prediction variance and applied 
the G-optimality criterion for the objective function. They show how designs that can improve the 
prediction variance property of either the mean or the slope of the designs can be constructed. Park et al. 
(2006) employed a genetic algorithm for finding the cost-constrained G-efficient designs over cuboidal 
region when the experimental budget or cost are limited. The genetic algorithm can create the G-efficient 
design with minimum cost. Rodríguez et al. (2010) introduced a new coordinate exchange algorithm to 
create highly G-efficient experimental design on cuboidal region. Limmun et al. (2013) presented a 
genetic algorithm approach for generating D-optimal designs for mixture experiments where the 
experimental region is an irregular shaped region that is a subspace of a simplex. They found that the 
performance of the genetic algorithm was at least as good as the other procedures such as extreme vertices 
design or conventional exchange algorithms. In the optimal design theory, such objectives can be 
expressed using the weighted optimality criteria. Morgan and Wang (2010) proposed a broad class of 
weighted variances based on quadratic forms of a diagonal matrix ܅ that allows a researcher to specify 
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relative importance of information for any effects in treatment–control experiments. The weighted 
optimality criteria are constructed by applying standard optimality criteria to weighted information 
matrices. Borkowski et al. (2010) developed the weighted D, G, A, and IV-efficiencies for response 
surface designs by assigning the prior probability to a suite of potential models based on the concepts of 
the model heredity principle. Emmett et al. (2011) proposed a weighted V-optimality criterion that seeks 
to minimize the average variance of prediction for a continuous response. The weights are derived from 
a logistic regression model. Stallings and Morgan (2015) proposed a weighted information matrix, 
allowing precise design selection according to expressed relative interest in different functions in the 
estimation space. 
 
4. Weighted design optimality criteria 
 
The weighted optimality criteria provide a meaningful approach of expressing the interest in a given set 
of linear estimable functions using the theory of optimality criterion for estimating the given functions 
of interest. The weighted G-optimality (WG-optimality) criterion is developed in this paper. The WG-
optimality aims to minimize the weighted average of the maximum SPV in the design region over a set 
of reduced models. The strong heredity (SH) and weak heredity (WH) principles developed by Chipman 
(1996) are adopted for constructing reduced models. SH requires that if a model contains the quadratic 
term ൫ߚ௜௝ݔ௜ݔ௝൯, then it must contain both corresponding linear effects ሺߚ௜ݔ௜ and ߚ௝ݔ௝ሻ; WH requires that 
if a model contains the quadratic term ൫ߚ௜௝ݔ௜ݔ௝൯, then it must contain one or both of the corresponding 
linear effects ሺߚ௜ݔ௜ or ߚ௝ݔ௝ሻ. Then, we additionally assume that all linear component effects ሺߚ௜ݔ௜ for 
݅ ൌ 1,… ,  ሻ must occur in each possible reduced model. Thus, the set of SH reduced models of the fullݍ
Scheffé quadratic model are identical with the set of WH reduced models because of the additional 
condition that all linear component effects must be included in each reduced model. 
 
Suppose the full model is the Scheffé quadratic mixture model with three mixture components. The sets 
of SH and WH reduced models of the full Scheffé quadratic mixture model are equal, and there are eight 
reduced models for both. There are 1, 3, 3 and 1 reduced models having 6-, 5-, 4-and 3-parameter, 
respectively, as shown in Table 1. In Table 1, 1’s and 0’s in the ‘Terms in model’ columns represent the 
presence and absence of the terms in the model parameters, respectively. Column ݌ is the number of 
model parameters.  
 
A complete enumeration of the set of subset models (possible reduced models) is necessary for 
calculating the WG-efficiency. After complete enumeration of the set of reduced models, the G-
optimality criterion is calculated for each reduced model. Recall that the G-efficiencies are approximated 
over the set of points from an extreme vertices design. Finally, the WG-optimality criterion is estimated 
using the sum of the products between the weight and the G-efficiency of each model; that is, the WG-
efficiency can be expressed as: 

WG ൌ෍ݓ௜ܩ௜

௥

௜ୀଵ

 (8)

where		ܩ௜ ൌ
ଵ଴଴௣೔

௠௔௫
ሻചೃ࢓ሺ࢞

൬࢞ᇲሺ࢓ሻቀ࢏ࢄ
ᇲ
ቁ࢏ࢄ

ష૚
ሻ൰࢓ሺ࢞

		is the G-efficiency for model ݅  

r  is the number of reduced models for a given full model  
 ݅ ௜ is the weight for modelݓ
 ݅ ௜ is the number of parameters for model݌
 .݅ is a mixture model matrix for model ࢏ࢄ
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Table 1 
The set of reduced models for the full Scheffé quadratic mixture model with three components 

Model 
Terms in model 

 ݌
ଷݔ ଶݔ ଵݔ ଶݔଵݔ ଷݔଵݔ  ଷݔଶݔ

1st 1 1 1 1 1 1 6 
2nd 1 1 1 0 1 1 5 
3rd 1 1 1 1 0 1 5 
4th 1 1 1 1 1 0 5 
5th 1 1 1 0 0 1 4 
6th 1 1 1 0 1 0 4 
7th 1 1 1 1 0 0 4 
8th 1 1 1 0 0 0 3 

 
Even though the concept of weighted optimality criteria is not up-to-date, further generalization that only 
models having an equal number of model parameters receive equal weight adopted in this paper is up-
to-date. To illustrate this concept, we treat each parameter as equally important and we wish to assign a 
weight to the set of reduced models in order to reflect its importance relative to the number of model 
parameters. However, if the researcher has prior information regarding model weighting, one can assign 
those weights to the models of interest. Given the above criteria, we now define the weight associated 
with each reduced model. Suppose model ݅ has ݆ parameters, then, the weight for model ݅ is defined as 

௜ݓ ൌ
߰௝
௝݉
, (9)

where  ߰௝ is the ݆th weighting factor, ݆ ൌ ,ݍ ݍ ൅ 1,… , ݏ െ 1,    ݏ
 is the number of parameters of the linear mixture model  ݍ
 is the number of parameter of the full mixture model  ݏ
௝݉ is the number of reduced models equivalent to a ݆-parameter model. 

 
The weighting factors ߰௤, ߰௤ାଵ,… , ߰௦ିଵ, ߰௦ are positive and subject to the restriction ∑ ߰௝

௦
௝ୀ௤ ൌ 1. To 

compute the weighting factors, suppose the relative weighting factor (supplied by the experimenter) is 
defined as: 

ܴ ൌ
߰௦
߰௤
. (10) 

The value of ܴ is an arbitrary constant such that ܴ ൒ 1, and is the ratio of the weighting factor of the full 
model to the weighting factor of the linear model. Suppose also that the experimenter sets ܴ ൌ 100. That 
is, the experimenter weights the full mixture model 100 times the weight to be assigned to the linear 
mixture model. The number of levels for a weighting factor is ݇ ൌ ݏ െ ݍ ൅ 1. Thus, the range of the 
weighting factor is: 

߰௞ ൌ ߰௦ െ ߰௤ ൌ ܴ߰௤ െ ߰௤ ൌ ሺܴ െ 1ሻ߰௤.  (11)

The increment value of the weighting factor is given by: 

ܴܥܰܫ ൌ టೖ
௞ିଵ

ൌ
	ሺோିଵሻట೜
௞ିଵ

. (12) 

Given that there are ݇ equispaced levels of the weighting factor, the values of the weighting factor can 
be represented as follows: 

߰௤ ൌ ߰௤, 

߰௤ାଵ ൌ ߰௤ ൅  ,ܴܥܰܫ
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߰௤ାଶ ൌ ߰௤ ൅  ,ܴܥܰܫ2

               ⋮ 

߰௤ାሺ௞ିଵሻ ൌ ߰௤ ൅ ሺ݇ െ 1ሻܴܥܰܫ, 

when ݏ ൌ ݍ ൅ ሺ݇ െ 1ሻ. Then the weighting factor can be rewritten in the form: 

෍߰௝

௦

௝ୀ௤

ൌ ߰௤ ൅ ൫߰௤ ൅ ൯ܴܥܰܫ ൅⋯൅ ൫߰௤ ൅ ሺ݇ െ 1ሻܴܥܰܫ൯ ൌ 1 (13)

which may be reduced to: 

݇߰௤ ൅ ቀ݇
2
ቁ ܴܥܰܫ ൌ 1. (14)

Therefore, the minimum weighting factor can be written as: 

߰௤ ൌ
ሺ݇ െ 1ሻܴܥܰܫ

ܴ െ 1
. (15)

After simplifying, substitution of Eq. (15) into Eq. (12) yields the following equation: 

ܴܥܰܫ ൌ
2ሺܴ െ 1ሻ

݇ሺ݇ െ 1ሻሺܴ ൅ 1ሻ
. (16)

The other weighting factors follow directly via substitution. 
 
To calculate the WG-efficiency, the Scheffé linear models receive the smallest weight, while the full 
Scheffé quadratic model receive the largest weight, with other models having equal number of terms 
sharing a common weight. Unlike the case of equally weighted models, we treat each parameter as 
equally important and the weights are assigned to the set of reduced models in order to reflect its 
importance relative to the number of model parameters. 
 
For three components, suppose that the experimenter weights the full mixture model 100 times the weight 

to be assigned to the linear mixture model. Therefore, ܴ ൌ 100, ݍ ൌ 3, ݏ ൌ 6, ݇ ൌ4, and ܴܥܰܫ ൌ ଷଷ

ଶ଴ଶ
. 

We now consider the 7th reduced model, 

ሻݕሺܧ ൌ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ଷݔଷߚ ൅   ,ଶݔଵݔଵଶߚ

that has 4 parameters. The weighting factor value of all models having 4-parameter ሺ߰ସሻ is defined as 

߰ସ ൌ ߰ଷ ൅ ܴܥܰܫ ൌ
1
202

൅
33
202

ൌ
34
202

. 
 

There are three models having 4 parameters, ݉ସ ൌ 3, so the weight of the 7th model is 

଻ݓ ൌ
߰ସ
݉ସ

ൌ
34
606

. 
 

That is, the weight for models 5, 6, and 7 having 4 parameters are equal to 
ଷସ

଺଴଺
. For three components, 

there are 8 reduced models which have 1, 3, 3 and 1 reduced models having 6, 5, 4 and 3 parameters with 

weighting factor values of 
ଵ଴଴

ଶ଴ଶ
, ଺଻
ଶ଴ଶ

, ଷସ
ଶ଴ଶ

 and 
ଵ

ଶ଴ଶ
, respectively.  

 
We now consider the weight with varying the ܴ values. Table 2 summarizes the corresponding weight 
for the set of reduced models in Table 1 with ܴ=1, 10, 100 and 1,000 for three components. We found 
that (i) when the values of ܴ is 10,100 and 1,000, the weight of the models perform nearly equally for 
each of the number of the parameters except the model having the ݍ-parameter (the Scheffé linear model); 
and (ii) the pattern of the weights for each of the number of the parameters with ܴ=1 differs from that of 
other ܴ values. The experimenter has the freedom to choose the ratio of the weighting factor of the full 
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model to the weighting factor of the linear model (ܴ) where ܴ ൒ 1. However, we do not recommend 
using ܴ ൌ 1. 
 
Table 2 
Comparison of the weight of each model with R=1, 10, 100 and 1,000 for three components. 

ܴ 
Model 

1st 2nd 3rd 4th 5th 6th 7th 8th 

1 
1
4

 
1
12

 
1
12

 
1
12

 
1
12

 
1
12

 
1
12

 
1
4

 

10 
10
22

 
7
66

 
7
66

 
7
66

 
4
66

 
4
66

 
4
66

 
1
22

 

100 
100
202

 
67
606

 
67
606

 
67
606

 
34
606

 
34
606

 
34
606

 
1
202

 

1000 
1000
2002

 
222
1999

 
222
1999

 
222
1999

 
167
3003

 
167
3003

 
167
3003

 
1

2002
 

 
5. Genetic algorithm for constructing weighted G-optimal design 
 
The genetic algorithm is very appropriate for construction of a design when the optimality criterion is 
crucial to work and/or where the experimental region is constrained such as in mixture experiments. We 
use the genetic algorithm developed by Limmun et al. (2013) to construct the model-robust designs. 
Throughout this paper, the chromosomes are encoded using real-value encoding instead of binary or 
another encoding. Real value encoding is flexible enough to allow a unique representation for every 
variable, compatible with other optimization algorithms (such as simulated annealing), easy to interpret, 
and can be modified to adjust for many applications. The reproduction process including blending, 
between-parent crossover, within-parent crossover, and mutation operators is a process that usually 
operates on the genes to produce offspring chromosomes. The success probabilities for these operators 
are ߙ௕, ,௕௖ߙ  ௠, respectively. A gene or set of genes is altered when a probability test is passedߙ ௪௖ andߙ
(PTIP). A probability test is a Bernoulli distribution with probability of success ߙ௜. If ݑ is a random 
deviate from a continuous uniform distribution on the interval ሾ0,1ሿ and 0 ൑ ݑ ൑  ௜, then a probabilityߙ
test is passed and the operator is applied. Otherwise, the chromosome remains untouched. Furthermore, 
if a probability test is passed, a random variate ε from a normal distribution with a mean of 0 and a 
standard deviation of ܸ is added to a gene to form a new gene.  
 
In this algorithm, the potential design (solution) is represented as a chromosome ܥ having an ݊ ൈ  ݍ
matrix, where ݊ is the number of the design points, and ݍ is the number of mixture components. The 
components are represented as genes on a chromosome. Thus, each row in ܥ is a gene ࢏࢞ ൌ
௜ଶݔ			௜ଵݔൣ  ௜௤൧ and represents one experimental mixture. Suppose there are five design points, aݔ			…		
chromosome ܥ ൌ ሺ࢞૚, ,૛࢞ ,૜࢞ ,૝࢞  that measures a ܨ ૞ሻ′. We wish to optimize the objective function࢞
chromosome’s fitness as a solution to the function. The objective function ܨ reflects information about 
both the quality and feasibility of solutions and takes a chromosome as input and outputs of an objective 
function value. We propose the WG-efficiency as the objective function for assessing the fitness of each 
chromosome (design) as shown in Section 4. Recall that the goal of the WG-efficiency is to obtain a 
design that minimizes the weighted average of the maximum scaled prediction variance throughout the 
entire experimental region for a set of reduced models representing possible model misspecification. 
Specifically, the principal purpose is to find a design that maximizes objective function ܨ where 

ܨ ൌ WG (17)
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Our genetic algorithm process is as follows: 
 
Step 1: Determine the number of chromosomes (ܯ), number of generation (ܫ), selection method, 

blending rate (ߙ௕), crossover rates (ߙ௕௖ and ߙ௪௖) and mutation rate (ߙ௠). We use 21 as the 
number of chromosomes. We investigated the number of generations to convergence when 
running the GA. The choice of each ߙ௜ and ܸ as the parameter of genetic algorithm is based on 
the judgment of the author through the examination of convergence rate. However, we also 
investigated the values of parameters before running the GA. Larger ߙ௜ and ܸ values are used 
for the early iterations and smaller values are used for the later iterations to allow for large 
changes early and convergence to a more accurate solution later. 

Stet 2: Generate an initial population of ܯ chromosomes (mixture designs) with a random value. 
Assume the number of chromosomes (ܯ) is odd. We use the real value encoding with four 
decimal places to encode each chromosome. To generate the initial population, a random 
sample is first taken in a hypercube. Then each sampled point in a hypercube is mapped to the 
constrained mixture space by applying the function used by Borkowski and Piepel (2009).  

Step 3:  Evaluation of fitness value of chromosomes in the population by calculating the objective 
function ܨ. We use the WG-efficiency as the objective function. 

Step 4:  Chromosomes selection. We use a selection process with elitism for which the chromosome 
with the largest fitness at each generation is unchanged and is kept to be in the next generation. 
The remaining ܯ െ 1 chromosomes are randomly paired for the reproduction process. 

Step 5:  Produce offspring of the next generation by using genetic operators: blending, between-parent 
crossover, within-parent crossover, and mutation. The blending process, which is a 
reproduction, is an applied operation between two parents. Afterwards, two crossover operators, 
which are the Between-Parent Crossover and the Within-Parent Crossover, are also performed. 
For the Between-Parent Crossover, offspring are obtained by swapping the tail fractions of two 
genes of two paired parents. For the Within-Parent Crossover, an offspring is obtained by 
swapping the tail fractions within a gene. Finally, mutation is applied in which one of the 
mixture components is randomly chosen and its proportion is mutated using random normal 
deviates to form the new mixture component, and after that the remaining mixture components 
are adjusted to ensure that sum of all mixture proportions equals one. 

Step 6:  Evaluation of fitness value of chromosomes in the offspring by calculating the objective 
function ܨ. According to the principle of survival of the fittest, the more adaptive chromosomes 
are kept, and the less adaptive ones are discarded in the course of generating a new population. 
That is, the fitter chromosome in the parent/offspring pair is retained for the next generation.  

Step 7:  Repeat Steps 5 and 6 for ܫ generations. 
Step 8:  Employ a local grid search to the best design to further improve objective function ܨ yielding 

the WG-optimal design. A local grid search looks for designs in a small neighbourhood of best 
design. This is accomplished by perturbing the component proportions by small increments to 
search for further improvements in the objective function ܨ. This continues until no further 
improvement is found. 

 
6. Numerical study and results 
 
In this section, we present two examples illustrating WG-optimal exact designs produced by our GA and 
compare them to the designs generated by the PROC OPTEX exchange algorithm of SAS/QC (SAS 
Institute 2012). Fedorov’s algorithm via PROC OPTEX is used to find the D-optimal designs and the A-
optimal designs that have maximal G-efficiency for the model individually. All designs generated by the 
exchange algorithm in SAS will be referred simply as EA designs. We used a candidate list where the 
points are in a resolution 0.01 grid placed over the design space. The GA designs are generated using 
author-written program with MATLAB.  
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The fraction of design space (FDS) plots show the distributions of the SPV over the region of interest for 
different models on the same graph. Thus, in this work we use the FDS plots for assessing the robustness 
of a design to model change. For FDS plots, we will restrict the study to the quadratic and linear models 
because the curves for these models give a manageable summary of that design’s prediction variance 
performance. Therefore, only the Scheffé quadratic model (or full model) and linear models (the most 
reduced model) will be considered for the assessment of model robustness for a design. For additional 
information of the FDS curves for examining model robustness, see Goldfarb et al. (2004) and Ozol-
Godfrey et al. (2005).  
 

In this paper, we also investigate the values of genetic parameters before running the genetic algorithm. 
We begin by sequentially creating many sets of values for the ߙ௜ and ܸ that correspond to a certain range 
of values supplied by the experimenter. The best set of the ߙ௜ and ܸ values is the set that generates the 
highest objective function values and then becomes very stable throughout the later iterations. For GA-
generated designs, we use 0.02 ൑ ,௕ߙ ,௕௖ߙ ௪௖ߙ ൑ 0.1; 0.05 ൑ ௠ߙ ൑ 0.2	 as the range of ߙ௜ and 0.1 ൑
ܸ ൑ 0.3	as the range of ܸ values. The ߙ௜ and ܸ values are reset to a smaller value after 1,500 generations 
and this algorithm was run for 9,000 generations for the WG-optimal exact designs.  
 

6.1 Three components with only SCCs example 
 

A poultry feed blend experiment with three mixture components taken from Snee and Rayner (1982) 
serves as an initial example in illustrating our method. The objective of the experiment is to evaluate the 
effects of the component proportions on the weight gain of chicks consuming the feed. There are three 
ingredients in the mixture process; maize ሺݔଵሻ, fish ሺݔଶሻ, and soybean ሺݔଷሻ. These ingredients have the 
following lower and upper proportion constraints: 

0.3 ൑ ଵݔ ൑ 0.8; 		0.0 ൑ ଶݔ ൑ 0.3; 		0.0 ൑ ଷݔ ൑ 0.5.  

The region of the poultry experiment has six vertices. The full model under consideration is the Scheffé 
quadratic mixture model. The complete 6-term model is: 

ሻݕሺܧ ൌ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ଷݔଷߚ ൅ ଶݔଵݔଵଶߚ ൅ ଷݔଵݔଵଷߚ ൅   .ଷݔଶݔଶଷߚ

For the EA designs, the candidate list for this example consisted of 1,316 points constituting a grid of 
resolution 0.01 placed over the design space. We consider six competing EA and GA designs with ݊ ൌ
10 runs. The competing designs are the GA designs based on the WG-criterion with ܴ ൌ 1, 10, 100 and 
1,000  (WG10-R1, WG10-R10, WG10-R100 and WG10-R1000), the EA designs based on the D-
criterion that has maximal G-efficiency using STATIC and NONE options as the type of coding (DS10, 
DN10), and the EA designs based on the A-criterion that has maximal G-efficiency using STATIC and 
NONE options as the type of coding (AS10, AN10). We found that the DS10 design is identical with the 
DN10 design, so only the DS10 design will be referenced. As shown in Table 3, the EA designs based 
on A-criterion that has maximal G-efficiency were also studied but had poorer SPV properties than the 
other designs, and therefore excluded in this study. Therefore, we compare the five designs. The WG10 
designs are referred to as the WG-optimal exact design using genetic algorithm with all the ܴ values. 
The WG10-R1, WG10-R10, WG10-R100, WG10-R1000 designs are shown in Table A1 in the 
Appendix.  
 

 
        WG10-R1    WG10-R10          WG10-R100     WG10-R1000           DN10 

Fig. 1.  The competing designs for the poultry experiment.  and   represent 1 and 2 replicates of 
that design point, respectively. 



  

 

484 

The differences in the distributional patterns of all competitive designs are shown in Fig. 1. We notice 
that the WG10 designs have similar patterns of points since they contain four or five vertices, near the 
vertices, near an edge centroid and near the overall centroid, while the patterns of points of the DS10 
design lie on all vertices with varying replication and contain edge centroid and near overall centroids. 
Note that the WG10 designs have no replicated points. 
 
Table 3 
The approximate WG-efficiencies, approximate G-efficiencies and Max SPV values for eight competing 
designs for the poultry experiment. 

Design R WG-efficiency Model type G-efficiency Max SPV values 

WG10-R1 1 77.7845 
Quadratic model 87.25% 6.8772 
Linear model 79.41% 3.7778 

WG10-R10 10 80.4258 
Quadratic model 88.76% 6.7600 
Linear model 77.45% 3.8733 

WG10-R100 100 81.0606 
Quadratic model 88.67% 6.7667 
Linear model 77.73% 3.8596 

WG10-R1000 1000 80.6900 
Quadratic model 87.55% 6.8530 
Linear model 78.15% 3.8389 

DN10, DS10 

1 74.1677 
Quadratic model 72.45% 8.2820 

10 74.0465 
100 74.0225 

Linear model 78.05% 3.8436 
1000 74.0198 

AN10 

1 60.7252 
Quadratic model 69.41% 8.6440 

10 62.3689 
100 62.6944 

Linear model 64.66% 4.6393 
1000 62.7302 

AS10 

1 36.0593 
Quadratic model 35.52% 16.8922 

10 34.0072 
100 33.6008 

Linear model 46.21% 6.4918 
1000 33.5562 

 

 
Table 3 gives the approximate WG-efficiencies, approximate G-efficiencies and Max SPV values for 
five competing designs. The WG-efficiencies of the WG10 designs are comparable except the WG10-
R1 design. The WG-efficiencies values of the DS10 design is quite comparable for all the ܴ values. The 
G-efficiencies and maximum SPV values of the WG10 designs are quite comparable for both the Scheffé 
quadratic and Scheffé linear models. The EA designs perform poorly when examining the G-efficiencies 
and maximum SPV values for both the Scheffé quadratic and Scheffé linear models. The WG10-R1 
design is inferior to other WG10 designs. The EA designs perform poorer than the WG10 designs in 
terms of the higher WG-efficiencies, the higher G-efficiencies and lower maximum SPV values for both 
the Scheffé quadratic and Scheffé linear models.  
 

 
Fig. 2. FDS plot for comparing the WG10 designs and the EA designs for the Scheffé quadratic and 
linear models for the poultry experiment 
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Fig. 2 shows the comparison between five competing designs. The FDS curve for both the Scheffé 
quadratic and linear models of the DS10 design performs poorly for most of the design space compared 
to the WG10 designs. For the Scheffé quadratic and linear models, the WG10 designs have similar SPV 
distribution for most of the design space. For the majority of the design space, the WG10 designs appear 
to have good robustness properties because it has much flatter and lower FDS curves for both the Scheffé 
quadratic and linear models, indicating more desirable SPV distributions. All designs are nearly identical 
for the Scheffé linear model except for the largest 20% of SPV values for which the WG10 designs are 
superior. 
 
6.2 Three components with SCCs and MCCs example 
 
The second case study is a three-component mixture experiment with both SCCs and MCCs, taken from 
Snee (1979). The three SCCs are the following: 

0.1 ൑ ଵݔ ൑ 0.5; 			0.1 ൑ ଶݔ ൑ 0.7	ܽ݊݀	 0.0 ൑ ଷݔ ൑ 0.7 .   

Then, the space is further constrained by the following MCCs: 

0.9 ൑ ଵݔ0.85 ൅ ଶݔ0.9 ൅ ଷݔ ൑ 0.95  

0.4 ൑ ଵݔ0.7 ൅   .ଷݔ

The boundary formed has six vertices. The full model under consideration is the Scheffé quadratic 
mixture model: 

ሻݕሺܧ ൌ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ଷݔଷߚ ൅ ଶݔଵݔଵଶߚ ൅ ଷݔଵݔଵଷߚ ൅ .ଷݔଶݔଶଷߚ  
 
The EA designs are also used to solve this problem for performance comparison purposes. The competing 
designs with ݊ ൌ 10 runs are considered in this example: the GA design based on the WG-criterion with 
ܴ ൌ 1, 10, 100 and 1,000 (WGM10-R1, WGM10-R10, WGM10-R100, WGM10-R1000), and the EA 
designs based on D-criterion that has maximal G-efficiency using STATIC and NONE coding (DSM10, 
DNM10). We found that the DSM10 design is identical with the DNM10 design, so only the DSM10 
design will be referenced. Therefore, we compare five designs. The WGM10 designs are referred to as 
the WG-optimal exact design using GA with all the ܴ values. The set of points of the WGM10 designs 
is given in Table A2 in the Appendix.  
 
Fig. 3 shows the differences in the distributional patterns of all competitive designs. We notice that the 
WGM10 designs have similar patterns of points since they contain three vertices, near the vertices, near 
an edge centroid and near the overall centroid, while the patterns of points of the DSM10 design lie on 
all vertices with varying replication and contain near overall centroids with replication. Note that the 
WGM10 designs have no replicated points. 
 

 
  WGM10-R1         WGM10-R10  WGM10-R100      WGM10-R1000      DSM10 

Fig. 3. The competing designs for Snee’s experiment.  and   represent 1 and 2 replicates of that 
design point, respectively. 
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The approximate WG-efficiencies, approximate G-efficiencies and maximum SPV values for five 
competing designs are given in Table 4. The WG-efficiencies of the WGM10 designs are comparable 
except for the WG10-R1 design. For the DSM10 design, the WG-efficiencies values with ܴ ൌ 10, 100 
and 1,000 are comparable. The WGM10 designs are quite comparable based on the G-efficiencies and 
maximum SPV values for both the Scheffé quadratic and Scheffé linear models. The DSM10 designs 
perform poorly when examining the G-efficiencies and maximum SPV values for both the Scheffé 
quadratic and Scheffé linear models.  
 
Table 4 
The approximate WG-efficiency, approximate G-efficiency and Max SPV values for competing designs 
for Snee’s experiment. 

Design R WG-efficiency Model type G-efficiency 
Max SPV 

values 

WGM10-R1 1 73.9436 
Quadratic model 84.4189 7.1074 
Linear model 78.1509 3.8387 

WGM10-R10 10 75.9750 
Quadratic model 84.2884 7.1184 
Linear model 76.6696 3.9129 

WGM10-R100 100 75.9929 
Quadratic model 84.5098 7.0998 
Linear model 77.0661 3.8928 

WGM10-R1000 1000 76.2369 
Quadratic model 84.4424 7.1054 
Linear model 75.9242 3.9513 

DNM10, DSM10 

1 62.4809 
Quadratic model 66.3833 9.0384 

10 61.4238 
100 61.2145 

Linear model 73.1176 4.1030 
1000 61.1915 

 

 
Fig. 4. FDS plot for comparing the WGM10 designs and the EA design for the Scheffé quadratic and 

linear models for Snee’s experiment. 
 
Fig. 4 shows the comparison between five competing designs. For the Scheffé quadratic model, the 
DSM10 design performs poorly for a small fraction (2%) of the design space. Therefore, if the 
experimenter decides to use the DSM10 design, there is a risk of having poor prediction variance 
properties in a potentially important region of the design space. For the Scheffé quadratic and Scheffé 
linear models, the WGM10 designs have similar SPV distribution for most of the design space. For the 
majority of the design space, the WGM10 designs appear to have good robustness properties because it 
has much flatter and lower FDS curves for both the Scheffé quadratic and linear models, indicating more 
desirable SPV distributions.  
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7. Conclusions 
 
The goal of a genetic algorithm is to optimize an objective function, and its success is based on the 
survival of the fittest evolutionary principal. In our genetic algorithm, we develop the WG-efficiency as 
the objective function for evaluating the fitness of each chromosome (design). We focus on the best 
design based on minimax criteria with the goal of controlling the worst prediction variance. The goal of 
weighted G-optimality is to minimize the weighted average of the maximum SPV in the design region 
over a set of reduced models. Thus, our algorithm constructs model-robust mixture designs. The WG-
optimality criterion requires all those involved in planning the experiment to consider a set of reduced 
models and assignment of weights based on the additional generalizations as well as characteristics of 
scientific knowledge. 
 
Before performing an experiment, the experimenter must decide which type of design for fitting the 
approximating model. Frequency, the initial model may not turn out to be the final model, the 
experimenter should exercise caution when choosing a design. Therefore, the model robustness 
properties of a design are an important consideration. When the experimenter decides which mixture 
design is the best based on design optimality criteria, it is important that the optimality criteria should be 
determined over a set of reduced models.  
 
The genetic algorithm presented in this paper generates designs by recruiting points from a continuous 
design space. The search in a continuous design space produces an upper bound for efficiencies that is 
larger than the upper bound when the search is in a discrete design space. Our algorithms present an 
interesting alternative for generating optimal designs. In this paper, we only considered mixture designs 
on an irregularly-shape polyhedron region within the simplex.  
 
Based on the results, the WG-optimal exact designs appear to have model robustness because our designs 
start with small values of the SPV and remain relatively flat throughout the design space across a set of 
possible reduced models. The WG-optimal exact designs perform better than the EA designs in terms of 
the approximate WG-efficiencies, approximate G-efficiencies, maximum SPV values and the robustness 
properties. That is, the WG-efficiency criterion as the objective function is smooth and well behaved. 
 
Genetic algorithms are not available in the most popular software packages for generating the optimal 
designs. The genetic algorithm presented in this paper can prove to be useful in situation where the 
experimenter finds that some model effects may be insignificant. That is, the experimenter will likely 
decide to use a reduced model in the analysis phases. 
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Appendix 
 
The WG-optimal exact designs produced by our genetic algorithm are shown in this appendix. 
 

Table A1   
The WG10 designs for the poultry experiment. 

ଶݔ ଵݔ  ଷݔ
Common runs for all designs 

0.3000 0.3000 0.4000 
0.5000 0.0000 0.5000 
0.7000 0.3000 0.0000 
0.8000 0.0000 0.2000 

Addition runs for the WG10-R1 design 
0.3000 0.2151 0.4849 
0.4374 0.0626 0.5000 
0.5139 0.2861 0.2000 
0.5617 0.1700 0.2683 
0.7906 0.2094 0.0000 
0.8000 0.0614 0.1386 

Addition runs for the WG10-R10 design 
0.3000 0.2000 0.5000 
0.4779 0.0503 0.4718 
0.4902 0.2933 0.2165 
0.5722 0.1591 0.2687 
0.7839 0.0560 0.1601 
0.7894 0.2106 0.0000 

Addition runs for the WG10-R100 design 
0.3000 0.2133 0.4867 
0.4524 0.0587 0.4889 
0.5215 0.2918 0.1867 
0.5670 0.1600 0.2730 
0.7765 0.0528 0.1707 
0.8000 0.2000 0.0000 

Addition runs for the WG10-R1000 design 
0.3000 0.2220 0.4780 
0.4352 0.0648 0.5000 
0.5395 0.2848 0.1757 
0.5676 0.1584 0.2740 
0.8000 0.0608 0.1392 
0.8000 0.2000 0.0000 

 
 



  

 

490 

Table A2   
The WGM10 designs for Snee’s experiment. 

ଶݔ ଵݔ															  ଷݔ
Common runs for all designs 

0.1000 0.57 0.33 
0.2667 0.1 0.6333 
0.5000 0.1000 0.4000 

Addition runs for the WGM10-R1 design 
0.1000 0.3500 0.5500 
0.1585 0.3646 0.4769 
0.2047 0.5384 0.2569 
0.3358 0.4963 0.1679 
0.3403 0.2797 0.3800 
0.3488 0.1000 0.5512 
0.4947 0.2579 0.2474 

Addition runs for the WGM10-R10 design 
0.1049 0.3427 0.5524 
0.1443 0.3803 0.4754 
0.2030 0.5391 0.2579 
0.3095 0.3082 0.3823 
0.3333 0.5000 0.1667 
0.3469 0.1034 0.5497 
0.5000 0.2500 0.2500 

Addition runs for the WGM10-R100 design 
0.1000 0.4700 0.4300 
0.1125 0.3313 0.5562 
0.2655 0.4795 0.2550 
0.3000 0.2972 0.4028 
0.3309 0.5007 0.1684 
0.3591 0.1000 0.5409 
0.5000 0.2500 0.2500 

Addition runs for the WGM10-R1000 design 
0.1000 0.3516 0.5484 
0.1996 0.2006 0.5998 
0.2014 0.5395 0.2591 
0.2892 0.3110 0.3998 
0.3333 0.5000 0.1667 
0.3559 0.1431 0.5010 
0.4933 0.2600 0.2467 
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