

* Corresponding author
E-mail: jairo.montoya@unisabana.edu.co (J. R. Montoya-Torres)

2020 Growing Science Ltd.
doi: 10.5267/j.ijiec.2019.8.002

International Journal of Industrial Engineering Computations 11 (2020) 255–280

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Using a hybrid heuristic to solve the balanced vehicle routing problem with loading constraints

Sardar and c*Torres-Jairo R. Montoya ,bNeira-Eliana María González ,aMejía-Carlos A. Vega
dM.N. Islam

aOperations & Supply Chain Management Research Group, Universidad de La Sabana, Campus del Puente del Común, km 7 Autopista
Norte de Bogotá D.C., Chía (Cundinamarca), Colombia
bDepartment of Industrial Engineering, Pontificia Universidad Javeriana, Carrera 7 40-62 Edificio José Gabriel Maldonado S.J., Bogotá
D.C., Colombia
cLogistics Systems Research Group, Faculty of Engineering, Universidad de La Sabana, Campus del Puente del Común, km 7 Autopista
Norte de Bogotá D.C., Chía (Cundinamarca), Colombia
dInstitute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14425, Melbourne, Victoria, 8001, Australia
C H R O N I C L E A B S T R A C T

Article history:
Received July 1 2019
Received in Revised Format
August 10 2019
Accepted August 10 2019
Available online
August 10 2019

 The Vehicle Routing Problem with Loading Constraints (VRPLC) is strongly related to real life
applications in distribution logistics. It addresses the simultaneous loading and routing of
vehicles, which are two crucial activities in transportation. Since treating these operations
separately may result in impractical solutions, the development of applications for VRPLCs has
gained the attention of researchers in recent years. Several heuristic methods have been proposed,
but they consider only a limited group of practical characteristics that arise in real world
situations. This study proposes a hybrid heuristic method based on the Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic and the Clarke and Wright Savings
algorithm, to solve a VRPLC with several loading and routing constraints that have not been
considered simultaneously before. Experimental results show that the proposed procedure
produces competitive solutions in short processing times. Lastly, the impact of the added
operational constraints is also analyzed.

© 2020 by the authors; licensee Growing Science, Canada

Keywords:
Vehicle Routing Problem with
Loading Constraints
Hybrid heuristic
GRASP
Clarke and Wright Savings
Practical loading and routing
constraints

1. Introduction

In recent years, there has been growing interest in the simultaneous determination of both the optimal
routes and the packing patterns of vehicles, as this combination can assist in producing better global
solutions for distribution logistics (Hokama et al., 2016). This can be carried out by modeling and solving
a problem known as the Vehicle Routing Problem with Loading Constraints (VRPLC) (Zachariadis,
Tarantilis, & Kiranoudis, 2013). The VRPLC is the combination of two well-known NP-hard problems:
The Container Loading Problem (CLP) and the Vehicle Routing Problem (VRP) (Iori & Martello, 2010).
Because of its potential for practical applications, the VRPLC is an emergent research stream in logistics

256

(Zachariadis et al., 2016), and several heuristic applications have been proposed to solve different
versions of the problem.

In spite of this, there are several practical considerations, which could drive solution approaches towards
more realistic scenarios, that have not been considered in the majority of solution approaches. Among
the group of overlooked operational constraints, weight distribution inside the container of the vehicles
and route balancing have been recognized as interesting research directions. This is because, on one hand,
an improper weight distribution can increase fuel consumption (Baldi et al., 2012), and it could also
impact on the safety of personnel and the safe handling of a container (Davies & Bischoff, 1999). On the
other hand, achieving an efficient balance of the delivery routes (e.g. in terms of carried weight, traveled
time or distance) helps to introduce aspects of fair treatment between the drivers of a transporting
company (Sicilia et al., 2016).

Considering the above, the objective of this article is to present a heuristic method for solving a version
of the VRPLC with characteristics not previously considered simultaneously: Container weight limit, the
load-bearing strength of items, weight distribution of the load stored inside the container of the vehicle,
delivery time windows, and balancing of the vehicle fleet. According to Laporte (2009), heuristic
developments should be oriented towards simpler and more flexible methods, even if this means a small
loss in accuracy, in order to avoid ‘over-engineered’ solution procedures. Moreover, flexibility and
simplicity have also been recognized as essential attributes of good heuristics (Cordeau et al., 2002). In
this regard, the proposed method is a simple streamlined procedure, with low processing computational
times for both large or small instances, and the flexibility to incorporate further practical considerations.
More specifically, the method is a hybrid heuristic that combines a Greedy Randomized Adaptive Search
Procedure (GRASP) heuristic and a Clarke and Wright Savings (CWS) algorithm. This hybrid heuristic
expands on the previous work by Vega-Mejía and Montoya-Torres (2017) by providing a more detailed
explanation of the solution procedure and a deeper analysis of the computational results and implications
of the considered practical constraints. It is expected that the proposed heuristic procedure serves as a
starting point to represent real life situations in distribution operations more precisely.

The remainder of the article is organized as follows. Section 2 provides a brief review of commonly used
heuristic approaches and previously considered loading and routing constraints. Section 3 presents a more
formal definition of the VRPLC addressed in this article. Section 4 describes in detail the proposed hybrid
heuristic. Section 5 describes the computational experiments that were carried out, providing the
benchmark instances that were employed and the analysis of the experimental results. Finally, Section 6
presents some concluding remarks and provides interesting ideas for future research in VRPLC
applications.

2. Background

Provided that the VRPLC is an NP-Hard problem, the decision to develop heuristic solutions is supported
and favored in the literature about such problems. Some commonly used heuristic approaches are based
on well-known metaheuristics, such as Tabu Search (TS) (e.g. Bortfeldt & Homberger, 2013; Gendreau
et al., 2006), GRASP (e.g. Moura & Oliveira, 2009), Ant Colony Optimization (ACO) (e.g. Fuellerer et
al., 2010), Simulated Annealing (SA) (e.g. Ceschia et al., 2013), and Variable Neighborhood Search
(VNS) (e.g. Tricoire et al., 2011). According to Junqueira and Morabito (2015), these solution approaches
can be grouped into three distinctive approaches. The first one is called “loading after routing”, which
basically determines the delivery routes of the vehicles first, and then starts validating that the loading
patterns are feasible. In the second approach, called “loading while routing”, as a delivery node is
included in a delivery route, the heuristic procedure determines if the resulting packing pattern is feasible.
The third approach is a combination of the other two. A fourth approach is proposed by Bortfeldt and
Homberger (2013). The approach “pack first – route second” consists of first building a loading
arrangement for each node in the delivery network, and then building the delivery routes, verifying that
the loading arrangement for each route is feasible.

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 257

Both the CLP and VRP have been extensively studied in the literature, and recent reviews include the
works by Bortfeldt and Wäscher (2013) who presented an updated classification framework for Packing
Problems (PP) based on the use of the practical attributes of the problem; Montoya-Torres et al. (2015),
who analyzed VRPs with multiple depots; and (Lin et al., 2014), who presented the evolution of VRP
into Green VRP. The review by Caceres-Cruz et al. (2014) focused on the combination of VRPs with
other activities related to transportation, to construct what they refer to as Rich VRPs (RVRP). According
to their classification, the VRPLC is a type of RVRP. Regarding VRPLCs, the recent reviews by Iori and
Martello (2010) and Junqueira and Morabito (2015) presented an account of the algorithmic approaches
used to solve the problem. To the best of our knowledge, the most recent review on VRPLCs corresponds
to the work by Vega-Mejía, Montoya-Torres and Islam (2019b), who analyzed how the different
attributes of the problem (i.e. objective functions and operational constraints) could be realigned towards
sustainable transportation applications.

Some of the previous studies argue for the necessity of including several practical characteristics when
solving packing or routing problems. However, Bortfeldt and Wäscher (2013) concluded from their
review work on Packing Problems (PP), that many of the practical constraints originally described by
Bischoff and Ratcliff (1995) had been neglected in PP studies. Moreover, Iori and Martello (2010) and
Junqueira and Morabito (2015) suggested the inclusion of several operational attributes of the VRPLC
(e.g. split deliveries, weight distribution, route balancing, time windows, pickup and delivery) as future
research directions in the development of solution methods. In their review, Junqueira and Morabito
(2015) showed that studies have mostly concentrated on ten practical constraints: (i) Rotation of items,
(ii) vertical stability, (iii) Last In – First Out (LIFO) loading/unloading, (iv) fragility of items, (v) box to
pallets and pallets into vehicles, (vi) weight related constraints, (vii) time windows, (viii) time-
constrained routes, (ix) pickup and delivery, (x) and split deliveries. However, the studies they analyzed
considered only half of these attributes, at the most. Similar findings can be observed in the previous
review works (e.g. Vega-Mejía et al., 2019b). To the best of our knowledge, the practical constraints
considered in the present study have not been considered simultaneously in heuristic solution procedures
for VRPLCs before.

Other recent studies seem to follow the trend described by Junqueira and Morabito (2015). For instance,
Dominguez, Juan and Faulin (2014) considered as practical constraints the weight limit of the container
of the vehicles, LIFO loading/unloading, and the possibility of rotating the items, in the minimization of
the transportation costs of a 2-Dimensional (2D) VRPLC. To solve the problem, the authors employed a
Random-Biased CWS algorithm, where the packing conditions were checked, as the routes were merged
(i.e. loading while routing). This prevented the generation of any infeasible solutions. The heuristic
method proposed by Zhang et al. (2015), aimed at minimizing fuel consumption in a CVRP with 3-
Dimensional (3D) items, considers sufficient vertical support and the fragility of items, LIFO conditions,
container weight limits and a heterogeneous vehicle fleet. The authors implemented an Evolutionary
Local Search (ELS), whose initial solution was generated using a CWS algorithm for the routing part,
and sorting rules of the items based on their fragility, LIFO order, vertical support and volume, for the
packing problem.

Bortfeldt, Hahn, Männel and Mönch (2015) proposed two hybrid algorithms to analyze the impact of the
neighborhood structure on the quality of the solution of a 3D VRPLC with the objective of minimizing
the total traveled distance. In the first algorithm, the routing sub-problem is solved by an Adaptive Large
Neighborhood Search (ALNS). In the second algorithm, the routing problem is solved employing a VNS,
whose initial solution is generated by a CWS algorithm. In both hybrid algorithms, the packing procedure
is performed with a Tree Search Algorithm (TSA). As was the case in the study by Zhang et al. (2015),
the items were tagged as either fragile or non-fragile.

Dominguez et al. (2016c) proposed a multi-start Biased-Randomized CWS algorithm to minimize the
total costs of a 2D VRPLC, where the vehicle fleet consists of heterogeneous vehicles. As practical
considerations, the rotation of the boxes was allowed and there was a limit on the weight a vehicle could

258

transport. The authors suggested that other practical routing aspects such as pick-up and delivery, time
windows, and stochastic demands may offer interesting research directions. In related studies,
Dominguez et al. (2016b) and Dominguez et al. (2016a) used biased randomization based algorithms and
a CWS algorithm to solve 2D VRPLCs with the objective of minimizing the total distribution costs, using
heterogeneous and homogeneous vehicle fleets, respectively. Dominguez, Juan, de la Nuez, et al. (2016)
used an Iterated Local Search (ILS) to handle operational constraints such as the rotation of boxes, the
weight capacity of the transporting vehicles, and LIFO loading/unloading. Dominguez, Guimarans, et al.
(2016) employed an LNS to solve the problem, which considered box rotations, LIFO loading/unloading,
and backhauls. In the three studies, the cargo arrangements are checked every time two routes are merged
by the CWS. Continuing along this line of research, more recently Guimarans et al. (2018) minimized
the total travel time in a 2D VRPLC employing a simheuristic approach (see Juan et al., 2015) that
combined Monte Carlo Simulation and a biased randomized ILS. The authors considered some of the
practical constraints mentioned in previous studies and added stochastic travel times to represent
changing traffic conditions. Along with the study by Guimarans et al. (2016), these are, to the best of our
knowledge, the only studies that have included stochastic considerations within VRPLC formulations.

Zhang et al. (2017) proposed a hybrid heuristic that combines a Bee Colony Algorithm (BCA) with a
TSA, to minimize the traveled distance in a 3D VRPLC with rotation of the boxes, vertical stability,
fragility of items, the weight limit of the container, LIFO loading/unloading, and delivery time windows.
Different from other studies in this brief review, the proposed hybrid heuristic employs a “pack first –
route second” solution approach. As future research, the authors recommended the continuous
improvement of the proposed heuristic so that it can be applied in other rich VRPs. Alinaghian, Zamanlou
and Sabbagh (2017) proposed an elitist non-dominated sorting local search to minimize the total traveling
time and, simultaneously, balance the weight load that the vehicles carry in a time-dependent 2D VRPLC.
The authors employed a piecewise linear function to represent the concept of time dependency and claim
that good quality solutions can be obtained by utilizing the proposed method, although many operational
constraints, considered in previous studies, were not included (e.g. LIFO loading/unloading). It is in this
regard that the authors recommended an avenue for further research on this problem.

Lastly, Koch, Bortfeldt and Wäscher (2018) proposed a hybrid heuristic approach that combines an
ALNS and packing heuristics, such as bottom-left-first and touching area heuristics, to solve a 3D
VRPLC with time windows and pickup and delivery conditions. Practical loading constraints are
considered as well (i.e. vertical stability, rotation of items, fragile and non-fragile items, and LIFO
loading/unloading). The proposed hybrid checks the feasibility of the packing arrangement of a generated
route, which could be classified as a “loading while routing” approach to solve the problem. The authors
suggested the consideration of different backhauls conditions as interesting topics to research further.

Based on the above and to address some of the gaps identified so far in the literature, the following
sections define the VRPLC considered in this study, and the detailed explanation of how a hybrid
heuristic solution method can solve it.

3. Problem definition

The VRPLC considered in this paper consists of a set of clients 𝐊 = {1, … , 𝑚} that require the delivery
of different types of items, from a set of 3D rectangular boxes 𝐁 = {1, … , 𝑛}. Each item type is defined
by the dimensions 𝐵𝐿௜, 𝐵𝑊௜ and 𝐵𝐻௜ (representing length, width and height, respectively), weight 𝐵𝑀௜
and weight bearing strength 𝐵𝑆𝑀௜ for ∀𝑖 ∈ 𝐁. The delivery task is performed using a homogeneous fleet
of vehicles 𝐕 = {1, … , 𝑝}, where each vehicle has a weight capacity 𝑉𝑀 and dimensions 𝐶𝐿, 𝐶𝑊 and 𝐶𝐻
(representing length, width and height, respectively), so that 𝐵𝐿௜ < 𝐶𝐿, 𝐵𝑊௜ < 𝐶𝑊 and 𝐵𝐻௜ < 𝐶𝐻. The
delivery of the items required by a client (𝐵𝐾௜௞, 𝑖 ∈ 𝐁, 𝑘 ∈ 𝐊) must be done using only one vehicle, but
one vehicle can serve multiple clients. Furthermore, each vehicle starts its delivery route at the same
central depot and returns to it after delivering all the assigned orders. This central depot can be
represented as client 1 in set 𝐊. In addition, each client has a defined service time 𝑆𝑇௞ and a time window

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 259

between 𝑆𝑊௞ and 𝐸𝑊௞ in which they would expect the delivery of their items to take place. Also, the
time required to go from one client 𝑘 ∈ 𝐊 to another client 𝑙 ∈ 𝐊 is 𝑇𝑇௞௟. For simplicity, 𝑇𝑇௞௟ is also used
as the distance between clients 𝑘 and 𝑙.

The objectives of this VRPLC are to minimize the total distance traveled of the vehicle fleet and possible
delays, to minimize the deviation of the center of gravity of the loaded vehicle from its geometrical
center, and to balance the vehicle fleet so that each vehicle carries approximately the same payload. These
objectives are subject to several practical loading and routing constraints, such as vertical stability, the
load bearing strength of the items, the weight capacity of the transporting vehicle, the sequence for
loading/unloading (i.e. LIFO), the weight distribution inside the vehicle container, delivery time
windows, and determining a balanced vehicle fleet. To better illustrate this, the next section presents a
Non-Linear Mixed Integer Program (NLMIP) for the problem.

3.1.NLMIP for the VRPLC

The following NLMIP model has been presented by Vega-Mejía, Montoya-Torres and Islam (2019a),
who based their model on the MIP model proposed by Junqueira et al. (2013). For practical purposes,
the model by Vega-Mejía et al. (2019a) is reproduced here in a summarized manner.

3.1.1. Sets

Apart from the sets mentioned previously, the following sets are used in the formulation. Set 𝐒 =
{0, … , 𝑚} represents the different transitions on the route of a vehicle. Assuming that 𝐵𝐿௜, 𝐵𝑊௜, 𝐵𝐻௜ have

integer values ∀𝑖 ∈ 𝐁, the sets 𝐗 = ቄ0, … , 𝑉𝐿 − min
∀௜∈𝐁

(𝐵𝐿௜)ቅ , 𝐘 = ቄ0, … , 𝑉𝑊 − min
∀௜∈𝐁

(𝐵𝑊௜)ቅ and

𝐙 = ቄ0, … , 𝑉𝐻 − min
∀௜∈𝐁

(𝐵𝐻௜)ቅ represent the available positions in which boxes can be placed inside the

vehicles’ containers. Additional sets 𝐗𝐍𝐏 and 𝐙𝐍𝐏 are also introduced to reduce the number of decision
variables in the model. These sets are referred to as “normal patterns” (see Christofides & Whitlock,
1977; Cui, 2007; Junqueira et al., 2013). Since the “normal patterns” limit the placement positions on
each axis, a “normal pattern” is not defined for 𝐘, to allow the improvement of the center of gravity.

3.1.2. Variables

Binary variables 𝑎௫௬௭
௜௞௩௦ are defined to determine the placement of the boxes inside the vehicles, and 𝑑௞௟

௩௦
to specify the delivery route of each vehicle, with 𝑖 ∈ 𝐁, 𝑘, 𝑙 ∈ 𝐊, 𝑠 ∈ 𝐒, 𝑣 ∈ 𝐕, 𝑥 ∈ 𝐗𝐍𝐏|𝑥 ≤ 𝑉𝐿 −
𝐵𝐿௜, 𝑦 ∈ 𝐘|𝑦 ≤ 𝑉𝑊 − 𝐵𝑊௜, 𝑧 ∈ 𝐙𝐍𝐏|𝑧 ≤ 𝑉𝐻 − 𝐵𝐻௜ (see Vega-Mejía et al., 2019a). Variables 𝑏௫௬௭

௩ and
ℎ௫௬௭

௩ , with 𝑥 ∈ 𝐗|𝑥 ≤ 𝑉𝐿 − 𝐵𝐿௜ , 𝑦 ∈ 𝐘|𝑦 ≤ 𝑉𝑊 − 𝐵𝑊௜, 𝑧 ∈ 𝐙|𝑧 ≤ 𝑉𝐻 − 𝐵𝐻௜, are used as variables to
handle the vertical stability and LIFO constraints. Variables 𝑐௞௩ , 𝑔௞௩ and 𝑓௞௩ are used to determine the
departure, arrival and tardiness, respectively, of vehicle 𝑣 ∈ 𝐕 when stopping at the location of client 𝑘 ∈
𝐊. The variables 𝑣𝑙𝑜𝑎𝑑௩ are used to calculate the weight of the load that vehicle 𝑣 ∈ 𝐕 carries when it
leaves the central depot. The maximum and minimum weights carried by the vehicles are represented by
variables 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 and 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑, respectively. And variables 𝑐𝑜𝑔𝑦௩௦ , 𝑑𝑒𝑣𝑐𝑜𝑔௩௦ and 𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒௩௦
are used for determining the geometrical location of the center of gravity, how much it deviates from the
mid-point of the width of the container, and the weight of vehicle 𝑣 ∈ 𝐕 in stage 𝑠 ∈ 𝐒, respectively.
Finally, 𝑎௫௬௭

௜௞௩௦ and 𝑑௞௟
௩௦ are binary variables, while the rest are real positive variables.

3.1.3. Model formulation

The following is the model presented by Vega-Mejía et al. (2019a). This section only presents the model
formulation and a brief explanation. For a full detailed explanation of the model and computational
experiments, the reader is referred to the study by Vega-Mejía et al. (2019a).

 min 𝑧ଵ = ∑ ∑ ∑ ∑ 𝑇𝑇௞௟𝑑௞௟
௩௦

∀௦∈𝐒∀௩∈𝐕∀௟∈𝐊∀௞∈𝐊 (1)

260

 min 𝑧ଶ = ∑ ∑ 𝑓௞௩∀௩∈𝐕∀௞∈𝐊 (2)

min 𝑧ଷ = 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 − 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑 (3)

 min 𝑧ସ = ∑ ∑ 𝑑𝑒𝑣𝑐𝑜𝑔௩௦∀௦∈𝐒∀௩∈𝐕 (4)

 ∑ ∑ ∑ 𝑑௞௟
௩௦

∀௦∈𝐒∀௩∈𝐕௟∈𝐊,௟ஷ௞ = 1 𝑘 ∈ 𝐊\{0} (5)

 ∑ ∑ ∑ 𝑠 ∙ 𝑑௞௟
௩௦

௦∈𝐒\{ଵ}∀௩∈𝐕∀௟∈𝐊 − ∑ ∑ ∑ 𝑠 ∙ 𝑑௟௞
௩௦

∀௦∈𝐒∀௩∈𝐕∀௟∈𝐊 = 1 𝑘 ∈ 𝐊\{0} (6)

 ∑ 𝑑௞௟
௩(௦ାଵ)

∀௟∈𝐊 − ∑ 𝑑௟௞
௩௦

∀௟∈𝐊 = 0 𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (7)

 ∑ ∑ 𝑑଴௟
௩௦

∀௦∈𝐒௟∈𝐊\{଴} ≤ 1 ∀𝑣 ∈ 𝐕 (8)

 ∑ ∑ ∑ ∑ ∑ 𝑎௫௬௭
௜௞௩௦

∀௭∈𝐙𝐍𝐏|௭ஸ௏ுି஻ு೔∀௬∈𝐘|௬ஸ௏ௐି஻ௐ೔∀௫∈𝐗𝐍𝐏|௫ஸ௏௅ି஻௅೔∀௦∈𝐒∀௩∈𝐕 = 𝐵𝐾௜௞

∀𝑖 ∈ 𝐁, ∀𝑘 ∈ 𝐊, 𝐵𝐾௜௞ > 0
(9)

 ∑ ∑ ∑ ∑ 𝑎௫௬௭
௜௞௩௦

∀௭∈𝐙𝐍𝐏|௭ஸ௏ுି஻ு೔∀௬∈𝐘|௬ஸ௏ௐି஻ௐ೔∀௫∈𝐗𝐍𝐏|௫ஸ௏௅ି஻௅೔∀௜∈𝐁|஻௄೔ೖவ଴ = ∑ ∑ 𝐵𝐾௜௞ ∙௟∈𝐊,௟ஷ௞∀௜∈𝐁|஻௄೔ೖவ଴

𝑑௟௞
௩௦ 𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚}

(10)

 ∑ ∑ ∑ ∑ 𝐵𝐾௜௞ ∙∀௦∈𝐒\{଴}௟∈𝐊,௟ஷ௞∀௞∈𝐊\{଴} ∀௜∈𝐁 𝐵𝐿௜ ∙ 𝐵𝑊௜ ∙ 𝐵𝐻௜ ∙ 𝑑௞௟
௩௦ ≤ 𝑉𝐿 ∙ 𝑉𝑊 ∙ 𝑉𝐻 ∀𝑣 ∈ 𝐕 (11)

∑ ∑ ∑ ∑ ∀௬∈𝐘|௬ᇲି஻ௐ೔ାଵஸ௬ஸ୫୧୬(௬ᇲ,௏ௐି஻ௐ೔)∀௫∈𝐗𝐍𝐏|௫ᇲି஻௅೔ାଵஸ௫ஸ୫୧୬(௫ᇲ,௏௅ି஻௅೔)௦∈𝐒\{௠}(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴
 ∑ 𝑎௫௬௭

௜௞௩௦
∀௭∈𝐙𝐍𝐏|௭ᇲି஻ு೔ାଵஸ௭ஸ୫୧୬(௭ᇲ,௏ுି஻ு೔) ≤ 1 ∀𝑣 ∈ 𝐕, ∀𝑥ᇱ ∈ 𝐗𝐍𝐏, ∀𝑦ᇱ ∈ 𝐘, ∀𝑧ᇱ ∈ 𝐙𝐍𝐏 (12)

 ∑ ∑ ∑ ∑ ∀௬∈𝐘|௬ᇲି஻ௐ೔ାଵஸ௬ஸ୫୧୬(௬ᇲ,௏ௐି஻ௐ೔)∀௫∈𝐗𝐍𝐏|௫ᇲି஻௅೔ାଵஸ௫ஸ୫୧୬(௫ᇲ,௏௅ି஻௅೔)௦∈𝐒\{௠}(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴
∑ 𝑎௫௬௭

௜௞௩௦
∀௭∈𝐙𝐍𝐏|௭ᇲି஻ு೔ାଵஸ௭ஸ୫୧୬(௭ᇲ,௏ுି஻ு೔) = 𝑏௫ᇲ௬ᇲ௭ᇲ

௩ ∀𝑣 ∈ 𝐕, ∀𝑥ᇱ ∈ 𝐗, ∀𝑦ᇱ ∈ 𝐘, ∀𝑧ᇱ ∈ 𝐙 (13)

 𝑧 ∙ 𝑏௫௬௭
௩ ≤ ∑ 𝑏௫௬௭ᇲ

௩௭ିଵ
௭ᇲୀ଴ ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, ∀𝑧 ∈ 𝐙, 𝑧 ≥ 1 (14)

∑ ∑ ∑ ∑ ∀௬∈𝐘|௬ᇲି஻ௐ೔ାଵஸ௬ஸ୫୧୬(௬ᇲ,௏ௐି஻ௐ೔)∀௫∈𝐗𝐍𝐏|௫ᇲି஻௅೔ାଵஸ௫ஸ୫୧୬(௫ᇲ,௏௅ି஻௅೔)௦∈𝐒\{௠}(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴
∑ 𝑠 ∙ 𝑎௫௬௭

௜௞௩௦
∀௭∈𝐙𝐍𝐏|௭ᇲି஻ு೔ାଵஸ௭ஸ୫୧୬(௭ᇲ,௏ுି஻ு೔) = ℎ௫ᇲ௬ᇲ௭ᇲ

௩ ∀𝑣 ∈ 𝐕, ∀𝑥ᇱ ∈ 𝐗, ∀𝑦ᇱ ∈ 𝐘, ∀𝑧ᇱ ∈ 𝐙
(15)

ℎ௫௬௭
௩ ≥ ℎ௫ᇲ௬௭ᇲ

௩ ∀𝑣 ∈ 𝐕, 𝑥 ∈ ቄ0, … , 𝑉𝐿 − min
∀௜∈𝐁

(𝐵𝐿௜) − 1ቅ , ∀𝑦 ∈ 𝐘,

 𝑧 ∈ ቄ0, … , 𝑉𝐻 − min
∀௜∈𝐁

(𝐵𝐻௜) − 1ቅ , 𝑥ᇱ ∈ ቄ𝑥 + 1, … , 𝑉𝐿 − min
∀௜∈𝐁

(𝐵𝐿௜)ቅ , 𝑧ᇱ ∈ ቄ𝑧, … , 𝑉𝐻 − min
∀௜∈𝐁

(𝐵𝐻௜)ቅ
(16)

ℎ௫௬௭
௩ ≥ ℎ௫௬௭ᇲ

௩ ∀𝑣 ∈ 𝐕, ∀𝑥 ∈ 𝐗, ∀𝑦 ∈ 𝐘, 𝑧 ∈ ቄ0, … , 𝑉𝐻 − min
∀௜∈𝐁

(𝐵𝐻௜) − 1ቅ,

𝑧ᇱ ∈ ቄ𝑧 + 1, … , 𝑉𝐻 − min
∀௜∈𝐁

(𝐵𝐻௜)ቅ
(17)

 ∑ ∑ ∑ ∑ ௬ᇲᇲ∈𝐘|௬ᇲି஻ௐೕାଵஸ௬ᇲᇲஸ୫୧୬൫௬ᇲ,௏ௐି஻ௐೕ൯௫ᇲᇲ∈𝐗𝐍𝐏|௫ᇲି஻௅ೕାଵஸ௫ᇲᇲஸ୫୧୬൫௫ᇲ,௏௅ି஻௅ೕ൯௨∈𝐒\{௠}(௝,௞)∈𝐁×𝐊|஻௄ೕೖவ଴

 ∑ ൬
஻ெೕ

஻௅ೕ∙஻ௐೕ
൰ 𝑎

௫ᇲᇲ௬ᇲᇲ௭ᇲᇲ
௝௞௩௨

௭ᇲᇲ∈𝐙𝐍𝐏|௭ᇲᇲஸ௏ுି ೕ
≤ ∑ ∑ ∑ ௫∈𝐗𝐍𝐏|௫ᇲି஻௅೔ାଵஸ௫ஸ୫୧୬(௫ᇲ,௏௅ି஻௅೔)௦∈𝐒\{௠}(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴

∑ ∑ ቀ
஻ௌெ೔

஻௅೔∙஻ௐ೔
ቁ 𝑎௫௬௭

௜௞௩௦
௭∈𝐙𝐍𝐏|௭ᇲି஻ு೔ାଵஸ௭ஸ୫୧୬(௭ᇲ,௏ுି஻ு೔)௬∈𝐘|௬ᇲି஻ௐ೔ାଵஸ௬ஸ୫୧୬(௬ᇲ,௏ௐି஻ௐ೔)

∀𝑣 ∈ 𝐕, ∀𝑥ᇱ ∈ 𝐗𝐍𝐏, ∀𝑦ᇱ ∈ 𝐘, ∀𝑧ᇱ ∈ 𝐙𝐍𝐏

(18)

 𝑐௞௩ ≥ 𝑆𝑊௞ ∙ ൫∑ ∑ 𝑑௟௞
௩௦

∀௦∈𝐒∀௟∈𝐊,௟ஷ௞ ൯ 𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (19)

 𝑐௞௩ − 𝑓௞௩ ≤ 𝐸𝑊௞ ∙ ൫∑ ∑ 𝑑௟௞
௩௦

∀௦∈𝐒∀௟∈𝐊,௟ஷ௞ ൯ 𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (20)

 𝑔଴௩ = ∑ (𝑆𝑊௞ − 𝑇𝑇଴௞) ∙ 𝑑଴௞
௩ଵ

௞∈𝐊\{଴} ∀𝑣 ∈ 𝐕 (21)

 𝑔௞௩ ≥ 𝑐௞௩ + 𝑓௞௩ + 𝑆𝑇௞ ∙ ൫∑ ∑ 𝑑௟௞
௩௦

∀௦∈𝐒∀௟∈𝐊,௟ஷ௞ ൯ 𝑘 ∈ 𝐊\{0}, ∀𝑣 ∈ 𝐕 (22)

 𝑐௟௩ ≥ 𝑔௞௩ + 𝑇𝑇௞௟ − 𝑀 ∙ (1 − ∑ 𝑑௞௟
௩௦

∀௦∈𝐒) (𝑘, 𝑙) ∈ 𝐊, 𝑘 ≠ 𝑙, ∀𝑣 ∈ 𝐕 (23)

 𝑣𝑙𝑜𝑎𝑑௩ = ∑ ∑ ∑ ∑ ∑ 𝑎௫௬௭
௜௞௩௦

∀௭∈𝐙𝐍𝐏|௭ஸ௏ுି஻ு೔∀௬∈𝐘|௬ஸ௏ௐି஻ௐ೔∀௫∈𝐗𝐍𝐏|௫ஸ௏௅ି஻௅೔௦∈𝐒\{௠}(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴ ∀𝑣 ∈ 𝐕 (24)

𝑣𝑙𝑜𝑎𝑑௩ ≤ 𝑉𝑀 ∀𝑣 ∈ 𝐕 (25)

𝑣𝑙𝑜𝑎𝑑௩ ≤ 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 ∀𝑣 ∈ 𝐕 (26)

 𝑣𝑙𝑜𝑎𝑑௩ ≥ 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑 ∀𝑣 ∈ 𝐕 (27)

 ∑ ∑ ∑ ∑ ∑ 𝐵𝑀௜ ∙ 𝑎௫௬௭
௜௞௩௦

∀௭∈𝐙𝐍𝐏|௭ஸ௏ுି஻ு೔∀௬∈𝐘|௬ஸ௏ௐି஻ௐ೔∀௫∈𝐗𝐍𝐏|௫ஸ௏௅ି஻௅೔

௠ିଵ
௦ᇲୀ௦(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴ =

𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒௩௦ ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚}
(28)

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 261

 𝑐𝑜𝑔𝑦௩௦ ∙ 𝑣𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑔𝑒௩௦ = ∑ ∑ ∑ ∀௫∈𝐗𝐍𝐏|௫ஸ௏௅ି஻௅೔

௠ିଵ
௦ᇲୀ௦(௜,௞)∈𝐁×𝐊|஻௄೔ೖவ଴

 ∑ ∑ 𝐵𝑀௜ ∙ ቀ𝑦 +
஻ௐ೔

ଶ
ቁ ∙ 𝑎௫௬௭

௜௞௩௦ᇲ

∀௭∈𝐙𝐍𝐏|௭ஸ௏ுି஻ு೔∀௬∈𝐘|௬ஸ௏ௐି஻ௐ೔
 ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚}

(29)

௏ௐ

ଶ
− 𝑐𝑜𝑔𝑦௩௦ ≤ 𝑑𝑒𝑣𝑐𝑜𝑔௩௦ ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (30)

 𝑐𝑜𝑔𝑦௩௦ −
௏ௐ

ଶ
≤ 𝑑𝑒𝑣𝑐𝑜𝑔௩௦ ∀𝑣 ∈ 𝐕, 𝑠 ∈ 𝐒\{𝑚} (31)

Particularly, (1) is defined to minimize the total distance traveled, (2) minimizes the total tardiness, in
(3) the vehicle fleet is balanced by minimizing the difference between the most and the least loaded
vehicles, and (4) minimizes the total deviation of the Center Of Gravity (COG) of the loaded vehicles
from the mid-point of the width of the container. These objectives are subject to the following constraints:
(5) Establish that the items of a client have to be delivered by only one vehicle, (6) and (7) guarantee
network flow feasibility, (8) forces vehicles to start their travel from the central depot, (9) cover the
demand of the clients, (10) guarantee that the items of a client will be transported by a single vehicle,
(11) and (12) refer to the basic packing constraints explained by Wäscher et al. (2007), (13) and (14)
enforce full vertical support for boxes not placed on the floor of the container of the vehicle, (15)-(17)
are used for the LIFO loading/unloading of items, (18) controls the weight bearing strength of items, (19)
and (20) consider the delivery time windows. Constraints (21)-(23) determine each vehicle’s departure
time from, and arrival time at, the location of a client. Finally, constraints (24) and (25) control the
maximum weight that can be loaded in each vehicle, (26) and (27) determine the most and least loaded
vehicles, and (28)-(31) are used to examine weight distribution inside the container of each vehicle.

4. The hybrid heuristic

As previously mentioned, the hybrid heuristic expands on the one proposed in the work by Vega-Mejía
and Montoya-Torres (2017). The hybrid heuristic presented in this section is based on a “pack first –
route second” approach was selected. The rationale behind this decision was the combination of the
practical loading and routing constraints of the problem, and the techniques used in previous studies to
address them. For instance, Eley (2002) dealt with weight distribution by grouping items in order to build
blocks and then swapping these blocks with others to obtain a better COG of the loaded container. García-
Cáceres, Vega-Mejía and Caballero-Villalobos (2011) divided the loaded container into walls, which
were swapped with one another and then reflected relative to their mid-point to minimize the distance of
the COG to the geometrical center of the container. By constructing a packing arrangement for the items
of each client prior to the construction of any vehicle routes, the process of rearranging the blocks, that
do not interlock with others, to improve the COG of the container of a vehicle is simplified. This approach
is based on the one presented by Lim, Ma, Qiu and Zhu (2013), in which the blocks are prevented from
interlocking in order to facilitate the process of improving the weight distribution inside the packed
container.

Another reason for using the “pack first – route second” approach has to do with the considerations of
some of the loading constraints. Since split deliveries are not allowed (i.e. items of a client must be
delivered by a single vehicle), the reliability and duration of the distribution process could be improved
if items of the same client are placed close to each other inside the container of the vehicle. Building a
cargo pattern for each client, that groups all their items into a single block before the delivery route is
planned, guarantees this. This block arrangement could also guarantee that an item being unloaded in
stage 𝑠 of a route, would not be blocked by another item that has to be delivered at a later stage 𝑠ᇱ(𝑠ᇱ >
𝑠). Hence, the total time taken to accomplish all the deliveries could be reduced as rearrangement of
items is prevented after each stop. Furthermore, balancing the carried load of the vehicles involves
moving items from one vehicle to another. Since there are no split deliveries, the complete set of items
for that client should be moved from one vehicle to another. A predefined packing pattern for each client
would greatly simplify this analysis and would avoid a complete reconstruction of the loading
arrangement of a vehicle.

262

To consider what has been stated until this point, the proposed hybrid heuristic consists of three stages
(see Fig. 1). Stage 1 generates the blocks for each client. Considering that the blocks impact the number
of required vehicles, these should be formed to use the space inside the container efficiently. In this sense,
the building of a block is reduced to solving a 3D Strip Packing Problem (3D SPP), in which the objective
is to minimize the surface area in which all the items are packed together (i.e. strip). For this task a
GRASP metaheuristic is employed. Stage 2 defines the routing for each vehicle and packs the generated
blocks into the vehicles. For the routing task a CWS algorithm is used to solve a VRP with Time
Windows (VRPTW). For the packing of the blocks into the vehicles and to facilitate the exchange of
blocks between vehicles, no weight will be placed on top of the blocks. This reduces the packing of the
vehicle to a 2D PP. This problem is solved using the GRASP metaheuristic from the first stage. Stage 3
consists of balancing the vehicle fleet by employing a simple local search procedure that swaps blocks
between vehicles, while at the same time reducing the factors of traveled distance and total tardiness.
Finally, the distribution of the weight inside the container of each vehicle is also addressed.

Fig. 1. Basic process of the hybrid heuristic – Adapted from Vega-Mejía and Montoya-Torres (2017)

The following sections explain in more detail each of the procedural stages of the hybrid heuristic.

4.1. Stage 1: A GRASP approach to solve a 3D SPP

GRASP is an iterative process consisting of two phases: constructive and local search (Resende &
Ribeiro, 2010). The following paragraphs explain how the construction phase and the local search phase
of GRASP are applied to build the loading arrangements for each client by solving a 3D SPP, while
considering sufficient support for those items not placed on the floor of the container and the weight
bearing strength of the items.

4.1.1. Constructive phase

The construction phase oversees the generation of a feasible solution for the problem. Previous solution
approaches for PPs are based on sorting the items according to some of their attributes, for instance their
area, volume or weight (e.g. Egeblad et al., 2010; Eley, 2002), and then using a placing strategy (e.g. best
fit, left bottom fit, first fit) to assign an item to a position or corner inside the transporting container.
However, sorting the items according to such basic attributes may result in an improper load when the
weight distribution inside the container is considered (Lim et al., 2013). With this in mind, Lim et al.
(2013) defined a constructive phase for GRASP that identifies the available free spaces in a container
after an item is stored. The construction phase for the proposed GRASP is based on this notion and on
the identification of insertion points described in the work by Zachariadis et al. (2013).

There are two vital components in this phase of GRASP. A utility function which evaluates each of the
elements that may become part of the feasible solution, and a Restricted Candidates List (RCL) which
stores those elements with a utility function whose value lies in the interval [𝐿, 𝐿 + (𝑈 − 𝐿)𝛼] (García-
Cáceres et al., 2011), where 𝐿 and 𝑈 are the lower and upper values of the utility function for all the
elements, and 𝛼 is a random number between 0 and 1.

The utility function for solving the 3D SPP for the first stage of the hybrid heuristic, which was first
presented in the work by Vega-Mejía and Montoya-Torres (2017), is as follows:

𝑐(𝑖) =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑖𝑡𝑒𝑚 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑖

Use GRASP to solve a 3D
SPP for each client,

considering sufficient
support for items and their

weight bearing stregth

Use CWS &
GRASP to solve a
VRPTW + 2D PP

with container
weight limit

Use a local search to
improve the balance
of the vehicle fleet.

Afterwards, improve
weight distribution

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 263

Where 𝑐(𝑖) is the utility function associated with item 𝑖. To better understand this expression, consider
the situation depicted in Fig. 2(a). A box of type A (A1) has already been placed in the bottom left corner
of the container. Notice that the figure also shows the possible insertion points generated by the box
already stored inside the container. The constructive phase will have to select the next item to place inside
the container, and for this there are two possible items to select: One of type A (A2) and one of type B.

A1

A2 B

Insertion
points

A1 A1 A

A2

A2

A2

(A2-a)

A1 A1 A

B

B

B

(B-b)

(a)

(A2-b) (A2-c)

(B-a) (B-c)
Fig. 2. Packing situation

The average number of valid insertion points for the two items is determined by placing each item on
each available insertion point, and then counting the number of feasible insertion points that are generated
after placing the item. Positioning the item is done by placing its bottom left corner on the insertion point.
Finally, the average is computed by dividing the total number of insertion points by the number of stable
loading arrangements, without yet considering the weight bearing constraints. In Fig. 2, elements (A2-
a,b,c) and (B-a,b,c) show the insertion points generated by placing items A2 and B, respectively. Notice
that in element (B-a) no insertion points were generated. This is because item B would not have sufficient
support if it were placed on top of item A1.

Assuming that the items of type A have a greater weight bearing strength than those of type B
(𝐵𝑆𝑀஺ > 𝐵𝑆𝑀஻), the respective values of the utility function for each item would be as follows:

𝑐(𝐴ଶ) =
ቀ

ଷାଷାଶ

ଷ
ቁ

𝐵𝑆𝑀஺మ

=
8

3𝐵𝑆𝑀஺మ

 𝑐(𝐵) =
ቀ

ହାହ

ଶ
ቁ

𝐵𝑆𝑀஻
=

5

𝐵𝑆𝑀஻

It would follow then that 𝑐(𝐴ଶ) < 𝑐(𝐵), and hence the RCL would be populated with the items whose

utility function is within the interval ൤
଼

ଷ஻ௌெಲమ

,
଼

ଷ஻ௌெಲమ

+ ൬
ହ

஻ௌெಳ
−

଼

ଷ஻ௌெಲమ

൰ 𝛼൨. If 𝛼 < 1, item A2 would be

included in the RCL and would be selected to become part of the solution. This would ultimately mean
that the utility function would have guided the selection of the item that produces a more homogenous
cargo pattern. This is in the same vein as the idea proposed by Eley (2002), that items of the same type
should be placed together to build cargo patterns with a reduced number of empty spaces. Moreover, the
utility function also aids to populate the RCL with the items that offer more weight bearing resistance,
so that other items can be placed on top of them.

Once an item is randomly selected from the RCL, it is assigned to a proper insertion point or corner. For
instance, Zhang et al. (2015) sorted the available corners or spaces according to their coordinates
(𝑍, 𝑌, 𝑋), while Gendreau et al. (2006) preferred a (𝑋, 𝑍, 𝑌) sorting. The first approach guides the filling
of the container from the ground up. However, due to the objective of packing as many items in a reduced
space while utilizing the whole of the container in the best way possible, a (𝑋, 𝑍, 𝑌) sorting might be
more appropriate. In essence, this approach is similar to a wall building approach (see Pisinger, 2002).
This selection process is repeated until all the items have been placed inside the container. However, the

264

weight-bearing and sufficient vertical support constraints introduce additional complexities to the
problem, and unfeasible solutions are possible. In this sense, if at a particular moment in the constructive
phase an item cannot be placed, a rotation of the item in the plane 𝑋 − 𝑌 is allowed. If this does not work,
the constructive phase can relax the vertical support and weight bearing constraints. After all items have
been placed, the constructive phase ends by determining the surface area of the generated block as shown
in Fig. 3.

Fig. 3. Generated block

Finally, Fig. 4 shows the pseudo-code for this phase, which is based on that presented by García-Cáceres
et al. (2011).

1 PROCEDURE Constructive Phase
2 PARAMETERS
3 𝛼: Numeric value between 0 and 1
4 𝐸: Client items
5 𝑐(∙): Utility function
6 VARIABLES
7 𝑥: Initial solution
6 𝑅𝐶𝐿: Restricted candidates list
8 BEGIN PROCEDURE
9 𝑥 ← ∅
10 Evaluate utility function 𝑐(𝑒), ∀𝑒 ∈ 𝐸
11 WHILE 𝐸 ≠ ∅
12 𝑐∗ ← min{𝑐(𝑒)|𝑒 ∈ 𝐸}
13 𝑐∗ ← max{𝑐(𝑒)|𝑒 ∈ 𝐸}
14 𝑅𝐶𝐿 ← {𝑒 ∈ 𝐸 | 𝑐(𝑒) ≤ 𝑐∗ + 𝛼(𝑐∗ − 𝑐∗)}
15 Choose an element 𝑠 at random from the 𝑅𝐶𝐿
16 IF 𝑥 ∪ {𝑠} is not feasible THEN
17 Rotate 𝑠
18 IF 𝑥 ∪ {𝑠} is not feasible THEN
19 Relax weight bearing and sufficient support
20 IF 𝑥 ∪ {𝑠} is not feasible THEN
21 RETURN unable to find feasible solution
22 END IF
23 END IF
24 END IF
25 𝑥 ← 𝑥 ∪ {𝑠}
26 Remove element 𝑠 from 𝐸
27 Evaluate utility function 𝑐(𝑒), ∀𝑒 ∈ 𝐸
28 END WHILE
29 Determine block size of 𝑥
30 RETURN 𝑥
31 END PROCEDURE

Fig. 4. GRASP Constructive Phase for 3D SPP

4.1.2. Local search phase

The second phase of the GRASP method consists of a local search that tries to improve the size of the
block generated by the constructive phase. The improvement is done by a series of simple relocation
moves of the items within the block, with the objective of reducing the total surface area, thus benefiting

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 265

the later stages of the hybrid heuristic by providing the possibility of storing more blocks inside the
container of the vehicle. Basically, the procedure finds the item placed furthest from the geometrical
origin of the container, with no other items placed on top of it. The item is then relocated to other available
insertion points, while checking the stability and weight bearing constraints. Fig. 5 presents this situation
where item C is considered for relocation.

Fig. 5. Relocation of item

The item is relocated once a suitable insertion point is found, and the surface area of the block is
recalculated, as shown in Fig. 5. If there is an improvement, the cargo pattern is updated by the new
block, and the relocated item is blocked from being selected again for relocation. The process is repeated
until no more relocation moves can be performed. When no more items can be relocated, the local search
procedure calculates the center of mass of the block. This measure will ultimately be used in the final
stage of the hybrid heuristic to determine the weight distribution of the loaded vehicle container. Because
it is assumed that the center of mass of each item corresponds to its geometrical center, the calculation is

reduced to 𝐶𝑂𝐺𝑌 = ቀ∑ 𝑀௜ ቀ𝑌௜ +
஻ௐ೔

ଶ
ቁ∀௜ ቁ ∑ 𝑀௜∀௜ൗ , where 𝐵𝑊௜ represents the width of item 𝑖, as stated

previously, and 𝑀௜ and 𝑌௜ represent the weight and placement on the 𝑌-axis of item 𝑖, respectively. Fig.
6 shows the pseudo-code for this phase.

1 PROCEDURE Local Search Phase
2 PARAMETERS
3 𝑥଴: Current solution
4 𝐼𝑃: Insertion points
5 𝑓(∙): Calculates surface area of a solution
6 VARIABLES
7 𝑥: Temporal solution
8 𝐶𝑂𝐺𝑌: Center of mass of the block along 𝑌-axis
9 𝑇𝐿: Tabu list that stores items that have been moved
10 BEGIN PROCEDURE
11 𝑇𝐿 ← ∅
12 IF 𝑥଴ is feasible AND not relaxed THEN
13 DO
14 Find the item 𝑖 furthest from (0,0,0) and supporting no weight
15 FOR EACH 𝑝IN 𝐼𝑃
16 IF 𝑖 can be relocated to 𝑝 in 𝑥଴ THEN
17 𝑥 ← 𝑥଴
18 Relocate 𝑖 on 𝑝 within 𝑥
19 Update 𝐼𝑃
20 𝑇𝐿 ← 𝑇𝐿 ∪ {𝑖}
21 IF 𝑓(𝑥) < 𝑓(𝑥଴) THEN
22 𝑥଴ ← 𝑥
23 END IF
24 END IF
25 NEXT 𝑝
26 WHILE 𝑖 ≠ ∅ AND 𝑖 ∉ 𝑇𝐿
27 END IF
28 𝐶𝑂𝐺𝑌 = Calculate center of mass of 𝑥଴
29 RETURN 𝑥଴, 𝐶𝑂𝐺𝑌
30 END PROCEDURE

Fig. 6. GRASP Local Search Phase for 3D SPP

266

4.2.Stage 2: A Clarke and Wright based approach to solve a two-dimensional VRP with loading
constraints

The CWS algorithm has been used in previous studies to solve VRPs and VRPLCs (e.g. Tricoire et al.,
2011). It is a simple procedure that creates independent routes for every node in the network, and then
tries to merge the routes to minimize the required number of routes. Since each route could be assigned
to one vehicle, it is implicit that the reduction of the number of routes reduces the number of required
vehicles as well. In this stage, a CWS algorithm is employed to solve a 2D VRPLC, using the blocks
resulting from Stage 1.

4.2.1. Route merging

The process of merging two routes in the CWS algorithm is aimed at forming a single route with a better
objective value. Considering a symmetric cost (or distance or time) matrix, in a basic VRP the savings
from this fusion are calculated as 𝑆௜௝ = 2𝑐௜଴ + 2𝑐௝଴ − ൫𝑐଴௝ + 𝑐௝௜ + 𝑐௜଴൯ = 𝑐଴௝ + 𝑐௜଴ − 𝑐௝௜ (Mehrjerdi,
2014). Although this is useful when considering the minimization of costs (or distance or time) alone,
the merging has to be modified to consider additional routing characteristics, such as time windows. In
the case of this study, computation of the savings is also impacted by the available loading space and
maximum weight capacity of the container of the vehicle.

For the proposed VRPLC, the merging of routes will depend on the possibility of producing a feasible
loading pattern. If the blocks of the nodes belonging to the routes that are being merged cannot be
accommodated inside the container of the vehicle, there is no reason for calculating other metrics such
as compliance with time windows, or distance traveled, among others. Improvements for these metrics
will be addressed in the last stage of the proposed heuristic, when the balancing of the vehicle fleet is
performed. Nevertheless, the time windows conditions are not completely disregarded in this stage. These
constraints are used to determine the order in which the blocks will be loaded into the container of the
vehicle, in order to satisfy the LIFO constraints. Following the NLMIP model from Section 3, the time
windows constraints are softened. This results in the consideration of tardiness, but can also ease the
generation of valid cargo arrangements (Kramer et al., 2015).

To explain how two routes are merged, consider Fig. 7. Here, the container of the vehicle has an available
space like the one shown in Fig. 7(a), the items of nodes 𝑖 and 𝑗 have been grouped into the blocks shown
in Fig. 7(b) and Fig. 7(c), respectively. If the opening time window of node 𝑖 is greater than that of node 𝑗,
then the items of client 𝑖 should be packed first, as node 𝑖 could be visited later along the route. However,
this implies that loading the block corresponding to node 𝑗 would not be possible, unless this block were
rotated. Because the rotation of the block of node 𝑗 produces a feasible cargo pattern (see Fig. 7(d)) the
two routes can be merged.

Fig. 7. Merge guaranteeing feasible loading

The packing of the blocks into the vehicle is performed by the GRASP procedure used in Stage 1. To
guarantee that the constructive phase always packs the block whose associated client (node) has the
highest time window first, the utility function is defined simply as the opening of the time window and
𝛼 = 0. Setting this value of 𝛼 turns the GRASP procedure into a purely greedy heuristic that will select

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 267

the best element (i.e. the block with the highest opening time window) at every step of the constructive
phase. The result is a cargo pattern that avoids repeated loading/unloading operations since every item
for a client is contained within an individual block and no block will become an obstacle when another
one needs to be unloaded. Furthermore, loading the block of the client with the highest opening time
window first, is aimed at reducing late deliveries. Fig. 8 shows the pseudo-code for merging the routes.

1 PROCEDURE Merge
2 PARAMETERS
3 𝑅: Set of routes
4 𝑖, 𝑗: Routes to merge
5 VARIABLES
6 𝑥: Cargo pattern
7 𝑟: Merged route
8 𝑏: Blocks from route
9 𝐼: Number of iterations for GRASP
10 𝛼: Alpha value for GRASP
11 𝑐(∙): Utility function for GRASP
12 𝑓(∙): Objective function for GRASP
13 BEGIN PROCEDURE
14 𝑟 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠(𝑖) ∪ 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠(𝑗)
15 𝑏 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑖) ∪ 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑗)
16 𝐼 = 1 ∧ 𝛼 = 0
17 𝑐(∙) = opening time window of node
18 𝑓(∙) = minimize wasted space inside the container of the vehicle
19 𝑥 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑏, 𝑐, 𝑓)
20 IF 𝑥 is feasible THEN
21 Determine distance, earliness and tardiness of 𝑟
22 Set the cargo pattern of 𝑟 as 𝑥
23 Remove routes 𝑖, 𝑗 from 𝑅
24 𝑅 ← 𝑅 ∪ 𝑟
25 END IF
26 RETURN 𝑅
27 END PROCEDURE

Fig. 8. Merge routes in CWS for solving a 2D VRPTWLC

4.3. Improving the solution and addressing additional operational attributes

After completing Stages 1 and 2, a partial solution is available, which integrates most of the routing and
packing decisions of the discussed 3D VRPLC. The objectives of Stage 3 are to incorporate the remaining
operational characteristics considered for the 3D VRPLC. The following subsections explain the
processes to, first, balance the transport fleet by seeking to ensure that all the vehicles carry
approximately the same payload and, second, to improve the weight distribution inside the vehicles.

4.3.1. Balancing the vehicle fleet

The first part of the Stage 3 is a simple procedure that takes the heaviest and lightest loaded vehicles and
swaps blocks between them in an attempt to reduce the difference in their payloads, as represented by 𝑧ଷ
in the NLMIP model. For this case, the swapping moves follow a first-improve or first descent strategy.
Naturally, whenever a swap is performed, the GRASP procedure must guarantee that the interchange
will result in a feasible cargo pattern for both vehicles, otherwise the move is discarded. After all the
block swaps between the vehicles have been examined, the procedure checks if the most and least loaded
vehicles are the same. If they are not, the new heaviest and lightest loaded vehicles are selected, and the
process is repeated until no more swaps are possible. Apart from addressing the balance of the vehicle
fleet, the moves are aimed at minimizing the distance traveled, and the total tardiness of the system. If a
swap does not improve these objectives, the move is discarded as well. The pseudo-code of the balancing
procedure is shown in Fig. 9.

268

1 PROCEDURE Balance Vehicle Fleet
2 PARAMETERS
3 𝑅: Set of routes
4 𝐶𝑊: Width of the container
5 VARIABLES
6 𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛: Vehicle with most and least loaded weights
7 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛: Set for blocks of vehicles with most and least loaded weights
8 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛: Cargo pattern for vehicles with most and least loaded weights
9 ∆: Weight difference between vehicles with most and least loaded weights
10 𝐼: Number of iterations for GRASP
11 𝛼: Alpha value for GRASP
12 𝑐(∙): Utility function for GRASP
13 𝑓(∙): Objective function for GRASP
14 BEGIN PROCEDURE
15 𝐼 = 𝛼 = 1
16 𝑐(∙) = opening time window of node
17 𝑓(∙) = minimize wasted space inside the container of the vehicle
18 DO
19 𝑟𝑚𝑎𝑥 ← 𝐺𝑒𝑡𝑀𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅)
20 𝑟𝑚𝑖𝑛 ← 𝐺𝑒𝑡𝐿𝑒𝑎𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅)
21 𝑁𝑚𝑎𝑥 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟𝑚𝑎𝑥)
22 𝑁𝑚𝑖𝑛 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟𝑚𝑖𝑛)
23 ∆ = 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑎𝑥) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑖𝑛)
24 FOR EACH (𝑖, 𝑗) ∈ 𝑁𝑚𝑎𝑥 × 𝑁𝑚𝑖𝑛
25 𝑁𝑚𝑎𝑥 ← 𝑁𝑚𝑎𝑥 ∪ {𝑗}
26 𝑁𝑚𝑖𝑛 ← 𝑁𝑚𝑖𝑛 ∪ {𝑖}
27 Remove 𝑖 from 𝑁𝑚𝑎𝑥 and 𝑗 from 𝑁𝑚𝑖𝑛
28 IF 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑎𝑥) − 𝑊𝑒𝑖𝑔ℎ𝑡(𝑁𝑚𝑖𝑛) < ∆ THEN
29 𝑥𝑚𝑎𝑥 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑁𝑚𝑎𝑥, 𝑐, 𝑓)
30 𝑥𝑚𝑖𝑛 ← 𝐺𝑅𝐴𝑆𝑃(𝐼, 𝛼, 𝑁𝑚𝑖𝑛, 𝑐, 𝑓)
31 IF (𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛) are feasible THEN
32 IF Distance, earliness and tardiness are reduced THEN
33 Update 𝑟𝑚𝑎𝑥 with 𝑁𝑚𝑎𝑥
34 Update 𝑟𝑚𝑖𝑛 with 𝑁𝑚𝑖𝑛
35 Improve COG (𝑅, 𝐶𝑊)
36 EXIT FOR EACH
37 END IF
38 END IF
39 END IF
40 NEXT (𝑖, 𝑗)
41 WHILE 𝑟𝑚𝑎𝑥 ≠ 𝐺𝑒𝑡𝑀𝑜𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅)OR 𝑟𝑚𝑖𝑛 ≠ 𝐺𝑒𝑡𝐿𝑒𝑎𝑠𝑡𝐿𝑜𝑎𝑑𝑒𝑑(𝑅)
42 RETURN 𝑅
43 END PROCEDURE

Fig. 9. Balance the transported weight of the vehicle fleet

4.3.2. Weight distribution inside the container

Studies that have addressed this constraint have used techniques such as repositioning the blocks inside
the container or swapping walls of items to reduce the distance between the COG of the loaded container
and its geometrical center (see Eley, 2002; García-Cáceres et al., 2011). However, these approaches did
not consider a scenario with multiple stops, which is present in VRPLCs, and brings forth a higher level
of complexity, as the COG is not just calculated once, but at every stop the vehicle makes. Clearly, it
would be impractical to adjust the COG of the vehicle after stopping at each delivery location, as this
could result in the re-accommodation of items inside the container.

Fig. 10. Reflection of a block as presented by
Vega-Mejía and Montoya-Torres (2017)

Fig. 11. Reflection of blocks inside a vehicle

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 269

Taking this into account, it is logical to argue that each vehicle must leave the central depot loaded in
such a way that its COG would not vary greatly after each stop. This means that each block would have
to be loaded with its center of mass as close as possible to the geometrical center of the container. In
order to do this, the weight distribution proposed here considers the idea presented by García-Cáceres et
al. (2011) of reflecting a wall (a block in this particular case) upon its middle point. The basic concept is
shown in Fig. 10 considering the example from Fig. 5. This transformation could then be extended to all
blocks assigned to a vehicle. Using Fig. 7(d), a possible improvement of the COG of a vehicle would be
similar to what is shown in Fig. 11, where the center of mass of each block is represented by the dotted
lines. It is expected that, before reflecting block 𝑖, the COG of the vehicle will stay to the left of the
midpoint of the width of the container after each stop along the route. After reflecting block 𝑖, its center
of mass would match the midpoint of the container’s width after delivering the items forming block 𝑗,
hence producing a better weight distribution inside the vehicle throughout the delivery route. The process
for improving the COG is applied to each of the generated routes, after all the other operational
considerations have been resolved (see Fig. 12). If there is an improvement, then the 𝑦-positions of every
item in the reflected block are reflected as well.

1 PROCEDURE Improve COG
2 PARAMETERS
3 𝑅: Set of routes
4 𝐶𝑊: Width of the container
5 VARIABLES
6 𝑁: Set for blocks
7 𝐵: Set for items of blocks
8 BEGIN PROCEDURE
9 FOR EACH 𝑟 IN 𝑅
10 𝑁 ← 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑠(𝑟)
11 FOR EACH 𝑛 IN 𝑁

12 IF ቚ
஼ௐ

ଶ
− (𝐶𝑜𝑜𝑟𝑑𝑌(𝑛) + 𝐶𝑂𝐺𝑌௡)ቚ > ቚ

஼ௐ

ଶ
− (𝐶𝑜𝑜𝑟𝑑𝑌(𝑛) + 𝑊𝑖𝑑𝑡ℎ(𝑛) − 𝐶𝑂𝐺𝑌௡)ቚ THEN

13 𝐶𝑂𝐺𝑌௡ = 𝑊𝑖𝑑𝑡ℎ(𝑛) − 𝐶𝑂𝐺𝑌௡
14 𝐵 ← 𝐺𝑒𝑡𝐼𝑡𝑒𝑚𝑠(𝑛)
15 FOR EACH 𝑏 IN 𝐵
16 𝐶𝑜𝑜𝑟𝑑𝑌(𝑏) = 𝐶𝑊 − 𝐶𝑜𝑜𝑟𝑑𝑌(𝑏) − 𝑊𝑖𝑑𝑡ℎ(𝑏)
17 NEXT 𝑏
18 END IF
19 NEXT 𝑛
20 NEXT 𝑟
21 RETURN 𝑅
22 END PROCEDURE

Fig. 12. Improvement of weight distribution

5. Computational experiments

The proposed hybrid heuristic was coded in C# (C-Sharp) and tested on a laptop running Windows 8
operating system, using an Intel Core-i7 processor and 8GB of RAM. For all tests, the value of the α
parameter for GRASP in the first phase of the proposed hybrid, was originally set at 0.1 for each client,
and increased by 0.1 every time the procedure was unable to construct a block for the items of a client.
If parameter α reaches the value of 𝛼 = 1 without being able to find a feasible loading plan, the hybrid
heuristic would halt the process and indicate that it was unable to generate a feasible solution for the
problem. The following sections describe the problem instances used to perform the computational
experiments and present the solution values generated by the heuristic algorithm.

5.1. Used problem instances

The heuristic was tested with the four classes of problems described in the work by Bortfeldt and
Homberger (2013), namely GI_I 1, GI_I2, GII_I1 and GII_I2, grouping a total of 46 problem instances
each employing containers of size (𝐶𝐿: 1360, 𝐶𝑊: 245, 𝐶𝐻: 300). These instances were originally used
in the study by Moura and Oliveira (2009) and are available under the name “CLP and VRPTW
integration”, at web.fe.up.pt/~esicup/datasets. However, some of the parameters included in the proposed
VRPLC are not present in the instances (i.e. the weight and the weight bearing strength of each item, and

270

the weight capacity of the container). To account for this, the weight of each item was simply defined as
its volume, as was done by Junqueira et al. (2013). In a similar way, the weight limit of each vehicle
container is set as its volume, as well. In the case of the weight bearing strength, the computational
experiments considered five different scenarios to analyze the impact of the constraints related to this
factor. Each scenario is associated with an integer value (i.e. 2, 4, 6, 8 or 10), which is multiplied with
the weight of the item. For example, for the scenario where the multiplier is 2, it means that each box
will have a weight bearing strength of double its weight. We will refer to this value as the Weight Bearing
Strength Multiplier (WBSM) from this point forward. The last consideration for these experiments is
related to the packing strategy employed in the building of the blocks. As stated in Section 4.1.1 some
studies suggest using a (𝑍, 𝑌, 𝑋) scheme; others, a (𝑋, 𝑍, 𝑌) scheme. We compare these two schemes in
the computational experiments.

5.2. Results and analysis

To the best of our knowledge, no other heuristic procedure has included the set of operational constraints
(loading and routing) considered simultaneously in this study, in the context of a VRPLC. However, for
the purpose of comparison we striped the heuristic procedure from some of the additional operational
objectives and constraints. This first comparison was performed by disregarding the balancing of the
vehicle fleet and the improvement of weight distribution. The results of the proposed hybrid heuristic are
compared with those of the study by Bortfeldt and Homberger (2013), which includes the prior results
from Moura and Oliveira (2009). A second comparison is done by using the results of the proposed
heuristic for Stages 1 and 2 (which represent a partial feasible solution for the problem), with the results
obtained after adding the operational conditions considered in Stage 3. In addition, this comparison also
shows how the solution obtained from Stages 1 and 2 is improved.

5.2.1. Comparison with previous heuristic approaches

The results of the proposed hybrid heuristic are compared with those obtained from the GRASP based
heuristic presented by Moura and Oliveira (2009), and the TS + Evolutionary Algorithm hybrid proposed
by Bortfeldt and Homberger (2013). Tables 1 to 4 show this comparison in terms of the required vehicles
and total distance traveled for all four instance classes. Each entry in the table is expressed as a pair
(𝑣; 𝑑), where 𝑣 is the required number of vehicles and 𝑑 is the total traveled distance. The values for the
columns 3 and 4 were taken from the work by Bortfeldt and Homberger (2013). In this regard, the values
for the study by Bortfeldt and Homberger (2013) reflect the better result of their P1R2 heuristic with 3
or 4 phases. This is represented as (𝑣; 𝑑)ଷ or (𝑣; 𝑑)ସ to indicate which configuration reported a better
result. In case there is no subscript, it means that the results of both configurations were the same. The
remaining columns show the results of the proposed heuristic, considering the different combinations of
the WBSM and packing strategies (𝑋, 𝑍, 𝑌) and (𝑍, 𝑌, 𝑋). Clearly, the results from the P1R2 heuristic
proposed by Bortfeldt and Homberger (2013) outperform the other results. It is also clear that, for the
proposed heuristic, the packing strategy (𝑋, 𝑍, 𝑌) provides better results than using the other packing
strategy. When compared with the results from Moura and Oliveira (2009), the proposed heuristic
provides competitive results, in terms of the total distance, as the WBSM increases. Given that the study
by Moura and Oliveira (2009) did not consider the weight bearing strength of the boxes, that would
explain the difference in the number of required vehicles with low WBSM values. However, it can be
observed that the number of vehicles in the proposed heuristic gets closer to the value obtained by Moura
and Oliveira (2009), and at times outperforms it, as the WBSM increases. Another reason for the
difference in the results could be attributed to the way the items’ blocks are built, as these are constructed
with the aim of facilitating the operational constraints related to the balance of the vehicle fleet and the
distribution of weight inside the container. All in all, the proposed heuristic is capable of obtaining
competitive results for the tested instances.

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 271

Table 1
Results for instance class GI_I1

Instance
Moura &
Oliveira

Bortfeldt
&

Homberger

Proposed hybrid heuristic
Corner sort XYZ Corner sort ZYX

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10
GI_I1_01 (9;762.59) (8;625.03) (9; 764.48) (7; 783.96) (7; 766.01) (7; 815.42) (6; 843.62) (21; 1090.53) (20; 1181.86) (21; 1167.54) (21; 1167.54) (21; 1102.71)
GI_I1_02 (8;675.24) (7;575.09) (9; 903.33) (7; 794.9) (7; 793.52) (7; 951.96) (6; 822.33) (21; 1117.1) (20; 1158.31) (21; 1112.97) (21; 1112.97) (21; 1154.94)
GI_I1_03 (6;1250.86) (5;501.73) (9; 849.85) (7; 794.71) (7; 783.42) (7; 794.88) (6; 844.2) (21; 1119.57) (20; 1175.6) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_04 (6;605.72) (4;557.5) (10; 794.67) (7; 794.16) (7; 908.84) (7; 917.62) (6; 801.97) (21; 1118.23) (20; 1128.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_05 (9;1398.47) (6;550.83) (9; 763.04) (7; 740.87) (7; 752.55) (7; 684.67) (6; 843.62) (21; 1119.57) (20; 1192.39) (21; 1146.47) (21; 1146.47) (21; 1102.71)
GI_I1_06 (7;757.08) (5;549.13) (9; 728.52) (7; 825.28) (7; 817.07) (7; 742.29) (6; 859.36) (21; 1118.23) (20; 1141.13) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_07 (6;1108.67) (5;474.8) (9; 766.25) (7; 793.22) (7; 786.11) (7; 722.15) (6; 865.09) (21; 1118.23) (20; 1155.51) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_08 (5;397.19) 4(4;576.52) (10; 844.27) (7; 802.06) (7; 862.07) (7; 825.18) (6; 801.97) (21; 1118.23) (20; 1128.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_09 (6;1050.7) (5;517.29) (9; 689.13) (7; 819.3) (7; 797.12) (7; 782.41) (6; 795.59) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_10 (6;578.36) (5;505.46) (10; 835.67) (7; 731.64) (7; 716.54) (7; 796.93) (6; 736.59) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_11 (6;1128.55) (5;500.33) (9; 874.75) (7; 722.17) (7; 924.73) (7; 808.23) (7; 753.84) (21; 1095.91) (20; 1141.13) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I1_12 (5;980.97) (4;557.9) (9; 820.71) (7; 788.8) (7; 754.88) (7; 771.33) (6; 763.36) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)

Table 2
Results for instance class GI_I2

Instance
Moura &
Oliveira

Bortfeldt
&

Homberger

Proposed hybrid heuristic
Corner sort XYZ Corner sort ZYX

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10
GI_I2_01 (5;2668.55) 4(4;765.83) (9; 732.19) (7; 748.89) (7; 728.59) (7; 717.87) (6; 709.55) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_02 (5;2555.26) 4(4;561.11) (9; 720.19) (7; 743.93) (7; 725) (7; 725) (6; 743) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_03 (5;2526.11) (4;508.65) (9; 764.68) (7; 713.6) (7; 713.6) (7; 713.6) (6; 742.48) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_04 (5;1953.67) 4(4;471.17) (10; 778.72) (7; 758.22) (7; 733.04) (7; 743.03) (6; 729) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_05 (5;635.96) 4(4;529.95) (10; 758.78) (7; 739.51) (7; 738.93) (7; 699.09) (6; 693.9) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_06 (5;2394.25) 4(4;542.6) (9; 738.19) (7; 745.4) (7; 725) (7; 725) (6; 772.95) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_07 (5;2187.27) 4(4;470.82) (9; 762.71) (7; 713.6) (7; 713.6) (7; 713.6) (6; 742.48) (21; 1118.23) (20; 1130.71) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_08 (4;472.35) 4(4;465.13) (10; 778.72) (7; 742.73) (7; 694.25) (7; 743.03) (6; 734.5) (21; 1118.23) (20; 1094.99) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_09 (5;674.01) 4(4;442.3) (10; 831.93) (7; 759.8) (7; 731.04) (7; 759.51) (6; 721.76) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_10 (5;753.04) (4;578.13) (9; 731.11) (7; 762.66) (7; 724.66) (7; 724.22) (7; 711.7) (21; 1118.23) (20; 1101.23) (21; 1102.71) (21; 1102.71) (21; 1102.71)
GI_I2_11 (5;2049.39) 4(4;477.16) (9; 724.44) (7; 740.85) (7; 740.85) (7; 707.09) (6; 713.68) (21; 1118.23) (20; 1120.25) (21; 1102.71) (21; 1102.71) (21; 1102.71)

272

Table 3
Results for instance class GII_I1

Instance
Moura &

Oliveira
Bortfeldt &

Homberger

Proposed hybrid heuristic
Corner sort XYZ Corner sort ZYX

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10
GII_I1_01 (9;823.04) (8;654.62) (13; 929.63) (10; 788.58) (9; 832.36) (8; 760.52) (8; 801.56) (20; 1124.85) (22; 1163.84) (22; 1178.23) (22; 1178.23) (22; 1189)
GII_I1_02 (9;1622.59) (7;592.14) (13; 873.72) (10; 917.68) (9; 818.46) (8; 834.78) (8; 823.75) (20; 1109.01) (22; 1147.68) (22; 1179.08) (22; 1179.08) (22; 1174.97)
GII_I1_03 (7;1451.39) (6;548.49) (13; 886.06) (10; 777.19) (9; 794.06) (9; 929.34) (9; 929.82) (20; 1098.68) (22; 1153.19) (22; 1178.23) (22; 1178.23) (22; 1158.23)
GII_I1_04 (7;1221.44) 4(6;540.43) (13; 825.63) (10; 842.38) (9; 836.99) (8; 821.4) (8; 781.01) (20; 1098.68) (22; 1153.19) (22; 1178.23) (22; 1178.23) (22; 1158.23)
GII_I1_05 (10;1532.44) (6;693.22) (13; 848.93) (10; 881.23) (9; 846.97) (8; 834.52) (8; 860.51) (20; 1101.43) (22; 1153.19) (22; 1144.82) (22; 1144.82) (22; 1178.23)
GII_I1_06 (8;1576.1) (6;627.53) (13; 848.93) (10; 812.22) (9; 853.15) (8; 907.47) (8; 721.15) (20; 1085.76) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_07 (7;1378.36) (6;622.5) (13; 829.37) (10; 850.61) (9; 802.41) (9; 800.42) (9; 781.31) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_08 (7;1187.52) 4(6;549.18) (13; 849.66) (10; 808.96) (9; 822.43) (8; 817.49) (8; 845.03) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_09 (6;625.91) (6;709.61) (13; 879.01) (10; 780.24) (9; 805.66) (8; 772.11) (8; 743.05) (20; 1082.34) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_10 (7;1235.62) 4(6;570.38) (13; 885.34) (10; 851.28) (9; 781.77) (8; 797.34) (8; 819.43) (20; 1092.27) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_11 (7;1293.95) (6;540.03) (13; 839.22) (10; 813.76) (9; 828.78) (8; 900.8) (8; 900.8) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I1_12 (7;1069.11) 4(6;539.84) (13; 901.42) (10; 817.49) (9; 829.67) (8; 719.46) (8; 719.46) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)

Table 4
Results for instance class GII_I2

Instance
Moura &

Oliveira
Bortfeldt &

Homberger

Proposed hybrid heuristic
Corner sort XYZ Corner sort ZYX

WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10 WBSM=2 WBSM=4 WBSM=6 WBSM=8 WBSM=10
GII_I2_01 (7;3740.55) (6;591.35) (13; 849.47) (10; 735.79) (10; 770.04) (8; 780.09) (8; 770.3) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_02 (7;3496.39) (6;560.88) (13; 869.48) (10; 823.92) (9; 809.06) (8; 751.4) (8; 754.98) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_03 (7;3134.62) 4(6;525.99) (13; 849.47) (10; 798.56) (9; 770.31) (9; 774.97) (9; 770.05) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_04 (6;3814.29) (6;516.35) (13; 875.67) (10; 774.56) (9; 817.85) (8; 778.87) (8; 778.87) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_05 (7;627.66) 4(6;649.8) (13; 849.47) (10; 735.79) (10; 770.04) (8; 769) (8; 769) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_06 (7;3115.18) 4(6;560.64) (13; 872.97) (10; 790.09) (9; 804.45) (8; 719.4) (8; 782.36) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_07 (7;2740.03) 4(6;506.16) (13; 829.37) (10; 798.56) (9; 770.31) (9; 774.97) (9; 770.05) (20; 1079.11) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_08 (7;2212.02) 4(6;534.97) (13; 875.67) (10; 774.56) (9; 817.85) (8; 778.87) (8; 778.87) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_09 (7;2962.35) 4(6;544.63) (13; 885.34) (10; 773.29) (9; 796.12) (8; 703.37) (8; 776.51) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_10 (7;3512.25) (6;599.93) (13; 869.48) (10; 778.22) (9; 780.92) (8; 748.59) (8; 748.59) (20; 1091.64) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)
GII_I2_11 (6;2631.39) 4(6;501.26) (13; 849.47) (10; 765.05) (9; 758.21) (8; 784.72) (8; 784.72) (20; 1088.02) (22; 1144.82) (22; 1144.82) (22; 1144.82) (22; 1158.23)

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 273

5.2.2. Analysis of the impact of weight distribution and fleet balancing

Tables 5 to 8 provide the computational results produced by the hybrid heuristic. The configuration of
each test is as follows. The column ‘BWSM’ shows the values used to test the impact of considering the
weight bearing strength of the items to be delivered. The column ‘Constraints’ uses four values that
represent the possible combinations by including or not including the conditions to balance the vehicle
fleet (BF and NBF), and by including or not the weight distribution inside the container of the vehicle
(WD and NWD). The values in the column ‘Corner Sorting’ assist to differentiate between the two
strategies for sorting insertion corners in the packing stage of the hybrid heuristic.

In addition, the remaining columns in the tables present the computational time required to solve the
corresponding instance problem (Time) and the number of vehicles (Routes) used to deliver all the items
defined in the problem. The remaining columns present the values for the objective functions. Given the
number of different instances and space limitations, this section provides the results for one problem
from each class. For the purpose of replicating the experiments, the remaining results are available upon
request.

Table 5
Results of the proposed heuristic for GI_I1_01 using additional constraints

WBSM Constraints
Corner sorting XZY Corner sorting ZYX

Time
(secs)

Routes z1 z2 z3 z4
Time
(secs)

Routes z1 z2 z3 z4

2

NBF&NWD 24.14 9 764.48 12.03 78920 230.47 51.4 21 1090.53 0 57360 961.07
BF&NWD 8.32 11 1001.03 0 49520 237.79 33.53 21 1188.71 0 52680 874.88
NBF&WD 8.54 9 899.59 2.83 57440 85.93 36.17 21 1183.36 0 53880 609.4
BF&WD 8.7 11 997.8 0 49520 60.86 30.42 21 1188.71 0 52680 539.71

4

NBF&NWD 20.92 7 783.96 165.91 65600 240.83 48.83 20 1181.86 0 52680 759.82
BF&NWD 8.45 8 884.97 0 49520 260.06 26.79 21 1192.02 0 53760 730.2
NBF&WD 6.24 7 866.53 158.08 66680 95.03 28.06 20 1189.44 0 53400 584.63
BF&WD 8.5 8 884.97 0 49520 114.91 28.02 21 1192.02 0 53760 508.28

6

NBF&NWD 23.74 7 766.01 12.03 78920 312.46 48.79 21 1167.54 0 53880 811.08
BF&NWD 10.28 8 930.27 30.4 52400 306.98 27.79 21 1201.19 0 52680 725.12
NBF&WD 7.89 7 852.67 2.83 57440 176.2 28.66 21 1197.02 0 53880 607.8
BF&WD 11.96 8 902.86 30.4 52400 178.11 29.05 21 1201.19 0 52680 491.95

8

NBF&NWD 19.56 7 815.42 0 62000 371.91 48.31 21 1167.54 0 53880 829.44
BF&NWD 9.34 8 890.7 0 49520 307.33 27.77 21 1201.19 0 52680 725.12
NBF&WD 7.28 7 850.41 26.06 66680 198.65 28.41 21 1197.02 0 53880 599.46
BF&WD 8.96 8 922.64 21.26 54320 220.6 29.07 21 1201.19 0 52680 502.78

10

NBF&NWD 19.69 6 843.62 12.03 78920 558.79 48.12 21 1102.71 0 55560 855.87
BF&NWD 6.66 7 934.91 377.52 59000 401.42 28 21 1215.92 0 52680 771.4
NBF&WD 5.62 6 833.45 146.27 69800 270.89 28.95 21 1197.02 0 53880 593.37
BF&WD 7.16 7 934.91 377.52 59000 207.46 29.24 21 1215.92 0 52680 535.26

Table 6
Results of the proposed heuristic for GI_I2_01 using additional constraints

WBSM Constraints
XZY ZYX

Time
(secs)

Routes z1 z2 z3 z4
Time
(secs)

Routes z1 z2 z3 z4

2

NBF&NWD 32.1 9 732.19 0 78920 254.5 58.24 21 1118.23 0 57360 990.17
BF&NWD 8.36 11 1014.01 0 49520 225.87 34.98 21 1188.71 0 52680 869.34
NBF&WD 8.32 9 899.59 0 57440 85.18 35.61 21 1183.36 0 53880 591.89
BF&WD 8.67 11 1014.01 0 49520 70.76 29.73 21 1188.71 0 52680 557.28

4

NBF&NWD 36.85 7 748.89 0 65360 271.85 48.09 20 1094.99 0 55560 852.4
BF&NWD 7.5 8 931.25 0 49520 285.63 28.02 21 1192.02 0 53760 754.05
NBF&WD 6.12 7 886.8 0 64160 119.76 27.68 20 1183.27 0 53400 544.81
BF&WD 8.58 8 895.09 0 52040 93.62 27.03 21 1192.02 0 53760 508.44

6

NBF&NWD 36.19 7 728.59 0 71120 314.87 51.41 21 1102.71 0 55560 922.3
BF&NWD 9.16 8 891.25 0 49520 280 29.04 21 1201.19 0 52680 728.65
NBF&WD 7.76 7 855.45 0 57440 168.27 28.87 21 1197.02 0 53880 583.8
BF&WD 9.8 8 908.86 0 53840 222.24 28.41 21 1201.19 0 52680 502.78

8

NBF&NWD 23.68 7 717.87 0 58040 340.8 51.15 21 1102.71 0 55560 898.3
BF&NWD 9.05 8 938.31 0 54320 357.4 29.06 21 1201.19 0 52680 749.12
NBF&WD 7.17 7 853.18 0 66680 142.67 28.56 21 1197.02 0 53880 601.33
BF&WD 13.23 8 918.21 0 53600 237.85 28.13 21 1201.19 0 52680 514.07

10

NBF&NWD 35.92 6 709.55 0 78920 433.91 50.28 21 1102.71 0 55560 879.87
BF&NWD 6.5 7 913.43 0 59000 389.22 29.45 21 1191.93 0 52680 747.4
NBF&WD 5.65 6 843.93 0 69800 234.22 29.09 21 1197.02 0 53880 562.01
BF&WD 7.85 7 913.43 0 59000 209.56 28.53 21 1191.93 0 52680 515.23

274

Table 7
Results of the proposed heuristic for GII_I1_01 using additional constraints

WBSM Constraints
XZY ZYX
Time
(secs)

Routes z1 z2 z3 z4
Time
(secs)

Routes z1 z2 z3 z4

2

NBF&NWD 34.19 13 929.63 0 74000 172.86 58.55 20 1124.85 0 77400 860.42
BF&NWD 8.17 14 1049.79 0 74000 181.72 29.94 20 1175.16 0 74000 685.47
NBF&WD 8.15 13 1049.16 0 74000 51.41 29.99 20 1168.86 0 76080 665.89
BF&WD 7.95 14 1049.79 0 74000 47.44 30.3 20 1175.16 0 74000 556.91

4

NBF&NWD 27.3 10 788.58 0 77600 247.72 70.2 22 1163.84 0 79680 839.74
BF&NWD 8.46 11 955.72 0 74000 273.1 30.66 23 1242.81 0 78960 754.72
NBF&WD 6.93 10 933.26 0 77600 110.65 29.31 22 1185.67 0 77400 465
BF&WD 7.93 11 939.11 0 74000 96.95 30.01 23 1242.81 0 78960 497.76

6

NBF&NWD 23.41 9 832.36 0 77600 178.94 56.19 22 1178.23 0 77400 793.54
BF&NWD 9.11 9 947.37 0 74000 206.87 25.93 23 1242.81 0 78960 800.31
NBF&WD 8.27 9 918.38 0 77600 87.92 25.58 22 1185.67 0 77400 521.51
BF&WD 8.7 9 947.37 0 74000 115.3 25.49 23 1242.81 0 78960 562.78

8

NBF&NWD 28.41 8 760.52 0 77600 180.19 56.3 22 1178.23 0 77400 816.61
BF&NWD 9.66 8 944.38 0 74000 233.08 25.85 23 1242.81 0 78960 834.83
NBF&WD 8.98 8 894.72 0 77600 101.61 25.67 22 1185.67 0 77400 554.05
BF&WD 9.48 8 886.65 0 74000 70.05 26.08 23 1242.81 0 78960 514.78

10

NBF&NWD 22.33 8 801.56 0 77600 362.77 55.62 22 1189 0 77400 770.23
BF&NWD 7.07 9 926.02 0 74000 366.81 26.46 23 1242.81 0 78960 813.59
NBF&WD 7.2 8 894.72 0 77600 188.72 26.38 22 1178.23 0 77400 491.71
BF&WD 7.34 9 926.02 0 74000 163.35 26.57 23 1242.81 0 78960 509.25

Table 8
Results of the proposed heuristic for GII_I2_01 using additional constraints

WBSM Constraints
XZY ZYX

Time
(secs)

Routes z1 z2 z3 z4
Time
(secs)

Routes z1 z2 z3 z4

2

NBF&NWD 36.47 13 849.47 0 74000 169.04 44.07 15 860.34 0 74000 838.93
BF&NWD 8.2 14 1049.79 0 74000 170.98 19.13 15 1043.74 0 74000 953.04
NBF&WD 8.25 13 1049.16 0 74000 50.21 18.84 15 1113.37 0 74000 685.07
BF&WD 8.36 14 1049.79 0 74000 45.88 19.16 16 1086.21 0 74000 754.59

4

NBF&NWD 34.85 10 735.79 0 77600 244.26 44.56 12 834.24 0 74000 713.86
BF&NWD 8.72 11 915.18 0 74000 280.95 20.56 15 1070.52 0 74000 648.28
NBF&WD 6.93 10 937.87 0 77600 95.69 21.16 12 1037.85 0 74000 1040.65
BF&WD 8.21 11 939.11 0 74000 110.57 20.86 14 1113.24 0 74000 747.31

6

NBF&NWD 29.18 10 770.04 0 80600 231.71 50.79 12 842.32 0 74000 842.12
BF&NWD 8.77 9 984.75 0 74000 178.26 21.26 14 1059.79 0 74000 764.76
NBF&WD 8.4 10 937.87 0 77600 84.1 21.44 12 971.51 0 74000 933.62
BF&WD 8.99 9 984.75 0 74000 57.82 21.56 13 1063.93 0 74000 695.87

8

NBF&NWD 29.65 8 780.09 0 77600 196.31 50.2 12 822.96 0 74000 777.01
BF&NWD 11.48 9 936.13 0 74000 178.44 21.41 12 998.49 0 74000 761.19
NBF&WD 9.01 8 904.51 0 77600 100.39 22.12 12 1003.7 0 74000 985.76
BF&WD 9.6 8 929.3 0 74000 71.24 21.54 12 998.49 0 74000 731.1

10

NBF&NWD 28.31 8 770.3 0 77600 348.9 53 12 851.37 0 74000 762
BF&NWD 7.9 9 897.04 0 74000 374.55 21.7 13 986.19 0 74000 693.69
NBF&WD 7.07 8 904.51 0 77600 161.68 22.04 12 1013.82 0 74000 738.77
BF&WD 7.64 9 897.04 0 74000 173.79 21.99 13 986.19 0 74000 683.69

In terms of the required computational time, the hybrid heuristic was able to solve most cases in less than
30 seconds when using packing strategy (𝑋, 𝑍, 𝑌). It is interesting to see, that breaching the 30 seconds
mark occurs when sorting the insertion corners under a (𝑍, 𝑌, 𝑋) strategy. The increments in the
processing time may be because this strategy produces blocks with larger surface areas and, as the
procedure for loading the vehicles of the hybrid heuristic avoids placing weight on top of the generated
blocks, this results in a considerable increment in the number of routes and, hence, in a larger
computational effort in the local search procedure of Stage 3. As opposed to privileging the insertion
corners located in the lower positions first, the (𝑋, 𝑍, 𝑌) sorting tries to stack items early on during the
block construction process, which results in fewer routes to deliver all the items to all the clients, and in
better use of the container’s available storage space. Another aspect that influences the total number of
routes is of course the weight bearing constraints. Once again, the number of routes decreases as the
WBSM increases.

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 275

Finally, an analysis of variance (ANOVA) with a significance of 5%, was carried out for each one of the
four response variables (𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ), to better understand the impact of the consideration of the
additional constraints in Stage 3 of the proposed hybrid heuristic, on the objective values after Stages 1
and 2. Five factors were considered: (i) if whether balancing the vehicle fleet was considered, or not (i.e.
BF or NBF); (ii) if whether weight distribution was improved, or not (i.e. WD or NWD); (iii) the value
of the WBSM (i.e. 2, 4, 6, 8 and 10); (iv) the packing strategy (i.e. (𝑋, 𝑍, 𝑌) or (𝑍, 𝑌, 𝑋)); and (v) the
instance type (i.e. GI or GII). As such, there were a total of 80 treatments and 80 x 23 observations for
each ANOVA, and all factors report a significant effect in the four response variables.

Fig. 13 presents the main effects plots for the considered factors in the ANOVAs. In this figure, graphs
with the label “Tmp” (which are always on the left) refer to the results obtained after Stages 1 and 2;
“ML -ml”, to 𝑚𝑎𝑥𝑣𝑙𝑜𝑎𝑑 − 𝑚𝑖𝑛𝑣𝑙𝑜𝑎𝑑 for the third objective function; and “COG-Y”, to the total
deviation of the COG inside the container along the width of the container. Note that for all cases, the
results from Stages 1 and 2 are improved in Stage 3. Furthermore, this graphical analysis shows that the
weight bearing strength constraints and the packing strategy have a significant impact on the value of the
objective functions, indicating that a high WBSM and the packing strategy (𝑋, 𝑍, 𝑌) provide better
results. However, the opposite happens with the tardiness as a low value of WBSM and the use of the
(𝑍, 𝑌, 𝑋) strategy provides a lower tardiness. This is not surprising, as these configurations generate more
delivery routes. Thus, only a few vehicles would have to visit several clients, which in turn would reduce
the possibility of late deliveries and any penalties. However, in a real-life scenario this could result in
overhead costs due to the maintenance of a large vehicle fleet and the low use of container space. Lastly,
depending on the type of instance, different values for the objective functions are obtained as well. Values
for 𝑧ଵ and 𝑧ଷ were better in instances of type GI, while values for 𝑧ଶ and 𝑧ସ were better in instances of
type GII.

276

Fig. 13. Impact of additional constraints with different testing configurations

6. Conclusions and future work

The VRPLC is related to real life transportation situations and has received increased attention in recent
years. In this regard, a hybrid heuristic solution method based on the “pack first – route second” approach
proposed by Bortfeldt and Homberger (2013), has been proposed to solve a version of the VRPLC which
considers several practical loading and routing constraints. Among such constraints are the vertical
stability of cargo, the load bearing strength of items, the weight limit of the container, the unloading
sequence, the weight’s distribution, delivery time windows and a balanced vehicle fleet. Consequently,
these constraints add to the complexity of the VRPLC, which motivated the development of a hybrid
heuristic procedure than can be easily implemented by operational researchers and distribution managers.
The proposed hybrid solution is also capable of integrating simultaneously a set of complex operational
aspects and of generating feasible solutions in a short amount of time. With these considerations, the
method may serve as a useful tool in both academic research and real-life applications in distribution
logistics.

The proposed hybrid heuristic which consists of three stages, expands the procedure presented by Vega-
Mejía and Montoya-Torres (2017). The first stage consists of a GRASP metaheuristic that finds a suitable
packing arrangement for each client. The second stage combines a CWS algorithm and the GRASP
metaheuristic to determine the delivery routes and cargo pattern of each vehicle. The final stage performs
a local search to balance the vehicle fleet and to improve the weight distribution inside each vehicle. To
test the method’s performance, computational experiments were performed under different
configurations. The numeric results show that sorting the insertion corners by their (𝑋, 𝑍, 𝑌) coordinates
during the packing stage, outperforms results that employ the (𝑍, 𝑌, 𝑋) approach. Additional comparisons
were carried out to analyze the impact of different operational constraints. On one hand, both the
inclusion of the weight’s distribution and balancing the vehicle fleet show improvements when compared
to the cases that did not consider these aspects. On the other hand, the results obtained when including a

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 277

low weight bearing strength for the carried items are outperformed as the load bearing index (i.e. fragility)
increases.

It is arguable then that, even though finding a smaller number of vehicles can be achieved without
considering the fragility of the cargo, the impact of overlooking this factor may carry with it the
generation of solutions that might not be feasible in real applications. This is consistent with the argument
presented by Bischoff and Ratcliff (1995), that not considering additional constraints may result in
impractical solutions. However, rather than a limitation, this creates an interesting opportunity to extend
future research into the development of solution methods for more complex VRPLCs. For instance, and
with regard to the constraints designed to address the weight resistance of either the items or the
container, these constraints could be softened as suggested by Zachariadis et al. (2016) to allow a greater
variety of solutions from other heuristic procedures and to analyze their performance.

There are other directions that we consider interesting, and which could further improve future heuristic
applications, for example the inclusion of other operational constraints (e.g. pick up & delivery, partial
deliveries). In addition, given that multiple operational constraints may result in multiple objectives, often
conflicting with one another, methods should be designed to handle these multiple objectives from the
perspective of non-dominated solutions, as suggested by Montoya-Torres et al. (2015). Since the use of
the ‘air-space’ inside each vehicle container is critical, enhancement of the placement strategies during
the packing procedures still deserves attention. Moreover, the number of required vehicles could be
improved by considering the generation of blocks that can interlock with others. This would represent an
interesting technical challenge, as the consideration of swapping blocks between vehicles to balance the
vehicle fleet and the reflection or rotation of blocks to improve the COG could result in the destruction
of cargo patterns and increase computational time. Regarding computation of the COG of the loaded
vehicle, the proposed heuristic could be improved by considering metrics from vehicle dynamics, such
as the Lateral Transfer Ratio to drive the distribution of weight inside containers towards more realistic
scenarios (see Ramos, Silva, & Oliveira, 2018). Another way to reduce the number of required vehicles
could be by using vehicles with multiple stacking levels, as employed by Iori and Riera-Ledesma (2015).
These stacking levels would provide efficient vertical support at different heights inside the container.
Some difficulties may arise, such as the generation of several blocks for a single client and the additional
constraints that consider the height of the stacks. Finally, other directions for further research worth
exploring could be the realignment of loading and routing operations to a triple-bottom-line approach
(i.e. economic, environmental and societal factors), as expressed by Montoya-Torres et al. (2015) and
Vega-Mejía et al. (2019b), for sustainable transportation.

References

Alinaghian, M., Zamanlou, K., & Sabbagh, M. S. (2017). A bi-objective mathematical model for two-

dimensional loading time-dependent vehicle routing problem. Journal of the Operational Research
Society, 68(11), 1422–1441.

Baldi, M. M., Perboli, G., & Tadei, R. (2012). The three-dimensional knapsack problem with balancing
constraints. Applied Mathematics and Computation, 218(19), 9802–9818.

Bischoff, E. E., & Ratcliff, M. S. W. (1995). Issues in the development of approaches to container
loading. Omega, 23(4), 377–390.

Bortfeldt, A., Hahn, T., Männel, D., & Mönch, L. (2015). Hybrid algorithms for the vehicle routing
problem with clustered backhauls and 3D loading constraints. European Journal of Operational
Research, 243(1), 82–96.

Bortfeldt, A., & Homberger, J. (2013). Packing first, routing second — A heuristic for the vehicle routing
and loading problem. Computers & Operations Research, 40(3), 873–885.

Bortfeldt, A., & Wäscher, G. (2013). Constraints in container loading - A state-of-the-art review.
European Journal of Operational Research, 229(1), 1–20.

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2014). Rich vehicle routing problem.
ACM Computing Surveys, 47(2), 1–28.

278

Ceschia, S., Schaerf, A., Stützle, T., & Stuzle, T. (2013). Local search techniques for a routing-packing
problem. Computers & Industrial Engineering, 66(4), 1138–1149.

Christofides, N., & Whitlock, C. (1977). An algorithm for two-dimensional cutting problems. Operations
Research, 25(1), 30–44.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., & Semet, F. (2002). A guide to vehicle routing
heuristics. Journal of the Operational Research Society, 53(5), 512–522.

Cui, Y. (2007). Exact algorithm for generating two-segment cutting patterns of punched strips. Applied
Mathematical Modelling, 31(9), 1865–1873.

Davies, A. P., & Bischoff, E. E. (1999). Weight distribution considerations in container loading.
European Journal of Operational Research, 114(3), 509–527.

Dominguez, O., Guimarans, D., Juan, A. A., & de la Nuez, I. (2016a). A biased-randomised large
neighbourhood search for the two-dimensional vehicle routing problem with backhauls. European
Journal of Operational Research, 255(2), 442–462.

Dominguez, O., Juan, A. A., Barrios, B., Faulin, J., & Agustin, A. (2016b). Using biased randomization
for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet. Annals of
Operations Research, 236(2), 383–404.

Dominguez, O., Juan, A. A., de la Nuez, I., & Ouelhadj, D. (2016c). An ILS-biased randomization
algorithm for the two-dimensional loading HFVRP with sequential loading and items rotation. Journal
of the Operational Research Society, 67, 37–53.

Dominguez, O., Juan, A. A., & Faulin, J. (2014). A biased-randomized algorithm for the two-dimensional
vehicle routing problem with and without item rotations. International Transactions in Operational
Research, 21(3), 375–398.

Egeblad, J., Garavelli, C., Lisi, S., & Pisinger, D. (2010). Heuristics for container loading of furniture.
European Journal of Operational Research, 200(3), 881–892.

Eley, M. (2002). Solving container loading problems by block arrangement. European Journal of
Operational Research, 141(2), 393–409.

Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2010). Metaheuristics for vehicle routing problems
with three-dimensional loading constraints. European Journal of Operational Research, 201(3), 751–
759.

García-Cáceres, R. G., Vega-Mejía, C. A., & Caballero-Villalobos, J. P. (2011). Integral optimization of
the container loading problem. In I. Dritsas (Ed.), Stochastic Optimization - Seeing the Optimal for
the Uncertain (1st ed., pp. 225–254). Rijeka, Croatia: InTech.

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a routing and
container loading problem. Transportation Science, 40(3), 342–350.

Guimarans, D., Dominguez, O., Juan, A. A., & Martinez, E. (2016). A multi-start simheuristic for the
stochastic two-dimensional vehicle routing problem. In T. Roede, P. Frazier, R. Szechtman, & E. Zhou
(Eds.), 2016 Winter Simulation Conference (WSC) (pp. 2326–2334). Washington, US: IEEE
Publishing.

Guimarans, D., Dominguez, O., Panadero, J., & Juan, A. A. (2018). A simheuristic approach for the two-
dimensional vehicle routing problem with stochastic travel times. Simulation Modelling Practice and
Theory, 89(May), 1–14.

Hokama, P., Miyazawa, F. K., & Xavier, E. C. (2016). A branch-and-cut approach for the vehicle routing
problem with loading constraints. Expert Systems with Applications, 47, 1–13.

Iori, M., & Martello, S. (2010). Routing problems with loading constraints. Top, 18(1), 4–27.
Iori, M., & Riera-Ledesma, J. (2015). Exact algorithms for the double vehicle routing problem with

multiple stacks. Computers & Operations Research, 63, 83–101.
Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics:

Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations
Research Perspectives, 2, 62–72.

Junqueira, L., & Morabito, R. (2015). Heuristic algorithms for a three-dimensional loading capacitated
vehicle routing problem in a carrier. Computers & Industrial Engineering, 88, 110–130.

Junqueira, L., Oliveira, J. F., Carravilla, M. A., & Morabito, R. (2013). An optimization model for the

C. A. Vega-Mejía et al. / International Journal of Industrial Engineering Computations 11 (2020) 279

vehicle routing problem with practical three-dimensional loading constraints. International
Transactions in Operational Research, 20(5), 645–666.

Koch, H., Bortfeldt, A., & Wäscher, G. (2018). A hybrid algorithm for the vehicle routing problem with
backhauls, time windows and three-dimensional loading constraints. OR Spectrum, 40, 1029–1075.

Kramer, R., Subramanian, A., Vidal, T., & Cabral, L. dos A. F. (2015). A matheuristic approach for the
pollution-routing problem. European Journal of Operational Research, 243(2), 523–539.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416.
Lim, A., Ma, H., Qiu, C., & Zhu, W. (2013). The single container loading problem with axle weight

constraints. International Journal of Production Economics, 144(1), 358–369.
Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing

problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138.
Mehrjerdi, Y. Z. (2014). A multiple objective stochastic approach to vehicle routing problem.

International Journal of Advanced Manufacturing Technology, 74(5–8), 1149–1158.
Montoya-Torres, J. R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., & Herazo-Padilla, N.

(2015). A literature review on the vehicle routing problem with multiple depots. Computers &
Industrial Engineering, 79, 115–129.

Moura, A., & Oliveira, J. F. (2009). An integrated approach to the vehicle routing and container loading
problems. Or Spectrum, 31(4), 775–800.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal of Operational
Research, 141(2), 382–392.

Ramos, A. G., Silva, E., & Oliveira, J. F. (2018). A new load balance methodology for container loading
problem in road transportation. European Journal of Operational Research, 266(3), 1140–1152.

Resende, M. G. C., & Ribeiro, C. C. (2010). Greedy randomized adaptive search procedures: Advances,
hybridizations, and applications. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics
(2nd ed., pp. 283–319). New York, NY: Springer New York.

Sicilia, J. A., Quemada, C., Royo, B., & Escuin, D. (2016). An optimization algorithm for solving the
rich vehicle routing problem based on variable neighborhood search and tabu search metaheuristics.
Journal of Computational and Applied Mathematics, 291, 468–477.

Tricoire, F., Doerner, K. F., Hartl, R. F., & Iori, M. (2011). Heuristic and exact algorithms for the multi-
pile vehicle routing problem. Or Spectrum, 33(4), 931–959.

Vega-Mejía, C. A., & Montoya-Torres, J. R. (2017). A Hybrid Heuristic for a Balanced Vehicle Routing
Problem with Time Windows and Loading Constraints. In A. Duarte, A. Viana, A. A. Juan, B. Mélian,
& H. Ramalhinho (Eds.), MIC 2017 - 12th Metaheuristics International Conference (pp. 617–626).
Barcelona, Es: Universitat Pompeu Fabra. Retrieved from http://mic2017.upf.edu/proceedings/

Vega-Mejía, C. A., Montoya-Torres, J. R., & Islam, S. M. N. (2019a). A nonlinear optimization model
for the balanced vehicle routing problem with loading constraints. International Transactions in
Operational Research, 26(3), 794–835.

Vega-Mejía, C. A., Montoya-Torres, J. R., & Islam, S. M. N. (2019b). Consideration of triple bottom
line objectives for sustainability in the optimization of vehicle routing and loading operations: a
systematic literature review. Annals of Operations Research, 273(Operations Research for
Transportation), 311–375.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing
problems. European Journal of Operational Research, 183(3), 1109–1130.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2013). Designing vehicle routes for a mix of
different request types, under time windows and loading constraints. European Journal of Operational
Research, 229(2), 303–317.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2016). The vehicle routing problem with
simultaneous pick-ups and deliveries and two-dimensional loading constraints. European Journal of
Operational Research, 251(2), 369–386.

Zhang, D., Cai, S., Ye, F., Si, Y.-W., & Nguyen, T. T. (2017). A hybrid algorithm for a vehicle routing
problem with realistic constraints. Information Sciences, 394, 167–182.

Zhang, Z., Wei, L., & Lim, A. (2015). An evolutionary local search for the capacitated vehicle routing

280

problem minimizing fuel consumption under three-dimensional loading constraints. Transportation
Research Part B-Methodological, 82, 20–35.

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

