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 Distribution-free (or nonparametric) monitoring schemes are needed in industrial, chemical and 
biochemical processes or any other analytical non-industrial process when the assumption of 
normality fails to hold. The Mann-Whitney (MW) test is one of the most powerful tests used in 
the design of these types of monitoring schemes. This test is equivalent to the Wilcoxon rank-
sum (WRS) test. In this paper, we propose a new distribution-free generally weighted moving 
average (GWMA) monitoring scheme based on the WRS statistic. The performance of the 
proposed scheme is investigated using the average run-length, the standard deviation of the run-
length, percentile of the run-length and some characteristics of the quality loss function through 
extensive simulation. The proposed scheme is compared with the existing parametric and 
nonparametric GWMA monitoring schemes and other well-known control schemes. The effect 
of the estimated design parameters as well as the effect of the Phase I sample size on the Phase 
II performance of the new monitoring scheme are also investigated. The results show that the 
proposed scheme presents better and attractive mean shifts detection properties, and therefore 
outperforms the existing monitoring schemes in many situations. Moreover, it requires a 
reasonable number of Phase I observations to guarantee stability and accuracy in the Phase II 
performance. 
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1. Introduction 

 

A monitoring scheme is one of the most used tools in statistical process monitoring (SPM) to improve 
the process efficiency by identifying and controlling variability in order to achieve process stability. 
Monitoring schemes help to facilitate the identification of two types of variations in the process, namely, 
common (or chance) causes of variation and assignable (or special) causes of variation. A process that 
operates only in the presence of common causes is said to be in statistical control, or simply, in-control 
(IC). Otherwise, it is said to be out-of-control (OOC), see for example Montgomery (2005). An efficient 
monitoring scheme should be sensitive enough to detect small shifts in any type of process as quickly as 
possible. Time-weighted schemes such as the cumulative sum (CUSUM) and exponentially weighted 
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moving average (EWMA) are developed to serve this purpose. Roberts (1959) introduced the EWMA 
monitoring scheme (denoted as 𝑋ത-EWMA) to facilitate the detection of small shifts in the monitoring 
process. Since then, improving the sensitivity of the EWMA-based schemes has been the concern of 
many researchers, see the review by Ruggeri et al. (2007), and for other more recent improvements or 
enhancements, see for example, Haridy et al. (2019), Haq (2019), Adegoke et al. (2019), etc.  

In an effort to further improve the EWMA-based schemes to monitor the process mean, Sheu and Lin 
(2003) proposed the generally weighted moving average (GWMA) scheme (denoted as 𝑋ത-GWMA), 
which is a general version of both the EWMA scheme and the Shewhart-type scheme (this is shown in 
Section 2). They showed that the 𝑋ത-GWMA scheme performs better than the 𝑋ത-EWMA scheme in 
monitoring small shifts in the process mean. Thereafter, a number of researchers investigated the 
performance of parametric GWMA schemes, to count a few, Sheu and Yang (2006), Sheu and Hsieh 
(2009), Tai and Lin (2009), Teh et al. (2012), Aslam et al. (2017), Chakraborty et al. (2017), etc. 

SPM schemes have been applied to a variety of fields, including engineering, production, manufacturing, 
finance, food industry, chemistry and biochemistry, see Simoglou et al. (1997), Black et al. (2011), Bag 
et al. (2012), Lim et al. (2017), etc. In practice, the underlying process distribution is generally unknown. 
In this case, control schemes that do not rely on parametric assumptions are needed. The foregoing 
GWMA monitoring schemes are based on the assumption of normality or some other underlying 
parametric distribution. However, when the data depart from normality, the performance of the 𝑋ത-
GWMA or any other parametric scheme degrades considerably. To remedy this problem, nonparametric 
GWMA schemes are recommended. Lu (2015) proposed a nonparametric GWMA monitoring scheme 
based on the sign statistic (denoted as SN-GWMA). Lu (2015) showed that the nonparametric SN-
GWMA scheme is more sensitive than the parametric 𝑋ത-GWMA scheme under normal and a variety of 
other non-normal distributions. The GWMA scheme based on the signed-rank test (SR-GWMA) was 
proposed by Chakraborty et al. (2016) where, they showed that the SR-GWMA scheme performs better 
than the 𝑋ത-GWMA, SN-GWMA and SN-EWMA schemes in many cases. More recently, Sukparungsee 
(2018) investigated the robustness of the SR-GWMA control scheme for monitoring the location shift of 
skew processes. Chakraborty et al. (2018) proposed a robust GWMA exceedance chart (EX-GWMA) for 
monitoring the location parameter. The quality of these monitoring schemes is found in their abilities to 
solve a variety of problems encountered in different environments. Two major problems faced in 
industrial and non-industrial processes are addressed in this paper. These problems are: (i) The 
assumption of normality is more questionable in industrial and non-industrial processes, and (ii) Most of 
the existing monitoring schemes are able to efficiently monitor either small shifts only, or large shifts 
only in the process parameters. Therefore, there is a need for more efficient and robust monitoring 
schemes that are able to detect small to large shifts in the process parameters without any distributional 
assumptions. Consequently, in this paper, we propose a new distribution-free GWMA control scheme 
based on one of the most powerful nonparametric tests (i.e. the Wilcoxon rank-sum (WRS) test) denoted 
as W-GWMA. The combination of the GWMA procedure and the WRS statistic enables the resulting 
scheme to efficiently monitor small and moderate shifts without affecting the performance of the 
monitoring scheme for large shifts.  

The remainder of this paper is organised as follows: Section 2 provides the properties of the proposed 
W-GWMA scheme. Section 3 investigates the robustness and performance of the proposed monitoring 
scheme using extensive Monte Carlo simulations. Moreover, the W-GWMA scheme is compared to other 
existing time varying monitoring schemes. A real-life example is given in Section 4 to illustrate the 
implementation of the W-GWMA scheme. In Section 5, the effect of the estimation of design parameters 
and Phase I sample size on the IC and OOC Phase II performances of the proposed W-GWMA scheme 
is investigated using its conditional run-length distribution. Concluding remarks and recommendations 
are given in Section 6.   
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2. Design of the proposed monitoring schemes  

Assume that 𝑋 ={𝑥௜, i = 1, 2, …, 𝑚} represents the IC Phase I (or reference) sample with unknown or 
non-normal continuous cumulative distribution function (cdf) 𝐹(𝑥) and 𝑌 ={𝑦௧௝ , 𝑗 = 1, 2, …, 𝑛; 𝑡 =1, 
2, …} represents the Phase II (or test) sample with cdf 𝐺(𝑦). The test samples at time 𝑡 (𝑡 = 1, 2, …) are 
assumed to be independent and identically distributed (𝑖𝑖𝑑) from each other and from the reference 
sample. Let 𝐹(𝑡) = 𝐺(𝑡 − 𝛿), for all t, where 𝛿 is the change (or shift) in the location parameter. The 
process is then considered IC if 𝛿 = 0, which means 𝐹(𝑡) = 𝐺(𝑡)∀𝑡. 

2.1.  The Wilcoxon rank-sum statistic 

The Wilcoxon rank-sum (WRS) for two-sample test proposed by Wilcoxon (1945) is defined by 

𝑊௧ = ෍ (𝑠 .

௠ା௡

௦ୀଵ

𝑥(௦)
ᇱ ), 𝑡 = 1, 2, 3, … (1)  

where 𝑥(௦)
ᇱ  are the ordered observations obtained after combining the reference and test sample and 

arranging the (𝑚 + 𝑛) observations in ascending order. Note that  𝑥(௦)
ᇱ  = 1 if 𝑥௦

ᇱ  comes from the test 
sample and 𝑥(௦)

ᇱ  = 0 if 𝑥௦
ᇱ  comes from reference sample. The mean and variance of the 𝑊 statistic under 

the identical distributions assumption are, respectively, given by  

𝐸 (𝑊௧) =  𝜇ௐ  =
𝑛 (𝑚 + 𝑛 + 1)

2
 

 

and (2) 

𝑉𝑎𝑟 (𝑊௧) =  𝜎ௐ
ଶ  =  

𝑚𝑛 (𝑚 + 𝑛 + 1)

12
. 

 

The above measures are very useful in the design and implementation of the W-GWMA monitoring 
scheme as well as Li et al. (2010)’s EWMA scheme. 

2.2. The Proposed W-GWMA monitoring scheme   

Following Sheu and Lin (2003)’s idea, the charting statistic of the W-GWMA monitoring scheme, 
denoted 𝐺𝐸௧, is given by 

𝐺𝐸௧ = 𝑃(𝑀 = 1) 𝑊௧ + 𝑃(𝑀 = 2) 𝑊௧ିଵ + ⋯ + 𝑃(𝑀 = 𝑡) 𝑊ଵ + 𝑃(𝑀 > 𝑡) 𝑊଴, (3) 

with 

𝑃(𝑀 = 𝑡) = 𝑞(௧ିଵ)ഀ
− 𝑞௧ഀ

 
and 

𝑃(𝑀 > 𝑡) = 𝑞௧ഀ
, 

where 𝑀 is the number of samples until the first occurrence of event 𝐴 since the previous occurrence of 
event 𝐴, 𝑃(𝑀 = 1) represents the weight value for the current sample, 𝑃(𝑀 = 2) is the weight value for 
the previous sample, 𝑃(𝑀 = 𝑡) is the weight value for the first sample and 𝑃(𝑀 > 𝑡) is the weight value 
for the target value of the process mean, which is considered to be the unconditional IC expectation of 
𝑊௧ given by 𝑊଴ = 𝐸(𝑊௧|𝐼𝐶) = 𝜇ௐ. The design parameter 𝑞 (0 ≤ 𝑞 < 1) is constant and the adjustment 
parameter 𝛼 (𝛼 > 0) is determined by the practitioners.  

Following a similar procedure as Sheu and Lin (2003) and Sheu and Hsieh (2009), it can be shown without 
loss of generality that the W-GWMA statistic in Eq. (3) can be written as  
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𝐺𝐸௧ = ෍൫𝑞(௜ିଵ)ഀ
− 𝑞௜ഀ

൯𝑊௧ି௜ାଵ

௧

௜ୀଵ

+ 𝑞௧ഀ
𝜇ௐ, 𝑡 = 1, 2, 3, … (4) 

The expected value of Eq. (4) is given by 

𝐸(𝐺𝐸௧) = 𝐸 ൥෍൫𝑞(௜ିଵ)ഀ
− 𝑞௜ഀ

൯𝑊௧ି௜ାଵ

௧

௜ୀଵ

+ 𝑞௧ഀ
𝜇ௐ൩ = 𝜇ௐ =

𝑛(𝑚 + 𝑛 + 1)

2
. (5) 

The variance of Eq. (4) is then defined by  

𝑉𝑎𝑟(𝐺𝐸௧) = ෍൫𝑞(௜ିଵ)ഀ
− 𝑞௜ഀ

൯
ଶ

𝑉𝑎𝑟(𝑊௧ି௜ାଵ)

௧

௜ୀଵ

. (6) 

Eq. (6) can be written as  

𝑉𝑎𝑟(𝐺𝐸௧) = 𝜎ீா
ଶ = 𝑄௧𝜎ௐ

ଶ , (7) 

where  

𝑄௧ = ෍൫𝑞(௜ିଵ)ഀ
− 𝑞௜ഀ

൯
ଶ

௧

௜ୀଵ

 

and 

𝜎ௐ
ଶ =

𝑚𝑛(𝑚 + 𝑛 + 1)

12
. 

Therefore, the exact (hereafter Case E) control limits of the proposed W-GWMA monitoring scheme can 
be calculated as 

𝐿𝐶𝐿ீா = 𝜇ௐ − 𝐿ீா𝜎ீா   

𝐶𝐿ீா = 𝜇ௐ (8) 

𝑈𝐶𝐿ீா = 𝜇ௐ + 𝐿ீா𝜎ீா  

where 𝐿ீா  (with 𝐿ீா > 0) represents the W-GWMA monitoring scheme coefficient. This coefficient is 
used to fix the predefined nominal IC average run-length (𝐴𝑅𝐿) value. The W-GWMA scheme is 
constructed by plotting the charting statistic 𝐺𝐸௧ against the sampling time (or sample number) 𝑡. The 
process is considered to be OOC if 𝐺𝐸௧ falls beyond the control limits, that is, 𝐺𝐸௧ ≥ 𝑈𝐶𝐿ீா or 𝐺𝐸௧ ≤
𝐿𝐶𝐿ீா; otherwise, the process is considered to be IC. 

Note that when 𝛼 = 1, it can be shown that  

𝑄௧ = (1 − 𝑞ଶ௧)
1 − 𝑞

1 + 𝑞
, 

so that Eq. (7) reduces to  

𝑉𝑎𝑟(𝐺𝐸௧) = 𝜎ீா
ଶ = (1 − 𝑞ଶ௧)

1 − 𝑞

1 + 𝑞
𝜎ௐ

ଶ . (9) 

Therefore, when the process has been running for a long time, that is, when 𝑡 tends to infinity (𝑡 → ∞) 
then 𝑞ଶ௧ → 0. Then, the variance of the W-GWMA statistic becomes 
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𝑉𝑎𝑟(𝐺𝐸௧) = 𝜎ீா
ଶ = 𝑚𝑛

1 − 𝑞

1 + 𝑞
 ൬

𝑚 + 𝑛 + 1

12
൰. (10) 

Therefore, the control limits based on Eq. (10) are called asymptotic (hereafter Case A) control limits; 
whereas, those based on Eq. (7) are called time varying (hereafter Case E) control limits. Note that when 
1 − 𝑞 = 𝜆 (i.e., 𝑞 = 1 − 𝜆) and 𝛼 = 1, the W-GWMA scheme is equivalent to Li et al. (2010)’s W-
EWMA scheme; however, when 𝑞 = 0 and 𝛼 = 1, the GWMA scheme is equivalent to the Shewhart 
WRS scheme (denoted as W-Shewhart). 

In this paper, the proposed W-GWMA monitoring scheme with design parameters 𝑞 and 𝛼 will be 
denoted as W-GWMA(𝑞, 𝛼); while Li et al. (2010)’s EWMA scheme will be denoted as W-EWMA(𝜆) 
where 𝜆 is the smoothing parameter of the W-EWMA scheme. 

3. Performance study  

3.1.  Performance measures 

To evaluate the performance of a monitoring scheme, the literature recommends the use of the 𝐴𝑅𝐿 value. 
This value represents the mean of the run-length distribution, which is the number of rational subgroups 
to be plotted before the monitoring scheme signals for the first time. A number of authors have criticised 
the sole use of this measure for two main reasons, which are: (i) the 𝐴𝑅𝐿 value does not give enough 
information since the run-length distribution is highly skewed, and (ii) the 𝐴𝑅𝐿 value assesses the 
performance of a monitoring scheme for a specific shift (Teh et al., 2014; Shongwe & Graham, 2017). 
In practice, we need to get useful information missing in the 𝐴𝑅𝐿 criterion and assess the performance 
over a range of shifts including the overall performance of a monitoring scheme. To solve these problems, 
the SPM literature suggests the use of the percentiles of the run-length (𝑃𝑅𝐿) and the characteristics of 
the quality loss function (QLF) such as the average extra quadratic loss (𝐴𝐸𝑄𝐿) values as performance 
measures. In this paper, the 𝐴𝑅𝐿, standard deviation of the run-length (𝑆𝐷𝑅𝐿), 𝑃𝑅𝐿 and 𝐴𝐸𝑄𝐿 values are 
used to evaluate the performance of the proposed W-GWMA(𝑞, 𝛼) monitoring scheme. The 𝐴𝐸𝑄𝐿 is the 
quadratic weighted mean of the 𝐴𝑅𝐿 value over the range of shifts 𝛿௠௜௡ ≤ 𝛿 ≤ 𝛿௠௔௫. Therefore, the 𝐴𝐸𝑄𝐿 
value is defined by 

𝐴𝐸𝑄𝐿 =
1

𝛿௠௔௫ − 𝛿௠௜௡
න 𝛿ଶ𝐴𝑅𝐿(𝛿) 𝑑𝛿

ఋ೘ೌೣ

ఋ೘೔೙

. (11) 

Eq. (11) can also be written as: 

𝐴𝐸𝑄𝐿 =
1

𝛿௠௔௫ − 𝛿௠௜௡
෍ 𝛿ଶ𝐴𝑅𝐿(𝛿).

ఋ೘ೌೣ

ఋୀఋ೘೔೙

 (12) 

where 𝐴𝑅𝐿(𝛿) is the OOC 𝐴𝑅𝐿 for a specific mean shift (𝛿). In this paper, we use a step shift of size 0.1. 

In addition to the AEQL value, the average ratio of the average run-length (ARARL) and the performance 
comparison index (PCI) values are used as overall performance measures. The ARARL and PCI are 
mathematically defined by  

𝐴𝑅𝐴𝑅𝐿 =
1

𝛿௠௔௫ − 𝛿௠௜௡
෍

𝐴𝑅𝐿(𝛿)

𝐴𝑅𝐿(𝛿)௕௘௡௖௛௠௔௥௞

ఋ೘ೌೣ

ఋୀఋ೘೔೙

 (13) 

and  

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿௕௘௡௖௛௠௔௥௞
, (14) 
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respectively, where the benchmark scheme is chosen to be the monitoring scheme with a minimum AEQL 
value. If the ARARL is greater than one, the corresponding scheme is less efficient than the benchmark 
scheme over the range of shifts under consideration.  

3.2.  Design considerations 

The optimal design parameters are found by solving the following optimization model: 

 Min
௅,௤,ఈ

𝐴𝐸𝑄𝐿  

subject to  (15) 

𝐴𝑅𝐿଴  ∈  𝑆, with  𝑆 = [𝜏 − 𝜉𝜏 , 𝜏 + 𝜉𝜏 ],  

where 𝐴𝑅𝐿଴ is the attained IC 𝐴𝑅𝐿 value, 𝜏 represents the predefined nominal 𝐴𝑅𝐿଴ and generally, 𝜉 is 
taken to be equal to 0.1. The value of 𝜏 is set to be equal to some high desired value such as 250, 370 and 
500.  

Therefore, the optimal W-GWMA (𝑞, 𝛼) monitoring scheme is designed as follows: 

Step 1 Specify the monitoring scheme parameters (i.e. 𝑞 and 𝛼) as well as the distribution parameters and 
the nominal 𝐴𝑅𝐿଴ value (i.e., 𝜏).  

Step 2 Initialize the variable 𝐴𝐸𝑄𝐿 to a very large value, say 105, used as the initial minimum value of the 
𝐴𝐸𝑄𝐿 values denoted by 𝐴𝐸𝑄𝐿௠௜௡. 

Step 3  Search for the value of 𝐿 (i.e., 𝐿ீா) for which the attained 𝐴𝑅𝐿଴ of the proposed W-GWMA 
monitoring scheme is very close or equal to 𝜏; then go to Step (4). If this does not happen, then go 
to Step (6). 

Step 4 Compute the OOC 𝐴𝑅𝐿 (𝐴𝑅𝐿ఋ) values and calculate the corresponding 𝐴𝐸𝑄𝐿 value denoted 
𝐴𝐸𝑄𝐿௖௔௟. 

Step 5 Compare the 𝐴𝐸𝑄𝐿௖௔௟ to the current 𝐴𝐸𝑄𝐿௠௜௡. If 𝐴𝐸𝑄𝐿௖௔௟ < 𝐴𝐸𝑄𝐿௠௜௡ then the current 
𝐴𝐸𝑄𝐿௠௜௡ = 𝐴𝐸𝑄𝐿௖௔௟. Otherwise, current 𝐴𝐸𝑄𝐿௠௜௡ = 𝐴𝐸𝑄𝐿௠௜௡. The parameters corresponding 
to the current 𝐴𝐸𝑄𝐿௠௜௡ are recorded as current parameters then return to Step (3).  

Step 6 The current parameters are recorded as optimal parameters corresponding to the optimal monitoring 
scheme with a minimum 𝐴𝐸𝑄𝐿 value. The design of the optimal W-GWMA(𝑞, 𝛼) is completed. 

Note that in Step (3) the attained 𝐴𝑅𝐿଴ value is considered very close to 𝜏 if 𝐴𝑅𝐿଴  ∈ 𝑆 with 𝑆 = 𝜏 ± 𝜉𝜏, 
where 𝜉 = 0.04, as it provides more accuracy as compared to the traditional value of 0.1. For instance, 
when 𝜏 = 500, the 𝐴𝑅𝐿଴ is considered very close to 𝜏 if 𝐴𝑅𝐿଴  ∈ [480, 520].  

Readers are referred to Malela-Majika et al. (2016) and Li et al. (2010) for more information on the 
computation of the 𝐴𝑅𝐿 values using extensive simulations. 

3.3. In-control performance and robustness of the proposed W-GWMA monitoring scheme 

A monitoring scheme is said to be IC robust if the IC characteristics of the run-length distribution (such as 
the 𝐴𝑅𝐿଴, the IC median run-length (𝑀𝑅𝐿଴), etc.) are the same over all continuous distributions. To check 
this, we have computed the IC characteristics of the run-length distribution under symmetrical and skewed 
distributions. In this paper, we considered the following five distributions:  

(i) Standard normal distribution, denoted N(0,1),  
(ii) Student’s t distribution with degrees of freedom 𝜈 = 10, denoted t(10),  
(iii) Gamma  distribution with parameters 𝜔 = 3 and 𝛽 = 1, denoted GAM(3, 1),  
(iv) Log-logistic distribution with parameters 𝜔 = 1 and 𝛽 = 3, denoted LogL(1, 3)  
(v) Weibull distribution with parameters 𝜅 = 2 and 𝜍 = 1, denoted Weib(2, 1).  
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For a fair comparison, the above distributions are transformed such that the mean and variance are equal to 
0 and 1, respectively. 

Tables 1 and 2 give the Case A and Case E attained 𝐴𝑅𝐿଴ and 𝐴𝐸𝑄𝐿 values of the proposed W-
GWMA(𝑞, 𝛼) scheme when 𝑛 ∈ {3, 5}, 𝑚 ∈ {50, 100, 500}, 𝑞 ∈ {0.1, 0.5, 0.7, 0.9} and 𝛼 ∈ {0.5, 1, 
1.5} for a nominal 𝐴𝑅𝐿଴ of 500 under different probability distributions. The results in Tables 1 and 2 
show that for both Case A and Case E, the width of the control limits widens as the Phase I sample size 
increases. For instance, in Case A, when (m, n) = (50, 3), we found that 𝐿 = 3.0646 so that the W-GWMA 
(0.1, 0.5) yields and attained 𝐴𝑅𝐿଴ of 501.84 under the N(0,1) distribution. However, when (m, n) = (500, 
3), we found that 𝐿 = 3.2973 so that the W-GWMA (0.1, 0.5) yields an attained 𝐴𝑅𝐿଴ of 502.61 under the 
same distribution (see Table 1). When the Phase II (or test) sample increases, the width of the control limits 
broadens so that the proposed scheme yields an attained 𝐴𝑅𝐿଴ as close as possible to 500. For instance, 
when (m, n) = (50, 3), we found that L = 3.1232 so that the proposed W-GWMA (0.1, 1) yields an 𝐴𝑅𝐿଴ 
of 503.74. However, when (m, n) = (50, 5), we found that L = 3.1877 so that the proposed W-GWMA (0.1, 
1) yields an 𝐴𝑅𝐿଴ of 499.11. For a pre-specified 𝐴𝑅𝐿଴ value, we can also see that when 𝛼 is kept fixed, as 
𝑞 increases, the width of the control limits narrows. However, when 𝑞 is kept constant, as 𝛼 increases, the 
width of the control limits broadens.  

It is very important to report that for both Case A and Case E, the attained 𝐴𝑅𝐿଴ values are much closer to 
the nominal 𝐴𝑅𝐿଴ value of 500 across all continuous probability distributions for each set of optimal 
parameters. For instance, in Case A, when (m, n) = (100, 5) and (𝑞, 𝛼, 𝐿) = (0.7, 0.5, 2.8240), the attained 
𝐴𝑅𝐿଴ values obtained from the proposed W-GWMA(0.7, 0.5) scheme under the N(0, 1), t(10), GAM(3, 1), 
LogL(1, 3) and Weib(2, 1) are equal to 499.86, 501.56, 510.66, 497.46 and 508.78, respectively. This shows 
that the proposed W-GWMA(𝑞, 𝛼) monitoring scheme is IC robust. From both Tables 1 and 2, it can also 
be seen that when 𝛼 = 1, the proposed W-GWMA(𝑞, 𝛼) scheme is equivalent to Li et al. (2010)’s W-
EWMA(𝜆) scheme with 𝜆 = 1 − 𝑞 (i.e., W-GWMA(𝑞,1) scheme ≡ W-EWMA(1 − 𝑞) scheme). Note that 
the trend of the findings remains valid for other prespecified nominal 𝐴𝑅𝐿଴ values such as 250, 370, 1000, 
etc. Therefore, in this paper we will focus on investigating the performance of the proposed W-
GWMA(𝑞, 𝛼) scheme for a nominal 𝐴𝑅𝐿଴ value of 500 and (m, n) = (100, 5). 

Given that the W-GWMA(𝑞, 𝛼) scheme is IC robust, the optimal parameters may now be used to 
investigate the OOC performance of the proposed monitoring scheme.  

3.4.  OOC Performance of the W-GWMA monitoring scheme 

In this section, we discuss the OOC performance (see Tables 3-5) as well as the overall performance of the 
proposed monitoring scheme (see Tables 1 and 2 – second row). Tables 1 and 2 do not only investigate the 
IC robustness of the proposed scheme (see first row of each cell in Tables 1 and 2), they also present the 
overall performance of the proposed scheme for different reference and test sample sizes (i.e. different m 
and n values) under different distributions. The second row of each cell in Tables 1 and 2 gives the 𝐴𝐸𝑄𝐿 
values of the proposed control scheme for different design parameters. However, Tables 3-5 display the 
OOC characteristics (or properties) of the run-length distribution under different distributions for both Case 
A and Case E when (m, n) = (100, 5). The first row of each cell in Tables 3-5 gives the ARL and SDRL 
values and the second row gives the 5th, 25th, 50th, 75th and 95th 𝑃𝑅𝐿 values of the W-GWMA monitoring 
schemes. Moreover, these characteristics are given along with some corresponding overall performance 
measures (i.e. 𝐴𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼) under different distributions. From Tables 1 and 2, we observed that as the 
Phase I sample size increases, the overall performance of the proposed scheme increases in terms of the 
𝐴𝐸𝑄𝐿 values. For instance, under the N(0, 1) distribution, when (m, n) = (50, 3), the proposed W-GWMA 
(0.1, 0.5) scheme yields 𝐴𝐸𝑄𝐿 values of 132.79 and 134 in Case A and Case E, respectively. However, 
when (m, n) = (500, 3), the proposed W-GWMA (0.10, 0.5) scheme yields 𝐴𝐸𝑄𝐿 values of 110.88 and 
109.83 in Case A and Case E, respectively.
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Table 1  
Case A attained 𝐴𝑅𝐿଴ (first row) and 𝐴𝐸𝑄𝐿 (second row) of the proposed W-GWMA control scheme when 𝑛 ∈ {3, 5}, 𝑚 ∈ {50, 100, 500}, 𝑞 ∈ {0.1, 0.5, 0.7, 
0.9} and 𝛼 ∈ {0.5, 1, 1.5} for a nominal 𝐴𝑅𝐿଴ of 500 under different probability distribution functions 

   m = 50 m = 100 m = 500 

n q α L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) 

3 

0.1 0.5 3.0646 501.84 498.11 492.05 499.69 492.57 3.2548 495.35 495.94 493.6 499.68 489.69 3.2973 502.61 496.13 496.86 498.55 496.19 
132.79 110.19 237.11 167.98 188.14 119.62 89.09 175.86 105.12 154.76 110.88 77.93 147.83 84.18 137.16 

1 3.1232 503.74 503.28 506.38 501.67 493.79 3.2860 506.01 504.03 509.12 517.09 530.26 3.3393 501.95 497.14 497.72 515.29 500.38 
136.23 112.04 241.42 172.19 197.65 122.44 90.19 186.54 110.38 160.34 111.58 78.68 149.85 84.95 139.47 

1.5 3.0864 517.73 512.21 507.5 490.83 495.35 3.2686 496.21 490.61 494.05 493.81 492.31 3.3088 514.63 497.98 514.76 515.05 496.82 
136.80 111.18 247.82 171.79 192.28 124.87 92.19 187.08 110.93 159.2 112.58 98.81 151.56 85.37 141.18 

0.5 0.5 2.8073 514.06 507.73 511.47 510.92 491.29 2.9301 494.11 499.51 488.81 508.35 488.44 2.9398 501.52 498.06 500.73 507.05 502.37 
113.43 90.12 131.4 90.68 129.92 102.02 85.09 112.08 84.8 112.5 93.11 76.59 101.23 81.71 101.46 

1 2.9230 490.39 493.27 484.27 478.04 482.43 2.9896 500.1 493.61 487.84 489.68 509.1 3.1869 492.1 502.83 509.24 494.27 506.66 
123.37 102.3 139.99 100.4 137.53 115.22 96.84 119.89 91.29 122.01 109.08 93.46 107.3 83.66 111.42 

1.5 2.9105 511.85 494.64 523.05 490.82 514.91 2.9602 497.24 491.85 505.98 499.94 498.76 3.0953 496.22 498.99 497.26 492.3 495.6 

130.55  105.48 152.45 108.27 147.45 126.94 99.17 128.18 95.22 130.4 113.22 95.2 114.29 89.72 117.99 
0.7 0.5 2.6364 495.16 512.79 493.91 475.95 518.86 2.6525 506.26 508.94 508.79 501.2 499.15 2.7364 493.5 503.01 501.16 495.72 499.2 

111.19 90.02 126.95 90.79 128.65 103.9 86.51 111.87 89.14 116.36 92.54 73.15 100.52 80.89 100.66 
1 2.7222 492.5 506.99 527.6 515.12 501.72 2.7404 506.63 496.3 501.16 497.83 494.13 2.8300 496.71 507.91 507.76 489.91 488.91 

120.82 100.9 126.67 95.13 128.08 113.22 96.69 110.65 88.57 115.2 106.16 93.49 101.69 82.19 105.8 
1.5 2.6674 495.77 488.12 507.36 503.5 491.26 2.6774 488.23 495.2 497.85 487.23 492.73 2.7855 502.67 512.67 505.27 511.36 512.54 

123.72 102.13 142.09 97.97 134.87 115.81 97.09 116.42 90.12 119.7 108.74 94.22 105.51 86.94 110.10 
0.9 0.5 2.4029 492.73 492.47 490.64 505.88 485.24 2.5049 510.25 508.89 499.95 510.78 511.9 2.6807 504.64 503.86 498.97 507.57 504.13 

109.68 80.89 110.4 88.72 121.21 103.61 80.09 105.08 89.04 117.73 92.56 70.37 84.74 90.16 117.13 
1 2.5211 498.09 491.3 492.3 490.83 490.38 2.6214 498.64 507.35 507.45 508.31 490.75 2.7191 503.61 500.75 497.31 501.42 499.16 

119.51 96.22 118.56 92.85 122.39 110.79 93.81 106.04 92.28 115.66 102.75 93.24 105.63 85.97 101.24 
1.5 2.4762 504.92 504.82 506.45 496.13 488.69 2.5849 512.70 510.91 514.26 509.69 491.77 2.6989 497.89 496.85 496.31 489.32 502.06 

121.56 98.18 140.78 94.75 139.22 117.70 97.08 113.9 92.89 118.27 108.22 93.24 105.06 85.13 109.71 

5 

0.1 0.5 3.0725 508.51 499.81 491.82 504.03 504.05 3.1969 509.51 510.18 518.81 517.41 521.71 3.2705 493.21 502.1 501.98 495.43 498.59 
91.94 68.62 129.51 77.2 117.29 84.54 60.90 101.06 60.36 99.94 76.16 55.43 82.8 51.15 84.53 

1 3.1877 499.11 505.23 496.6 499.95 488.66 3.2029 501.63 499.42 509.12 496.33 514.7 3.3031 497.65 495.18 499.92 499.92 495.9 
94.19 69.39 130.19 81.57 118.75 85.00 62.08 102.16 61.77 100.19 77.65 57.34 84.14 53.14 85.9 

1.5 3.0979 491.53 488.13 481.12 481.6 487.16 3.1062 492.25 497.81 492.39 489.37 491.01 3.2878 493.13 483.4 488.01 493.02 508.12 

94.04 70.22 132.48 82.51 117.26 86.06 63.41 103.08 62.36 100.94 78.46 58.29 85.31 54.26 87.04 
0.5 0.5 2.8228 483.5 490.23 503.66 497.65 506.38 2.8413 489.94 486.68 495.15 492.03 487.69 2.9986 501.1 503.74 492.94 496.99 491.06 

76.44 58.54 83.63 54.21 83.09 68.29 54.01 67.38 47.33 70.59 62.48 51.33 58.86 45.2 62.30 
1 2.9416 505.25 513.9 502.53 525.63 514 2.9516 503.2 516.4 505.99 502.93 525.62 3.0926 495.27 498.17 503.18 492.03 503.61 

84.42 63.2 95.32 62.93 94.68 75.63 58.01 77.52 53.27 79.85 68.27 54.28 66.00 48.49 69.00 
1.5 2.9331 515.31 527.31 503.96 517.85 491.06 2.9420 492.02 494.24 495.53 498.18 500.43 3.0680 496.93 495.4 492.71 495.59 495.10 

103.43 83.17 118.95 86.45 115.92 91.3 76.36 100.60 78.01 100.46 81.74 67.24 88.60 72.40 88.43 
0.7 0.5 2.8013 508.69 507.47 503.59 499.68 505.38 2.8240 499.86 501.56 510.66 497.46 508.78 2.9100 501.16 497.55 495.5 491.52 495.19 

81.31 62.07 89.57 58.2 87.61 72.01 56.44 71.905 50.5 73.84 64.63 52.94 61.12 46.89 64.1 
1 2.9525 520.21 507.05 503.41 543.7 485.77 2.9950 506.36 499.28 512.56 483.07 520.41 2.9988 494.86 514.25 492.75 503.35 497.3 

104.49 90.79 110.63 90.87 109.54 97.21 87.4 95.85 83.82 98.11 91.96 85.54 89.15 82.84 91.67 
1.5 2.8661 518.14 493.84 505.14 516.12 512.04 2.9254 484.05 496.77 502.42 504.39 499.35 2.9297 490.58 495.42 485.56 493.98 492.47 

106.84 91.93 112.68 93.53 114.26 99.25 87.87 98.54 84.54 101.32 93.36 85.84 90.76 83.07 93.42 
0.9 0.5 2.7057 506.87 509.9 506.94 494.81 513.27 2.7283 515.43 497.74 495.75 514.11 507.57 2.7401 498.59 496.88 489.34 506.27 496.84 

109.87 95.63 110.79 88.48 114.82 102.73 91.36 98.55 85.31 102.49 95.81 88.49 92.14 83.91 94.97 
1 2.7341 485.98 481.44 494.26 497.75 486.74 2.9854 521.88 509.05 500.96 503.67 510.61 3.0043 495.77 489.08 496.33 493.1 503.64 

134.54 117.29 137.81 115.88 141.33 122.05 108.18 123.8 107.16 125.05 107.46 96.97 104.93 90.52 106.91 
1.5 2.7222 497.74 491.49 503.12 499.81 508.21 2.9086 500.39 510.14 504.96 500.42 511.57 2.9814 505.48 495.79 500.05 500.56 509.17 

141.702 129.6 147.32 126.63 146.73 135.13 126.38 132.132 123.63 135.53 127.02 122.91 127.37 122.79 128.91 

    Note: When  𝛼 = 1, the proposed W-GWMA(𝑞, 𝛼) is equivalent to the W-EWMA(𝜆) of Li et al. (2010) where 𝜆 = 1 − 𝑞.
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Table 2  
Case E attained 𝐴𝑅𝐿଴ (first row) and 𝐴𝐸𝑄𝐿 (second row) of the proposed W-GWMA control scheme when 𝑛 ∈ {3, 5}, 𝑚 ∈ {50, 100, 500}, 𝑞 ∈ {0.1, 0.5, 0.7, 
0.9} and 𝛼 ∈ {0.5, 1, 1.5} for a nominal 𝐴𝑅𝐿଴ of 500 under different probability distribution functions 

   m = 50 m = 100 m = 500 
n q α L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) L N(0,1) t(10) GAM(3,1) LogL(1,3) Weib(2,1) 

3 

0.10 0.50 3.0916 494.89 505.33 505.82 500.69 498.71 3.2382 498.04 501.26 514.44 510.37 513.17 3.3301 503.21 494.53 492.04 494.68 502.46 
134.00 109.78 239.52 159.82 191.37 121.57 89.26 201.57 108.77 158.34 109.83 77.65 152.47 83.77 137.41 

1.00 3.1689 496.16 503.84 515.81 490.28 502.63 3.2955 498.36 511.37 501.32 510.34 497.11 3.3474 496.97 504.97 501.75 503.73 493.76 
133.58 110.86 249.19 179.69 193.03 121.64 89.98 202.77 110.01 162.54 110.73 77.57 154.19 84.64 138.00 

1.50 3.1462 502.98 508.41 517.04 491.53 502.60 3.2941 502.30 506.75 516.65 493.40 507.25 3.3454 497.76 500.92 505.63 496.17 494.37 
134.58 111.59 253.51 181.05 191.32 122.91 98.96 204.92 111.65 161.23 110.75 77.62 157.29 85.09 138.69 

0.50 0.50 2.8484 489.44 509.56 505.04 492.79 495.14 2.9631 510.58 505.15 497.51 506.85 510.05 3.0231 493.15 496.91 497.19 490.34 497.94 
88.59 65.21 108.36 61.81 102.16 81.35 59.56 73.91 53.59 87.83 73.51 55.54 64.26 49.60 76.34 

1.00 2.9468 512.07 507.62 522.56 507.76 526.08 2.9814 492.65 492.73 493.06 489.80 491.86 3.1987 502.56 493.27 500.48 499.15 498.13 
106.62 82.57 135.18 87.26 126.61 103.86 78.32 101.63 86.63 108.11 85.18 67.66 90.65 68.49 96.10 

1.50 2.8586 503.41 505.60 510.89 504.22 498.37 3.0732 492.59 496.08 495.46 496.10 489.28 3.0878 499.21 501.20 509.51 508.88 495.01 
128.84 105.24 146.32 109.29 147.30 119.35 98.25 119.17 94.24 128.65 112.30 94.63 104.51 89.44 117.54 

0.70 0.50 2.7651 490.48 506.77 531.71 521.49 511.03 2.8124 501.12 494.90 503.96 488.72 495.20 2.9151 495.97 498.91 499.52 490.05 504.16 
78.92 58.36 77.20 53.28 86.44 70.45 53.83 59.96 47.75 72.58 63.77 51.17 53.79 45.61 64.00 

1.00 2.9113 504.89 497.07 498.49 509.32 507.88 2.9886 497.59 494.59 496.61 498.66 491.72 3.0713 495.88 501.31 499.21 501.05 495.01 
105.05 81.92 115.48 86.98 121.71 100.17 77.04 95.75 84.08 106.12 87.58 77.36 89.06 81.57 93.87 

1.50 2.8382 509.18 512.95 517.18 495.84 505.21 2.9029 495.20 501.51 497.30 497.41 501.15 3.0129 501.15 498.64 490.22 501.32 498.12 
119.29 99.05 136.17 97.29 129.27 110.69 94.45 103.31 88.65 115.12 103.81 91.30 93.25 85.66 105.45 

0.90 0.50 2.5353 508.62 502.80 499.51 511.33 530.78 2.5653 495.22 498.46 507.28 487.47 490.42 2.8180 505.06 509.99 509.62 518.71 518.71 
63.60 55.58 73.93 46.14 68.56 56.84 47.46 47.85 43.21 56.96 51.48 50.77 44.82 50.88 50.88 

1.00 2.6108 496.45 514.96 489.42 490.83 487.22 2.6508 502.30 501.28 497.62 499.29 511.02 2.9762 504.17 510.16 515.41 497.53 497.53 
105.15 82.70 106.32 86.02 110.18 100.30 76.41 89.69 84.28 100.96 77.06 64.72 80.82 81.06 81.07 

1.50 2.5556 506.51 491.62 510.97 505.68 505.60 2.6056 506.99 496.62 500.68 510.57 507.39 2.9209 495.78 501.73 496.53 493.33 493.33 
112.53 96.01 110.99 91.51 116.41 104.10 91.94 93.12 85.57 104.80 97.68 89.37 87.86 96.63 96.63 

5 

0.10 0.50 3.0980 505.46 509.51 505.86 512.96 506.34 3.2599 494.96 497.86 497.77 503.95 499.34 3.3665 502.94 491.95 496.34 493.78 502.61 
95.03 70.82 133.14 75.30 116.29 85.39 62.04 98.57 61.35 99.47 77.60 57.08 77.21 53.19 86.27 

1.00 3.1860 498.66 491.65 501.84 506.95 488.76 3.3473 494.55 496.83 501.71 503.04 495.41 3.3939 495.53 495.60 494.99 499.39 498.64 
95.71 70.56 135.27 77.90 117.98 84.87 62.21 97.97 60.93 99.58 77.11 57.20 76.16 53.05 85.62 

1.50 3.1491 494.15 495.65 495.92 495.36 492.50 3.2873 503.95 495.22 502.10 490.87 509.99 3.3828 507.53 503.14 498.62 502.58 505.63 
95.95 70.74 137.41 79.72 119.20 85.28 61.89 99.04 61.16 99.55 77.81 57.61 77.95 53.17 86.91 

0.50 0.50 2.9190 507.67 502.88 513.61 508.30 513.84 2.9729 501.73 493.91 495.10 495.86 493.56 3.0563 503.51 500.90 499.24 508.29 498.41 
71.34 56.03 78.51 54.61 78.66 62.76 50.95 53.80 45.19 64.88 57.30 48.71 48.73 43.68 57.44 

1.00 3.0334 500.18 504.36 502.03 509.84 505.66 3.0361 502.24 503.52 496.72 504.38 496.27 3.2200 501.05 502.19 501.62 508.07 506.43 
74.43 57.60 85.84 52.69 83.64 66.38 52.93 58.08 46.77 69.68 60.48 50.12 50.83 44.36 60.44 

1.50 2.9378 496.02 492.50 500.23 510.03 493.12 2.9833 498.85 499.24 493.83 485.11 491.43 3.1091 504.12 503.52 500.08 501.22 503.42 
86.37 119.20 103.31 68.73 99.91 79.09 55.39 75.62 53.65 85.74 65.90 52.58 66.22 49.46 76.50 

0.70 0.50 2.9084 500.86 503.62 510.66 508.00 513.18 2.9490 495.65 510.73 498.67 486.35 510.91 3.0397 495.97 493.31 490.60 492.06 488.39 
64.70 52.12 68.29 50.26 68.80 57.12 48.00 48.82 43.36 57.98 51.94 46.00 45.21 42.48 51.46 

1.00 2.9891 496.55 505.56 516.12 498.85 495.65 3.0038 495.68 507.32 511.06 498.26 508.99 3.1976 510.17 509.09 516.33 516.16 511.51 
70.89 55.42 75.82 51.94 75.73 63.38 51.16 54.06 45.16 64.60 57.44 49.12 48.41 43.65 56.26 

1.50 2.9329 504.42 510.23 503.28 501.63 512.20 3.0018 501.20 505.27 521.91 497.61 503.78 3.0948 504.22 497.35 495.69 496.20 504.74 
84.78 72.45 102.79 65.51 100.08 78.51 54.99 72.37 53.79 83.88 64.89 47.38 65.21 50.86 73.37 

0.90 0.50 2.8699 509.70 491.64 522.89 495.90 511.06 2.9399 502.35 513.34 506.60 489.51 495.05 3.0353 503.09 508.65 508.19 501.41 504.87 
56.98 46.31 60.38 49.43 61.84 49.94 43.87 44.56 41.99 50.27 46.04 42.77 42.34 41.37 45.63 

1.00 2.9781 509.48 493.26 494.49 511.70 495.77 2.9883 502.18 510.16 501.35 507.74 496.26 3.1915 499.70 502.28 505.80 502.82 499.47 
67.41 53.37 70.54 48.71 70.95 59.81 49.70 50.14 44.13 59.30 53.50 47.61 46.25 42.86 52.02 

1.50 2.8929 495.84 511.20 499.75 492.50 525.50 2.9729 496.93 501.53 501.68 494.05 495.52 3.0906 499.64 504.40 500.20 501.42 503.95 
89.57 78.55 104.40 77.24 104.04 83.14 65.40 76.26 72.84 83.39  78.46 73.99 73.35 72.13 77.82 

        Note: When  𝛼 = 1, the proposed W-GWMA(𝑞, 𝛼) is equivalent to the W-EWMA(𝜆) of Li et al. (2010) where 𝜆 = 1 − 𝑞. 
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As the Phase II sample size increases, the overall performance of the proposed scheme increases in terms 
of the 𝐴𝐸𝑄𝐿 values. For instance, under the GAM(3, 1) distribution, when (m, n) = (50, 3), the proposed 
W-GWMA (0.5, 0.5) scheme yields 𝐴𝐸𝑄𝐿 values of 131.4 and 108.36 in Case A and Case E, respectively. 
However, when (m, n) = (50, 5), the proposed W-GWMA (0.5, 0.5) scheme yields 𝐴𝐸𝑄𝐿 values of 83.63 
and 78.51 in Case A and Case E, respectively. From Table 3, in terms of the ARL values, it can be seen that 
in Case A, when 𝛼 = 1, the W-GWMA scheme performs better for large values of 𝑞 regardless of the size 
of the shift in the interval 0 < 𝑞 ≤ 0.9. In Case A, when 𝑞 is between 0.9 and 1, the sensitivity of the 
proposed scheme decreases as 𝑞 increases. However, in Case E, the proposed W-GWMA scheme performs 
better for large values of 𝑞 (see Table 4). In terms of the overall performance measures, the W-GWMA 
(𝑞, 𝛼) scheme performs better for large values of 𝑞 which is equivalent to small values of the smoothing 
parameter, λ, of the W-EWMA(λ) scheme when 𝛼 =1 with λ = 1−𝑞. Moreover, for both Case A and Case 
E, the proposed W-GWMA(𝑞, 𝛼) scheme performs better under the log-logistic distribution for both small 
and moderate mean shifts (see Tables 3-5).  
 

Table 3  
Case A OOC characteristics of the run-length distribution and overall performance of the W-GWMA(𝑞, 
𝛼) (or W-EWMA(λ)) scheme when 𝛼 = 1, (m, n) = (100, 5), 𝑞 = 0.5, 0.7 & 0.9 and 𝛿௠௔௫ = 1.5 for a 
nominal 𝐴𝑅𝐿଴ value of 500  

    Distribution 
Parameters Shifts N(0,1) t(10) GAM(3, 1) LogL(1, 3) Weib(2, 1) 

𝒒 = 0.5 
 (i.e. λ=0.5)                        
𝑳 = 2.9516 

0.25 141.72 (272.67)                                                                                                         
6, 22, 56, 147, 549 

66.55 (150.32)                                                
4, 11, 27, 64, 246 

167.95 (443.52)                                  
5, 21, 56, 149, 687 

54.82 (205.02)                     
3, 8, 19, 45, 188 

179.75 (414.42)                                  
6, 23, 64, 173, 696 

0.50 19.43 (27.01)                                                                                                         
3, 6, 11, 22, 62 

7.82 (8.10)                                                                                                    
2, 3, 6, 9, 12 

19.97 (36.69)                        
3, 5, 10, 21, 66 

5.03 (4.69)                                              
2, 3, 4, 6, 12 

23.57 (47.77)                        
3, 6, 12, 24, 76 

0.75 3.55 (1.97)                      
2, 2, 3, 4, 7 

2.70 (0.85)                             
1, 2, 2, 3, 4 

3.10 (1.47)                        
2, 2, 3, 4, 6 

2.01 (0.25)                   
2, 2, 2, 2, 2 

3.59 (2.17)                                                    
2, 2, 3, 4, 7 

1.00 2.09 (0.65)                              
1, 2, 2, 2, 3 

1.98 (0.56)                            
1, 1, 2, 2, 2 

2.02 (0.34)                              
2, 2, 2, 2, 3 

1.71 (0.46)                                 
1, 1, 2, 2, 2 

2.08 (0.50)                                           
1, 2, 2, 2, 2 

1.50 1.63 (0.52)                             
1, 1, 2, 2, 2 

1.50 (0.47)                                
1, 1, 1, 2, 2 

1.74 (0.44)               
1, 1, 2, 2, 2 

1.25 (0.43)                               
1, 1, 1, 1, 2 

1.73 (0.45)                               
1, 1, 2, 2, 2 

ARARL 1.64 1.29 1.51 1.00 1.56 
PCI 1.41 1.08 1.46 1.00 1.50 

𝒒 = 0.7   
(i.e. λ=0.3)                                               
𝑳 = 2.9950  

0.25 117.47 (249.21)                                    
6, 16, 39, 101, 414 

45.84 (147.15)                                             
4, 9, 19, 42, 149 

131.95 (458.95)                               
6, 14, 35, 95, 490 

27.35 (99.98)                                                              
4, 7, 12, 23, 81 

131.54 (345.97)                                                   
6, 16, 42, 110, 525 

0.50 
13.81 (19.13)                          
3, 6, 9, 16, 32 

6.46 (4.81)                         
3, 4, 5, 8, 14 

12.39 (23.83)                                       
3, 5, 8, 13, 33 

4.27 (2.09)                                     
2, 3, 4, 5, 8 

14.95 (26.85)                                          
2, 3, 5, 7, 12 

0.75 
3.60 (1.47)                                                                                                                  
2, 3, 3, 4, 6 

2.61 (0.77)                        
2, 2, 2, 3, 4 

3.19 (1.04) 
2, 3, 3, 4, 5 

2.11 (0.31)                     
2, 2, 2, 2, 2 

3.55 (1.39)                            
2, 3, 3, 4, 6 

1.00 
2.05 (0.56)                             
2, 2, 2, 3, 3 

2.01 (0.31)                                          
2, 2, 2, 3, 3 

2.05 (0.37)                                  
2, 2, 2, 3, 3 

2.00 (0.02)              
2, 2, 2, 3, 3 

2.07 (0.48)                         
2, 2, 2, 3, 3 

1.50 
1.53 (0.18)                                        
1, 1, 2, 3, 3 

1.42 (0.13)                                                           
1, 1 2, 3, 3 

1.60 (0.04)                                        
1, 1, 2, 3, 3 

1.50 (0.00)               
1, 1, 1, 2, 3 

1.61 (0.08)                                                                 
1, 1, 2, 2, 3 

ARARL 1.93 1.21 1.95 1.00 1.97  
PCI 1.16 1.04 1.14 1.00 1.17 

𝒒 = 0.9 
(i.e. λ=0.1)                                                
𝑳 = 2.9854 

0.25 78.81 (241.67)                                                                                                               
8, 15, 27, 58, 271 

28.64 (70.97)                                                         
6, 10, 16, 27, 76 

71.93 (280.57)                                                                                                               
8, 13, 23, 47, 218 

15.75 (40.34)                                                                                        
5, 8, 11, 16, 34 

94.28 (334.08)                       
8, 15, 27, 59, 320 

0.50 
11.85 (8.08)                       

5, 7, 10, 14, 26 
7.27 (3.14)                                 

3, 4, 7, 8, 13 
10.00 (7.76)                                                       

3, 5, 8, 11, 20 
4.26 (1.43)                                 
2, 3, 3, 5, 8 

11.64 (9.40)                          
5, 7, 9, 13, 24 

0.75 
3.55 (1.27)                      
2, 3, 3, 5, 7 

3.38 (0.77)                                                
2, 3, 4, 4, 5 

3.59 (0.89)                            
3, 4, 4, 5, 6 

3.13 (0.33)                        
3, 3, 3, 3, 4 

4.68 (1.14)                                         
3, 4, 4, 5, 7 

1.00 
1.86 (0.56)                                         
2, 2, 3, 4, 4 

1.75 (0.33)                                     
2, 2, 3, 3, 4 

2.00 (0.38)                               
2, 2, 3, 3, 4 

1.58 (0.12)                        
2, 2, 3, 3, 3 

2.31 (0.49)                                                                               
2, 2, 3, 4, 4 

1.50 
1.36 (0.28)                                                                        
1, 1, 2, 2, 3 

1.34 (0.43)                                       
1, 1, 2, 2, 3 

1.49 (0.11)                        
1, 1, 2, 3, 3 

1.33 (0.37)                                                             
1, 1, 1, 2, 3 

1.59 (0.15)                                      
1, 1, 2, 3, 3 

ARARL 1.51 1.05 1.40 1.00 1.52 
PCI 1.14 1.01 1.16 1.00 1.17 

 

For large shifts in the process location, the performance of the proposed monitoring scheme remains the 
same regardless of the nature of the underlying distribution. In Case A, the PCI values reveals that when 
the design parameters (q, 𝛼, L) = (0.5, 1, 2.9516), the monitoring scheme performs 41%, 8%, 46% and 50% 
better under the LogL(1, 3) distribution than the N(0,1), t(10), GAM(3, 1) and Weib(2, 1) distributions, 
respectively. The W-GWMA(𝑞, 𝛼) performs better under the log-logistic distribution followed by the 
Student’s t distribution in terms of the overall performance measures (i.e. ARARL and PCI  in Tables 3-5).   
Next, for Case E, when 𝛼 = 1 (see Table 4), the W-GWMA(𝑞, 1) scheme performs better under small and 
moderate shifts for large values of 𝑞 regardless of nature of underlying distribution. For large shifts in the 
location parameter, the performance of the proposed scheme remains the same regardless of the magnitude 
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of 𝑞. Moreover, the proposed W-GWMA(𝑞, 1) scheme performs better under the log-logistic distribution 
in terms of the 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝐸𝑄𝐿, 𝐴𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 values.  
 

Table 4  
Case E OOC characteristics of the run-length distribution and overall performance of the W-GWMA(𝑞, 
𝛼) (or W-EWMA(λ)) scheme when 𝛼 = 1, (m, n) = (100, 5), 𝑞 = 0.5, 0.7 & 0.9 and 𝛿௠௔௫ = 1.5 for a 
nominal 𝐴𝑅𝐿଴ value of 500    

    Distribution 
Parameters Shifts N(0,1) t(10) GAM(3, 1) LogL(1, 3) Weib(2, 1) 

𝒒 = 0.5   
(i.e. λ=0.5)                                               
𝑳 = 3.0361 

0.25 138.60 (261.91)                                                                                                         
5, 21, 57, 142, 524 

116.93 (193.42)                        
3, 12, 27, 66, 248 

183.01 (555.21)                                  
5, 21, 57, 157, 689 

56.47 (307.13)                     
3, 8, 19, 45, 184 

182.80 (409.78)                            
6, 23, 63, 176, 728 

0.50 
18.94 (30.28)                                                                                                         

2, 5, 11, 22, 59 
13.48 (19.38)                                                                          
2, 3,5, 9, 21 

20.69 (60.98)                        
2, 5, 10, 21, 65 

4.92 (5.10)                                              
2, 3, 4, 6, 12 

23.14 (47.43)                        
3, 6, 12, 25, 76 

0.75 6.25 (5.53)                      
2, 3, 5, 8, 16 

2.07 (1.01)                             
1, 1, 2, 3, 4 

2.96 (1.60)                        
1, 2, 3, 3, 6 

1.64 (0.53)                   
1, 1, 2, 2, 2 

3.65 (2.07)                                                    
1, 2, 3, 4, 7 

1.00 
3.33 (2.07)                              
1, 2, 3, 4, 7 

1.13 (0.53)                            
1, 1, 1, 2, 2 

1.65 (0.56)                              
1, 1, 2, 2, 2 

1.07 (0.25)                                 
1, 1, 1, 1, 2 

1.77 (0.65)                
1, 1, 2, 2, 3 

1.50 
1.27 (0.46)                             
1, 1, 1, 2, 2 

1.12 (0.34)                                
1, 1, 1, 1, 2 

1.14 (0.35)               
1, 1, 1, 1, 2 

1.00 (0.00)                               
1, 1, 1, 1, 1 

1.22 (0.42)                               
1, 1, 1, 1, 2 

ARARL 1.93 1.20 1.90 1.00 1.95 
PCI 1.42 1.13 1.24 1.00 1.49 

𝒒 = 0.7   
(i.e. λ=0.3)                                               
𝑳 = 3.0028  

0.25 115.30 (300.40)                                                                                                              
5, 15, 38, 103, 444 

82.25 (93.25)                                             
4, 9, 18, 40, 146 

123.05 (404.93)                                           
5, 14, 34, 92, 448 

26.77 (107.07)                                                              
3, 6, 11, 23, 80 

138.36 (412.01)                                                   
5, 16, 41, 113, 548 

0.50 
13.10 (15.55)                                                                                                                
2, 5, 9, 15, 37 

9.03 (4.65)                         
2, 3, 5, 7, 14 

11.69 (17.37)                                       
3, 5, 7, 13, 34 

3.83 (2.19)                                     
2, 2, 2, 2, 2 

14.61 (37.95)                                          
3, 5, 9, 16, 42 

0.75 3.11 (1.60)                                                                                                             
1, 2, 3, 4, 6 

2.06 (0.88)                        
1, 1, 2, 2, 4 

2.73 (1.10)                                        
1, 2, 3, 3, 5 

1.70 (0.49)                       
1, 1, 2, 2, 2 

3.08 (1.46)                            
1, 2, 3, 4, 6 

1.00 
1.78 (0.70)                             
1, 1, 2, 2, 3 

1.36 (0.54)                                          
1, 1, 1, 2, 2 

1.70 (0.52)                                  
1, 1, 2, 2, 2 

1.10 (0.30)                            
1, 1, 1, 1, 2 

1.80 (0.60)                 
1, 1, 2, 2, 3 

1.50 
1.30 (0.47)                                        
1, 1, 1, 2, 2 

1.14 (0.35)                                                           
1, 1, 1, 1, 2 

1.20 (0.40)                                        
1, 1, 1, 1, 2 

1.00 (0.06)               
1, 1, 1, 1, 1 

1.27 (0.44)                                                                 
1, 1, 1, 2, 2 

ARARL 1.89 1.20 1.51 1.00 1.90 
PCI 1.41 1.13 1.20 1.00 1.43 

𝒒 = 0.9  
(i.e. λ=0.1)                                               
𝑳 = 2.9883 

0.25 79.63 (253.14)                                                                                                               
5, 13, 25, 58, 291 

52.71 (58.96)                                                         
3, 8, 14, 25, 77 

72.74 (315.13)                                                                                                               
5, 11, 21, 44, 240 

13.32 (26.31)                                                                                        
3, 6, 9, 14, 33 

85.81 (263.33)                       
5, 13, 25, 58, 317 

0.50 
9.75 (9.13)                                                                               

2, 5, 8, 12, 24 
7.24 (3.27)                                     

2, 3, 4, 7, 11 
8.17 (7.13)                                                       

2, 4, 7, 10, 19 
3.48 (1.59)                                    
2, 2, 3, 4, 6 

9.92 (10.24)                          
3, 5, 8, 12, 24 

0.75 2.97 (1.42)                        
1, 2, 3, 4, 6 

2.03 (0.86)                                                
1, 1, 2, 2, 4 

2.60 (0.96)                            
1, 2, 2, 3, 4 

1.68 (0.49)                        
1, 1, 2, 2, 2 

2.92 (1.26)                                                                                               
1, 2, 3, 4, 5 

1.00 
1.75 (0.69)                             
1, 1, 2, 3, 3 

1.34 (0.52)                                     
1,1, 1, 2, 2 

1.68 (0.51)                               
1, 1, 2, 2, 2 

1.09 (0.28)                        
1, 1, 1, 1, 2 

1.77 (0.57)                                                                               
1, 1, 2, 2, 3 

1.50 
1.29 (0.46)               
1, 1, 1, 2, 2 

1.13 (0.35)                                       
1, 1, 1, 1, 2 

1.18 (0.38)                        
1, 1, 1, 1, 2 

1.00 (0.04)                                                             
1, 1, 1, 1, 1 

1.26 (0.44)                                                                               
1, 1, 1, 2, 2 

ARARL 1.71 1.19 1.60 1.00  1.69  
PCI 1.36 1.13 1.14 1.00 1.34 

 

From Table 5, the following can be observed: 
 When 𝑞 is kept fixed, the sensitivity of the W-GWMA(𝑞, 𝛼) scheme increases for small values of 

𝛼. However, for large value of 𝛼, its sensitivity decreases.   
 When the value of 𝛼 is kept fixed, the variability in the ARL values decreases as the values of q 

increases and consequently, the sensitivity of the proposed W-GWMA scheme increases. 
 The proposed W-GWMA performs better under the log-logistic distribution. 

 

3.5.  Performance comparison 
In this section, the proposed W-GWMA(𝑞, 𝛼) scheme is compared to several monitoring schemes including 
the traditional Shewhart 𝑋ത, W-Shewhart, 𝑋ത-CUSUM, 𝑋ത-EWMA, median CUSUM (denoted as 𝑋෨-
CUSUM), median EWMA (denoted as 𝑋෨-EWMA), W-CUSUM, W-EWMA and various GWMA schemes 
under the N(0,1) and log-logistic distributions. For a fair comparison, the performance of competing 
schemes are investigated for (m, n) = (100, 5) in terms of the ARL and AEQL values for a nominal 𝐴𝑅𝐿଴ 
value of 500 with and 𝛿௠௔௫ = 2. The GWMA and EWMA-type monitoring schemes are investigated in 
Case E when 𝑞 = 0.9 (which is equivalent to the smoothing parameter, 𝜆 = 0.1) and 𝛼 = 0.5 and 1.  In 
Table 6, the proposed monitoring scheme is compared to different schemes in terms of the ARL and AEQL 
values. The scheme that performs best is shaded in grey. It can be seen that when 𝛼 = 1, the proposed W-
GWMA scheme is equivalent to the W-EWMA scheme of Li et al. (2010), i.e. they yield the same exact 
OOC performance as shown in Table 6 (Columns 10 and 14). Under the N(0,1) distribution, 𝑋ത-GWMA 
(0.9, 1) and 𝑋ത-EWMA (0.1) schemes outperform the competing schemes as they yield the lowest AEQL as 
compared to other competing schemes. 
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Table 5  
Case E OOC characteristics of the run-length distribution and overall performance of the W-GWMA 
scheme when (m, n) = (100, 5), 𝛼 = 0.5, 1.5 & 2.5, 𝑞 = 0.5 & 0.9 and 𝛿௠௔௫ = 1.5 for a nominal 𝐴𝑅𝐿଴ 
value of 500   

    Distribution 
Parameters Shifts N(0,1) t (10) GAM (3, 1) LogL (1, 3) Weib (2, 1) 

𝒒 = 0.5    
𝜶 = 0.5                      

𝑳 = 2.9229 

0.25 
121.55 (252.32)                                                                                                         

6, 20, 47, 116, 467 
57.47 (146.67)                                                           

4, 12, 24, 54, 186 
157.60 (542.07)                                  

6, 20, 46, 124, 570 
42.63 (193.42)                     

4, 9, 18, 37, 123 
155.29 (386.29)                                  

6, 21, 52, 131, 610 

0.50 
17.41 (22.48)                                                                                                         

3, 6, 11, 21, 50 
7.83 (6.65)                                                                                                         

2, 4, 6, 10, 19 
18.17 (55.19)                        
3, 6, 11, 20, 5 

5.62 (4.16)                                              
2, 3, 5, 7, 13 

20.07 (30.65)                        
3, 7, 12, 23, 59 

0.75 
3.68 (2.29)                              
1, 2, 3, 5, 8 

2.14 (1.18)                             
1, 1, 2, 3, 4 

3.47 (1.98)                        
1, 2, 3, 4, 7 

1.65 (0.65)                   
1, 1, 1, 1, 1 

3.86 (2.33)                                                    
1, 2, 3, 5, 8 

1.00 
1.84 (0.90)                              
1, 1, 2, 2, 4 

1.13 (0.57)                            
1, 1, 1, 2, 2 

1.70 (0.70)                              
1, 1, 2, 2, 3 

1.04 (0.20)                                 
1, 1, 1, 1, 1 

1.84 (0.82)                                        
1, 1, 2, 2, 3 

1.50 
1.25 (0.47)                             
1, 1, 1, 1, 2 

1.12 (0.34)                                
1, 1, 1, 1, 2 

1.12 (0.33)               
1, 1, 1, 1, 2 

1.00 (0.02)                               
1, 1, 1, 1, 1 

1.18 (0.40)                               
1, 1, 1, 1, 2 

ARARL 1.87 1.04 1.96  1.00 2.08 
PCI 1.39 1.13 1.19 1.00 1.44 

𝒒 = 0.5    
𝜶 = 1.5                      

𝑳 = 2.9433 

0.25 137.81 (279.99)                                                                   
5, 25, 67, 174, 589 

74.68 (161.48)                                             
4, 13, 33, 81, 299 

193.41 (462.54)                                           
5, 25, 71, 193, 730 

46.94 (154.64)                                         
2, 6, 14, 38, 166                                                             

201.21 (452.)                                                   
6, 29, 82, 208, 814 

0.50 
22.30 (33.65)               

2, 6, 13, 27, 82 
8.76 (11.72)                         

2, 3, 6, 10, 26 
24.21 (41.33)                                       

2, 6, 13, 27, 92 
6.01 (4.55)                                     
2, 2, 3, 4, 9 

27.71 (43.23)                                          
2, 7, 15, 33, 106 

0.75 
5.72 (4.64)                                                                                                                  

2, 3, 4, 6, 15 
3.11 (2.02)                        
1, 2, 3, 4, 7 

5.41 (4.78)                            
2, 3, 4, 5, 12 

1.97 (0.58)                       
1, 2, 2, 2, 3 

6.63 (6.93)                            
2, 3, 4, 8, 20 

1.00 
2.89 (1.98)                             
1, 1, 2, 4, 5 

2.02 (1.02)                                          
1, 1, 2, 2, 3 

2.59 (1.89)                                  
1, 2, 2, 3, 4 

1.54 (0.41)                            
1, 1, 2, 2, 2 

3.03 (2.01)                         
1, 2, 3, 4, 6 

1.50 
1.91 (0.83)                                        
1, 1, 2, 2, 3 

1.37 (0.40)                                                           
1, 1, 1, 2, 2 

1.64 (0.53)                                        
1, 1, 2, 2, 2 

1.25 (0.34)               
1, 1, 1, 2, 2 

1.98 (0.96)                                                                 
1, 1, 2, 2, 2 

ARARL 1.92 1.72 1.87 1.00 1.95 
PCI 1.45 1.12 1.32 1.00 1.53 

𝒒 = 0.9    
𝜶 = 1.5                      

𝑳 = 2.9121 

0.25 103.22 (270.66)                                                                                                              
5, 14, 32, 87, 404 

37.6 (131.26)                                                         
3, 8, 16, 34, 119 

111.93 (389.33)                                                                                                   
5, 12, 27, 75, 396 

22.93 (127.16)                                                                                        
3, 6, 9, 17, 58 

119.14 (343.93)                       
5, 14, 33, 42, 482 

0.50 
11.77 (15.44)                     
2, 5, 8, 13, 33 

5.55 (4.20)                                      
2, 3, 5, 7, 12 

9.84 (20.74)                                                       
2, 4, 7, 11, 25 

3.47 (1.60)                                    
2, 2, 3, 4, 6 

12.21 (18.66)                         
2, 5, 8, 13, 33 

0.75 
3.00 (1.48)                                                                                                                  
1, 2, 3, 4, 6 

2.00 (0.92)                                                
1, 1, 2, 2, 4 

2.59 (0.99)                            
1, 2, 2, 3, 4 

1.58 (0.51)                        
1, 1, 2, 2, 2 

2.90 (1.28)                                                                                               
1, 2, 3, 4, 5 

1.00 
1.73 (0.72)                             
1, 1, 2, 2, 3 

1.32 (0.53)                                     
1,1, 1, 2, 2 

1.61 (0.53)                               
1, 1, 2, 2, 2 

1.05 (0.22)                        
1, 1, 1, 1, 1 

1.71 (0.60)                                                                 
1, 1, 2, 2, 3 

1.50 
1.25 (0.45)                                        
1, 1, 1, 1, 2 

1.12 (0.33)                                       
1, 1, 1, 1, 2 

1.13 (0.33)                        
1, 1, 1, 1, 2 

1.00 (0.03)                               
1, 1, 1, 1, 1 

1.20 (0.40)                                                                               
1, 1, 1, 1, 2 

ARARL 1.89 1.21 1.67 1.00 1.91 
PCI 1.12 1.03 1.04 1.00 1.13 

𝒒 = 0.9    
𝜶 = 2.5                      

𝑳 = 2.9453 

0.25 144.44 (289.13)                                                                                                              
6, 21, 58, 147, 563 

65.87 (155.95)                
4, 11, 27, 64, 240 

175.87 (440.05)                                                                                                              
5, 21, 59, 159, 709 

47.46 (134.34)                            
3, 8, 17, 42, 172 

181.22 (397.51)                       
6, 24, 65, 176, 726 

0.50 
20.08 (32.13)                                                                                                   

3, 6, 11, 23, 65 
7.66 (7.58)                                      

2, 4, 5, 9, 21 
19.55 (35.32)                                                       

3, 5, 10, 20, 65 
4.59 (3.86)                                    

2, 3, 4, 5, 10 
23.04 (37.25)                          

3, 6, 12, 25, 78 

0.75 
3.53 (2.01)                                      
1, 2, 3, 4, 7 

2.27 (1.11)                                                
1, 1, 2, 3, 4 

3.07 (1.52)                            
1, 2, 3, 4, 5 

1.70 (0.61)                        
1, 1, 2, 2, 3 

3.48 (1.95)                                                                                               
1, 2, 3, 4, 7 

1.00 
1.91 (0.89)                             
1, 1, 2, 3, 3 

1.40 (0.68)                                     
1,1, 1, 2, 3 

1.73 (0.67)                               
1, 1, 2, 2, 3 

1.06 (0.24)                        
1, 1, 1, 1, 2 

1.90 (0.77)                                                                               
1, 1, 2, 2, 3 

1.50 
1.30 (0.54)                            
1, 1, 1, 2, 2 

1.14 (0.40)                                       
1, 1, 1, 1, 2 

1.15 (0.37)                        
1, 1, 1, 1, 2 

1.00 (0.03)                                                             
1, 1, 1, 1, 1 

1.23 (0.44)                    
1, 1, 1, 1, 2 

ARARL 1.69 1.21 1.60 1.00 1.70 
PCI 1.13 1.03 1.05 1.00 1.13 

 
This was expected since parametric monitoring schemes perform better than their nonparametric 
counterparts when the assumption of normality is satisfied. Table 6 shows that under non-normal 
distributions, the proposed W-GWMA (0.9, 1) outperforms the 𝑋෨-GWMA and 𝑋ത-GWMA as well as all 
other competing schemes considered in this paper (see Table 6). Note that the proposed W-GWMA scheme 
is more flexible than the W-EWMA scheme because of the extra design parameter, 𝛼, which can be set 
according to the operator’s expectations. It can be observed that when 𝑞 is kept fixed; the W-GWMA 
scheme performs better than the W-EWMA scheme for 𝛼 < 1. 

4. Illustrative example  

To illustrate the implementation and application of the proposed W-GWMA monitoring scheme, two 
sets of data on the inside diameters of piston rings manufactured by a forging process are used 
(Montgomery, 2005, page 223). The first set of data contains twenty-five Phase I samples, each of size 
n = 5 (m = 125) collected when the process was considered to be IC. These data are used as the Phase I 
data for which a goodness of fit test for normality is not rejected. The second set of data contains fifteen 
test samples each of size n = 5 which are considered to be the Phase II data. 
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Table 6  
Performance comparison of different monitoring schemes when (m, n) = (100, 5), 𝑞 = 0.9, 𝛼 = 0.5 & 1 and 𝛿௠௔௫ = 2 for a nominal 𝐴𝑅𝐿଴ of 500  

Distributio
n 

Shift 𝑿ഥ 
scheme 

W-
Shewhart 

𝑿ഥ-
CUSUM 

𝑿ഥ-EWMA 
(0.1) 

𝑿෩-
CUSUM 

𝑿෩-
EWM
A (0.1) 

W-
CUSU

M 
W-EWMA 

(0.1) 
𝑿ഥ-GWMA (0.9, 

1) 
𝑿෩-GWMA (0.9, 

1) 
𝑿෩-GWMA (0.9, 

0.5) 

W-
GWM
A (0.9, 

1) 

W-
GWM
A (0.9, 

0.5) 

N (0, 1)  

0.00 500.36 501.76 506.12 502.32 513.39 511.52 503.36 499.83 502.32 511.52 509.09 499.83 501.00 
0.25 170.26 186.45 78.19 76.24 92.92 91.02 87.52 79.63 76.24 91.02 93.05 79.63 74.32 
0.50 63.4 70.06 21.49 11.04 27.82 27.09 24.31 9.75 11.04 27.09 28.41 9.75 12.17 
1.00 7.38 9.81 4.44 2.81 5.33 5.29 4.82 2.97 2.81 5.29 5.32 2.97 3.68 
1.50 2.94 3.24 2.06 1.98 3.30 3.31 3.02 1.75 1.98 3.31 3.36 1.75 2.04 
2.00 1.82 2.66 1.52 1.31 3.01 3.02 3.12 1.29 1.31 3.02 3.03 1.29 1.41 

AEQL 109.49 122.17 71.34 65.04 91.33 90.23 88.54 66.86 65.04 89.28 90.11 66.86 67.71 

GAM (1, 3) 

0.00 540.56 498.1 523.39 531.54 520.11 509.63 501.79 500.44 531.54 509.63 512.43 500.44 494.29 
0.25 192.20 139.33 121.07 103.03 75.14 74.84 78.46 72.74 103.03 74.84 76.23 72.74 76.50 
0.50 70.36 61.04 17.48 14.20 12.05 11.95 9.97 8.17 14.20 11.95 12.04 8.17 11.07 
1.00 13.01 9.18 8.41 4.48 3.31 3.36 3.26 2.60 4.48 3.36 3.37 2.60 3.37 
1.50 5.72 4.28 3.98 3.33 2.76 2.83 2.63 1.68 3.33 2.83 2.89 1.68 1.95 
2.00 4.00 3.01 2.53 2.59 1.93 1.90 1.70 1.18 2.59 1.90 2.01 1.18 1.35 

AEQL 146.22 115.30 97.85 82.37 73.04 71.78 70.14 64.36 82.37 71.78 72.11 64.36 67.40 

LogL (1, 3) 

0.00 536.41 498.1 541.05 519.83 508.87 510.21 502.34 510.59 519.83 510.21 507.35 510.59 503.77 
0.25 176.72 140.71 37.23 36.34 21.33 20.48 18.19 13.32 36.34 20.48 22.01 13.32 16.92 
0.50 66.21 59.14 13.63 11.33 7.32 6.58 5.14 3.48 11.33 6.58 6.66 3.48 4.79 
1.00 11.2 8.34 8.42 7.88 2.10 2.09 1.99 1.68 7.88 2.09 2.12 1.68 1.93 
1.50 4.84 3.98 4.29 4.91 2.05 2.07 2.04 1.09 4.91 2.07 2.05 1.09 1.24 
2.00 3.13 2.68 2.43 2.34 1.22 1.20 1.19 1.00 2.34 1.20 1.31 1.00 1.02 

AEQL 131.16 113.49 85.03 84.42 69.23 68.09 67.18 63.53 84.42 68.09 69.01 63.53 64.17 
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In Case A, when 𝛼 = 1 and 𝑞 = 0.9, the proposed W-GWMA scheme is equivalent to the W-EWMA of 
Li et al. (2010) with λ = 0.1. For a nominal 𝐴𝑅𝐿଴ value of 500, we found 𝐿 = 3.2123 so that the asymptotic 
control limits (𝐿𝐶𝐿஺, 𝑈𝐶𝐿஺) = (187.28, 467.72) that yield an attained 𝐴𝑅𝐿଴ value of 500.64 (obtained 
using SAS 9.4). In Case E, we found 𝐿 = 2.9402 so that the W-GWMA (0.9, 1) and W-EWMA (0.1) 
yield an attained 𝐴𝑅𝐿଴ value of 501.26. A plot of the Case A and Case E charting statistics of the proposed 
W-GWMA is shown in Fig. 1(a). It can be seen that in Case A, the W-GWMA (0.9, 1) scheme chart 
signals on the 13th sample in the prospective phase. However, in Case E, W-GWMA (0.9, 1) gives a 
signal on the 12th sample in the prospective phase.   When 𝛼 ≠ 1, the control limits coefficients of the 
W-GWMA (0.9, 0.5) and W-GWMA (0.9, 1.5) schemes are found to be equal to 3.1302 and 2.9761, 
respectively, so that they yield the attained 𝐴𝑅𝐿଴ values of 500.32 and 502.51, respectively. A plot of the 
charting statistics of the W-GWMA (0.9, 0.5) and W-GWMA (0.9, 1.5) are shown in Fig. 1(b). It can be 
seen that both schemes signal on the 12th sample in the prospective phase.  
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1.5) 
Fig. 1. Proposed monitoring schemes for the Montgomery (2005)’s piston ring data 

5. Effect of the design parameters and Phase I sample size on the IC and OOC performances of 
the proposed monitoring scheme  

In this section, the effect of the design parameters (i.e. 𝑞, 𝛼 and 𝐿) and the Phase I sample size m on the 
Phase II performance of the proposed monitoring scheme is investigated in Case E.  

5.1 Effect of the design parameters on the Phase II performance of the W-GWMA scheme 
 
More often, the design of nonparametric charts requires tables for the optimal parameters. When these 
tables are not available, one would need to know the relationship between the parameters and the attained 
𝐴𝑅𝐿଴ in order to estimate as quick as possible the optimal value to be used. This section investigates the 
relationship between the design parameters and the 𝐴𝑅𝐿଴ and 𝐴𝐸𝑄𝐿 metrics. 
Fig. 2 displays the attained 𝐴𝑅𝐿଴ values for different combinations of 𝑞 and 𝛼 when (m, n) = (100, 5) and 
L = 2, 2.5, 2.75 and 3. Comparing the graphs in Fig. 2, it can be observed that the attained 𝐴𝑅𝐿଴ value is 
proportional to the distance between the control limits from the centerline (i.e. L), that is, as L increases 
(decreases), the attained 𝐴𝑅𝐿଴ values increases (decreases). In Fig. 2 (a), it can be seen that the 𝐴𝑅𝐿଴ is an 
increasing function of 𝑞. When L ∈ (2, 2.5), the larger the value of 𝛼, the higher the attained 𝐴𝑅𝐿଴ (see 
Figs. 2 (a) and (b)). Figs. 2 (b) and (c) show that the attained 𝐴𝑅𝐿଴ is a decreasing function of 𝑞 in the 
interval (0.5, 0.8) when L = 2.5 and 2.75 for 𝛼 = 0.5, 0.75 and 1, which makes it difficult to reach the high 
desired value of 𝜏. However, the attained 𝐴𝑅𝐿଴ is an increasing function of 𝑞 in the interval (0.8, 1). In Fig. 
2 (d), the attained 𝐴𝑅𝐿଴ is a decreasing function of 𝑞 when 𝑞 ≤ 0.8 for 𝛼 ≥ 0.75.  
In Fig. 3, it can be easily observed that the overall performance 𝐴𝐸𝑄𝐿 is a decreasing function of 𝑞. The 
larger the value of 𝑞, the more efficient the W-GWMA(𝑞, 𝛼) scheme (see Figs. 3 (a) and (b)). In Fig. 3 (b), 
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it can be observed that the 𝐴𝐸𝑄𝐿 is a decreasing function of 𝛼 in the interval (0.25, 1) and AEQL is an 
increasing function of 𝛼 when 𝛼 > 1. 
Therefore, based on Fig. 3, it is apparent that the W-GWMA(𝑞, 𝛼) is more efficient for large value of q and 
small values of 𝛼. 
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Fig. 2. Attained 𝐴𝑅𝐿଴ values versus 𝑞 values for different  𝛼 and L values when (𝑚, 𝑛) = (100, 5) 
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5.2 Effect of the Phase I sample size on the Phase II performance of the W-GWMA 

Parameter estimation deteriorates considerably the performance of control schemes (Jensen et al., 2006; 
Zhang et al., 2014). It is also well-known that a control scheme with known process parameters (Case K) 
will perform better than the same control scheme with unknown process parameters (Case U). Therefore, 
it is very important to know the minimum number of the IC Phase I observations, i.e. 𝑚௢௣௧, that allows a 
control scheme to perform in Case U as if the process parameters were known. In this section, the effect 
of the Phase I sample size is investigated in order to know the minimum Phase I sample size that 
guarantees stability in the performance of the W-GWMA control scheme. Thus, the impact (or effect) of 
the parameter estimation (from the Phase I sample) on the Phase II performance of the W-GWMA 
scheme is investigated in respect of the IC characteristics of the conditional run-length distribution, i.e. 
the mean and standard deviation of the IC conditional average run-length (𝐶𝐴𝑅𝐿଴) distribution denoted 
𝐶𝐴𝐴𝑅𝐿଴ and 𝐶𝑆𝐷𝐴𝑅𝐿଴, respectively. Therefore, 𝑚௢௣௧ is the minimum Phase I sample size such that the 
𝐶𝐴𝐴𝑅𝐿଴ value is near the nominal 𝐴𝑅𝐿଴ and the 𝐶𝑆𝐷𝐴𝑅𝐿଴ less or equal to ten percent of the nominal 
𝐴𝑅𝐿଴. Since we used a nominal 𝐴𝑅𝐿଴ of 500, 𝑚௢௣௧ can be expressed mathematically as 

𝑚௢௣௧ = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚{𝑚|𝐶𝐴𝐴𝑅𝐿଴ ≈500 and 𝐶𝑆𝐷𝐴𝑅𝐿଴ ≤ 50} (16) 

Since the Case A and Case E findings in terms of the optimal sample sizes are similar, in this section, we 
only display the Case E results and graphs due to space restriction. The conditional run-length distribution 
and its characteristics are computed using SAS® 9.4. In Fig. 4, Panels 1 and 2 display the conditional 
run-length distribution of the 𝐶𝐴𝑅𝐿଴ and its characteristics for different Phase I sample sizes when 𝑛 = 
5 with 𝛼 = 0.5 and 1.5, respectively. These figures show that for small Phase I sample sizes the 
practitioner-to-practitioner variability increases, which reveals instability in the performance of the 
proposed W-GWMA scheme. For instance, when m = 25, the 𝐶𝐴𝐴𝑅𝐿଴ and 𝐶𝑆𝐷𝐴𝑅𝐿଴ are equal to 504.09 
and 95.25, respectively. However, as the Phase I sample size increases, the practitioner-to-practitioner 
variability decreases. For instance, when m = 100, the 𝐶𝐴𝐴𝑅𝐿଴ and 𝐶𝑆𝐷𝐴𝑅𝐿଴ are equal to 493.76 and 
33.24, respectively (see Fig. 4 Panel 1). Table 7 gives the  𝐶𝐴𝐴𝑅𝐿଴ and 𝑆𝐷𝐶𝐴𝑅𝐿଴ (in brackets) values 
for different values of m for a nominal 𝐴𝑅𝐿଴ of 500 when 𝑞 ∈ {0.1, 0.9}, 𝛼 ∈ {0.5, 1.5} and 𝑛 = 5. From 
Table 7, it can be seen that the proposed W-GWMA scheme requires at least 50 observations to guarantee 
stability in the Phase II performance. In other words, the W-GWMA scheme needs at least 50 
observations (i.e. 𝑚௢௣௧ = 50) in Case U to perform as if it was designed in Case K.  

 

Table 7  
The 𝐶𝐴𝐴𝑅𝐿଴ and 𝐶𝑆𝐷𝐴𝑅𝐿଴ values of W-GWMA(𝑞,𝛼) monitoring scheme 

m 
𝒒 = 0.1 𝒒 = 0.9 

𝜶 = 0.5                                                                                                                          𝜶 = 1.5                                                                                                                          𝜶 = 0.5                                                                                                                          𝜶 = 1.5                                                                                                                          

25 504.09                                                                                            
(95.25) 

523.22                                                                                            
(122.45) 

523.37                                                                                            
(352.42) 

490.76                                    
(146.90) 

40 
507.07                                                                                                                       
(54.24) 

497.08                                                                                                                       
(59.03) 

509.13                                                                                                                       
(110.05) 

499.22                                                                                                                       
(63.39) 

50 490.14                                                                                                                       
(48.48) 

504.24                                                                                                                       
(46.25) 

498.99                                                                                                                       
(99.99) 

498.40                                                                                                                       
(56.19) 

75 
503.46                                                                                                                       
(39..06) 

501.39                                                                                  
(41.21) 

498.44                                                                                                                       
(61.56) 

503.11                                                                                                                                         
(51.07) 

100 493.76                                                                                                    
(33.24) 

491.28                                                                                                                       
(34.64) 

497.29                                                                                          
(53.68) 

492.46                                                                                                                       
(36.27) 

125 
493.63                                                                                                                       
(30.85) 

495.18                                                                                                                       
(31.34) 

507.15                                                                                                                       
(47.59) 

498.09                                                                                                                       
(35.83) 

150 501.51                                                                                                                       
(23.85) 

499.23                                                
(26.74) 

504.34                                                                                                      
(40.76) 

502.10                                                                                                                       
(31.08) 

𝒎𝒐𝒑𝒕 50 50 125 100 
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(a) m =25, q = 0.1 and L=2.4499 (b) m =25, q = 0.9 and L=2.321 

  
(c) m =50, q = 0.1 and L= 2.583 (d) m =50, q = 0.9 and L=2.412 

  
(e) m =100, q = 0.1 and L=3.2599 (f) m =100, q = 0.9 and L=2.9399 

Panel 1: 𝛼 = 0.5 and 𝑞 ∈ {0.1, 0.9} 
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(a) m =25, q = 0.1 and L=2.4653 (b) m =25, q = 0.9 and L=2.3944 

  
(c) m =50, q = 0.1 and L=3.1491 (d) m =50, q = 0.9 and L=2.8929 

  
(e) m =100, q = 0.1 and L=3.2873 (f) m =100, q = 0.9 and L=2.9729 

Panel 2: 𝛼 = 1.5 and 𝑞 ∈ {0.1, 0.9} 

Fig. 4.  Distribution of the 𝐶𝐴𝑅𝐿଴ of the proposed GWMA(𝑞, 𝛼) when m ∈ {25, 50, 100}, n = 5, 𝑞 ∈ {0.1, 0.9} 
and 𝛼 ∈ {0.5, 1.5} in Case E. 

6.  Conclusion and recommendations 

A new distribution-free GWMA monitoring scheme based on the WRS, 𝑊 statistic, has been proposed in 
order to improve and expand Li et al. (2010)’s W-EWMA scheme. The proposed scheme is more flexible 
than the W-EWMA scheme through an extra design parameter 𝛼. The W-EWMA scheme is special case 
of the W-GWMA when 𝛼 = 1. Compared to the existing schemes considered in this paper, the W-GWMA 
is superior in many situations and present very attractive run-length properties. Practitioners are advised to 
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use the proposed monitoring scheme for small values of the design parameter 𝛼 and large values of 𝑞. 
Moreover, whenever the underlying process distribution is unknown or non-normal, practitioners are 
recommended to use the proposed control scheme with at least 50 Phase I observations in order to guarantee 
stability in the Phase II performance.  
Finally, there have been a few studies on nonparametric double GWMA (DGWMA), which combines 
two GWMA schemes, see for instance, Lu (2018) for the sign statistic and Karakani et al. (2019) for the 
exceedance statistic; hence, for future research purpose, researchers can also look at designing the 
DGWMA using the WRS 𝑊 statistic and study the effect of estimating the design parameters and Phase I 
sample size on the Phase II performance of the DGWMA scheme. 
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