

* Corresponding author
E-mail: ykuvvetli@cu.edu.tr (Y. Kuvvetli)

2021 Growing Science Ltd.
doi: 10.5267/j.ijiec.2021.4.002

International Journal of Industrial Engineering Computations 12 (2021) 441–456

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Solution of capacitated vehicle routing problem with invasive weed and hybrid algorithms

Ümit Yıldırıma and Yusuf Kuvvetlib*

aDepartment of Industrial Engineering, Cukurova University, 01330, Adana, Turkey
C H R O N I C L E A B S T R A C T

Article history:
Received February 18 2021
Received in Revised Format
March 31 2021
Accepted April 1 2021
Available online
April, 3 2021

 The vehicle routing problem is widespread in terms of optimization, which is known as being
NP-Hard. In this study, the vehicle routing problem with capacity constraints is solved using
cost- and time-efficient metaheuristic methods: an invasive weed optimization algorithm, genetic
algorithm, savings algorithm, and hybridized variants. These algorithms are tested using known
problem sets in the literature. Twenty-four instances evaluate the performance of algorithms
from P and five instances from the CMT data set group. The invasive weed algorithm and its
hybrid variant with savings and genetic algorithms are used to determine the best methodology
regarding time and cost values. The proposed hybrid approach has found optimal P group
problem instances with a 2% difference from the best-known solution on average. Similarly, the
CMT group problem is solved with about a 10% difference from the best-known solution on
average. That the proposed hybrid solutions have a standard deviation of less than 2% on average
from BKS indicates that these approaches are consistent.

© 2021 by the authors; licensee Growing Science, Canada

Keywords:
Vehicle routing problem with
capacity constraints
Invasive weed optimization
algorithm
Genetic algorithm
Savings algorithm
Hybrid metaheuristics

1. Introduction

One of the issues frequently evaluated in logistics problems is the minimization of transportation costs. The vehicle routing
problem (VRP) aims to determine the routes to be followed by the vehicle or vehicles to provide the minimum transportation
cost and maximum customer service level. By determining the most suitable routes, the total distances and total vehicle
numbers are minimized (Pichpibul & Kawtummachai, 2012). The VRP is one of the most studied problems in terms of
optimization. In the classical VRP, the problem’s parameters are known in advance and do not change during the planning
horizon. In the literature, studies on vehicle routing problems reveal that vehicle routing problems are of the NP-Hard class.
In the classical vehicle routing problem, customer demands are met from a central depot with homogeneous vehicles; a tour
begins and ends at the depot. Customer demands for the static version of the vehicle routing problem are known in advance
and do not change until the distribution has been completed. Each customer should be visited only once, and customer
demands on a route cannot exceed vehicle capacity. Under these conditions, the goal is to create minimum-cost routes. The
primary objective of the vehicle routing problem is to decrease the distribution time and cost by reducing the total distance.
An example of a vehicle routing problem is presented in Fig. 1. The vehicle routing problem examined in this study is a multi-
vehicle, heterogeneous, and capacitated vehicle routing problem. This problem aims to distribute with a minimum number of
vehicles and a minimum distance. The constraints encountered in this problem are the vehicle capacity and tour restrictions.
The vehicle’s capacity cannot exceed the capacity of that vehicle. Meanwhile, routing restrictions are the restrictions that
enable the route of the vehicle to be determined. The main contribution of this study is to propose different approaches to
solving this problem. In this context, a savings algorithm, genetic algorithm, invasive weed algorithm, and hybrid versions of
these approaches are proposed to solve the problem. The results obtained have been evaluated with the test problems in
previous studies, and a quicker and more consistent solution has been proposed with the hybrid approach.

442

Fig. 1. An example VRP

2. Background

The vehicle routing problem entered the literature in 1959 with a study by Dantzig and Ramser (Dantzig & Ramser, 1959). In
the study, they addressed the vehicle routing problem for the distribution of gasoline to gas stations, and for the first time,
they developed a linear mathematical model and introduced an approach to the literature for the solution of this problem
(Dantzig & Ramser, 1959). Meanwhile, with their work in 1964, Clarke and Wright (Clarke & Wright, 1964) proposed a
heuristic algorithm for the first time for the vehicle routing problem. In their work, they explained the steps and operations of
the algorithm and named their algorithm a savings algorithm. The savings algorithm is likewise known as the Clarke and
Wright algorithm. When recent studies are evaluated, it is observed that heuristic approaches are often suggested due to the
difficulty of finding an exact solution. In their study, Pisinger and Ropke proposed a combined heuristic algorithm for five
types of vehicle routing problems (i.e., the time-limited vehicle routing problem, capacity vehicle routing problem, multi-
depot vehicle routing problem, location-dependent vehicle routing problem, and open vehicle routing problem) (Pisinger &
Ropke, 2007). A study conducted by Tarantilis et al. involving metaheuristic solution methodologies for the capacitated
vehicle routing problem, a standard and widely studied version of the vehicle routing problem, is examined (Tarantilis,
Ioannou, & Prastacos, 2005). Meanwhile, a hybrid approach consisting of ant colony optimization and the genetic algorithm
has been proposed to solve the multi-depot vehicle routing problem (Yücenur & Demirel, 2011). Furthermore, Bozyer et al.
proposed a heuristic method based on the grouping first and then route to solve the capacitated vehicle routing problem
(CVRP) (Boyzer, Alkan, & Fığlalı, 2014). Finally, Wedyan and Narayanan proposed the intelligent water drop algorithm
inspired by the water flow to solve capacitated vehicle routing (Wedyan & Narayanan, 2014). A Bilayer Local Search-based
Particle Swarm Optimization for the solution of the CVRP is proposed (Ahmed & Sun, 2018). The researchers applied the
proposed approach to the problem adopted from the literature. They demonstrated that they achieve the best-known solutions
for most problems with short CPU times. Moreover, they noted that, according to the results, the performance achieved with
the proposed algorithm outperformed some other particle swarm optimization-based approaches. Meanwhile, Cuevas et al.
examined the CVRP for transportation companies and have verified the model with adapted test problems and actual data
obtained from the transport company (Rojas-Cuevas, Caballero-Morales, Martinez-Flores, & Mendoza-Vazquez, 2018).
Additionally, Arnold et al. explained how a local search heuristics method was designed that produced better solutions within
a reasonable calculation period forvery large-scale examples of the CVRP (Arnold, Gendreau, & Sörensen, 2019). Through
pruning and sequential search, they explored different means of reducing space complexity by limiting the time complexity
and information stored. They revealed that the algorithm performs better than previously introduced heuristics for 10,000 or
more client instances. The green capacitated vehicle routing problem through which alternative fuel-powered vehicles were
used to distribute the products is addressed (Zhang, Gajpal, & Appadoo, 2018). Alternative fuel vehicles are assumed to have
a low fuel tank capacity. Therefore, during the distribution processes, vehicles must visit alternative fuel stations for refueling.
The two-phase heuristic algorithm and the ant colony algorithm-based algorithm are proposed as two methods for solving this
problem. A simulated annealing-based heuristic approach is proposed for solving the green CVRP (Normasari, Yu, &
Bachtiyar, 2019). The memetic algorithm is proposed for the green CVRP (Wang & Lu, 2019). Benrahou and Tairi addressed
the CVRP for waste oil collection (Benrahou & Tairi, 2019). As such, they adapted the heuristic method called the Nearest
Insertion Algorithm to solve the problem. Mulloorakam ve Nidhiry proposed a genetic algorithm method with swap mutation
and an alternative crossover approach for a case of CVRP (Mulloorakam & Nidhiry, 2019). Furthermore, Toffolo et al.
proposed a heuristic approach with some speed-up modifications, such as neighbor reductions, dynamic motion filters,

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 443

memory structures, and concatenation techniques (Toffolo, Vidal, & Wauters, 2019). Finally, a tunnel strategy was designed
to reshape the search space as the algorithm progresses.

2.1. Studies on Invasive Weed Optimization Algorithm

The invasive weed optimization algorithm (IWO) is inspired by the invasive and robust growth of weeds, mimicking their
robustness and adaptability. In a study by Mehrabian and Lucas, IWO was compared with evolutionary algorithms, such as
genetic algorithms, memetic algorithms, particle swarm optimization, and the frog leap algorithm (Mehrabian & Lucas, 2006).
Here, they employed the weed algorithm to solve an engineering problem. The experimental results demonstrated that the
performance of the IWO is acceptable for all test functions. Meanwhile, Pahlavani et al. addressed the personalized urban
multi-criteria path optimization problem (Pahlavani, Delavar, & Frank, 2012). This problem is a variant of the multi-criteria
shortest path problem. To solve the problem, the modified IWO was applied and compared with the genetic algorithm. It was
recorded that better results were obtained compared with the genetic algorithm. Additionally, Mohammadi et al. addressed
stochastic green main distribution center location selection-routing, similar to the location selection-routing problem
(Mohammadi, Razmi, & Tavakkoli-Moghaddam, 2013). Multi-objective mixed-integer linear programming formulations for
the solution of the problem were proposed. They have likewise implemented multi-objective IWO, which is a hybrid multi-
purpose heuristic. Here, they demonstrated that the proposed algorithm outperforms basic multi-purpose algorithms in the
literature, such as NSGA-II (non-dominated sorting genetic algorithm II), PAES (Pareto archived evolution strategy), and
SPEA (Strength Pareto Evolutionary Algorithm). Sur and Shukla discussed the Graph-Based Combinatorial Road Network
Management Problem with the discrete IWO (Sur & Shukla, 2013). In their study, the discrete version of the IWO was
introduced. They compared the discrete IWO with the ant colony algorithm and the intelligent water drop algorithm and
presented them. The results noted that the discrete IWO exhibited a better convergence rate than the other two algorithms.
Zhao et al. (2016) addressed the vehicle routing problem and employed the discrete hybrid IWO algorithm to solve it. To
improve the algorithm results, they included adaptive mutation and adaptive crossover, a two-stage hybrid neighbor search
algorithm. To evaluate the algorithm’s performance, they selected A group, B group, and P group problem instances from the
study by Augerat et al. (Augerat et al., 1995). As a result, when the capacity constraint is not considered, better results were
obtained than the best-known problem. Nath et al. (2017) proposed the IWO algorithm to rotate the entire very large-scale
integrated circuit (VLSI) routing. In VLSI routing, meta-heuristic algorithms, such as ant colony optimization, particle swarm
optimization, and the firefly algorithm, have been applied in previous studies. Experiments have demonstrated that the IWO
algorithm is a more effective algorithm for this problem than are the meta-heuristics used in the literature, such as particle
swarm optimization and the firefly algorithm. The large-scale inventory routing problem is solved by two metaheuristics: the
discrete IWO algorithm and genetic algorithm (Jahangir, Mohammadi, Pasandideh, & Nobari, 2019). The researchers used
the solution results obtained to compare these algorithms. The results revealed that the discrete IWO algorithm has better
convergence than the genetic algorithm. Additionally, they reported that the discrete IWO algorithm is better in terms of CPU
time in small problem instances, while the genetic algorithm is better for large problems.

3. Methodology

3.1. Savings Algorithm

The Savings Algorithm, proposed by Clarke and Wright (Clarke & Wright, 1964) and also known as the Clarke and Wright
algorithm, is a heuristic algorithm. The savings algorithm produces the optimum or near-optimum result in a single iteration.
The necessary steps are presented in Algorithm 1. Accordingly, distances and savings values are calculated, and the savings
values are sorted decreasingly. The rules of the savings algorithm are operated. As output, the problem is solved, and routes
are created sequentially or simultaneously (in parallel). If demand points are added to the route until the vehicle capacity is
complete, the routes are created sequentially. Otherwise, if routes are created simultaneously for each vehicle, the routes are
created in parallel.

3.2 Genetic Algorithm

Genetic algorithms (GAs) originated from the theory of evolution. This algorithm is a search method obtained by applying
the best natural selection to computers (Nabiyev, 2005). The GA is a search and optimization algorithm that bases on the
evolution of living things. A GA encodes solution candidates in the solution space with a structure called a chromosome. It
creates a new population by applying genetic operators, such as crossover and mutation, to solution candidates. A few
generations later, the population includes members with better eligibility values (Jang, Sun, & Mizutani, 1997). A genetic
algorithm is a search method based on evolution in nature (Davis, 1991) and has been found in many applications. The most
significant reason for this is that the algorithm produces solutions for complex problems and has a solid and wide application
area (Cheng, Gen, & Tsujimura, 1999).

444

Algorithm 1 Savings algorithm
1: procedure 𝐶𝑊(𝑑௜௝ .𝑁)
2: Routes← {}
3: for 𝑖=1 to 𝑁 do
4: for 𝑗=1 to 𝑁 do
5: if 𝑖 ≠ 𝑗 then
6: 𝑆௜௝ ←𝑑଴௜+𝑑௝଴-𝑑௜௝
7: end if
8: end for
9: end for
10: descend order 𝑆௜௝
11: for 𝑖=1 to 𝑁 do
12: for 𝑗=1 to 𝑁 do
13: if (𝑖 ∈ Routes) and (𝑗 ∈ Routes) then
14: else if (𝑖 ∈ Routes) 𝐚𝐧𝐝 (𝑗 ∉ Routes) then
15: if 𝑖 in the center
16: else if 𝑖 in the start of Routes(𝑖)
17: insert 𝑗 as the first element to Routes(𝑖)
18: else if 𝑖 at the end of Routes(𝑖)
19: insert 𝑗 as the last element to Routes(𝑖)
20: else if (𝑖 ∉ Routes) 𝐚𝐧𝐝 (𝑗 ∈ Routes) then
21: if 𝑗 in the center
22: else if 𝑗 in the start of Routes(𝑗)
23: insert 𝑖 as the first element to Routes(𝑗)
24: else if 𝑗 at the end of Routes(𝑗)
25: insert 𝑖 as the last element to Routes(𝑗)
26: else
27: create new route Routes(𝑖. 𝑗)
28: end if
29: end for
30: end for
31: for 𝑖=1 to 𝑁 do
32: if (𝑖 ∉ Routes) then
33: create new route Routes(𝑖)
34: end if
35: end for
36: end procedure

To apply the genetic algorithm to a problem, the information and chromosome coding method that the gene will carry are
determined. Afterward, the fitness function of the problem is determined. The genetic algorithm begins with possible solutions
that are randomly generated, called populations. Then, the algorithm aims to produce better solutions by crossing individuals
in the population. Diversity is provided by applying mutation to individuals at the determined mutation rate. Moreover, the
population size parameter is determined to control the population size. Some individuals must be offspring, as the population
will increase too much in each generation. At this phase, it is essential to protect better individuals and transfer them to other
generations, a process called the concept of elitism. Individuals with high suitability are protected, while individuals with low
elimination are eliminated during the elimination phase. According to the number of generations determined, the crossing
process, mutation process, and elimination process are applied; in this way, the initial population is gradually improved. As a
result of the algorithm, the best individual surviving in the population is the solution. A flow chart of the genetic algorithm is
provided in Fig. 2.

In the CVRP with a genetic algorithm, customer visit orders are expressed as genes. A chromosome contains routes, and
routes are a list of customer visit orders. Here, the index of the list determines the order of the customer. In the explanations,
the individual and the chromosome are used synonymously. In Figure 3, sample gene and chromosome representation for 10
customer problem instances are presented. The fitness value of chromosomes in the population is determined as the total cost
of the routes. To calculate the fitness value, genes on the chromosome are taken in order. Genes in the chromosome continue
to insert routes until the vehicle’s capacity is completed; if the amount of demand exceeds the vehicle capacity, a new route
is created. This process repeats until all the genes in the chromosome are complete. Finally, depots are connected to the start
and end of routes, and the cost of these routes is calculated. As a result of this process, the chromosomes’ fitness values
(individuals) in the population are calculated.

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 445

Fig. 2. Outline of the genetic algorithm

Fig. 3. Genetic Algorithm Components (Gene, Chromosome, Population, and Fitness Value)

The crossover methods are depicted in Figure 4. In this study, three crossover methods are used: swap, inversion, and insertion.
Two new individuals are formed as a result of crossover, and repetitive genes can be found in these two new individuals.
Since repetitive genes indicate coming to the same customer more than once, they cannot be accepted as a solution and must

446

be corrected. In the repairing process, repetitive genes are determined on the chromosome, one of the repeating genes remains,
and the repairing process is applied by selecting randomly from the genes that have not been used on the chromosome. After
repairing, new individuals are entirely created. The crossover method selection is performed by using Eq. (1):
 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = ൝ 𝑠𝑤𝑎𝑝 0 ≤ 𝑢 < 𝑝ଵ𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑝ଵ ≤ 𝑢 < 𝑝ଶ𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝ଶ ≤ 𝑢 < 1 𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑟𝑎𝑛𝑑𝑜𝑚(0.1). 𝑝ଵ and 𝑝ଶ 𝑎𝑟𝑒 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 which 𝑝ଵ < 𝑝ଶ.

(1)

Fig. 4. Crossover operations (a) swap, (b) reversion, and (c) insertion

A random number is generated during the mutation phase. If this number is less than the specified mutation rate, the mutation
is performed; otherwise, it is passed. While performing the mutation process, randomly selected chromosomes are mutated
by changing two randomly selected genes with each other; it is ensured that these genes are not the same. After the selection
process, the genes are replaced, and the mutation process is completed. Fig. 5 illustrates the mutation process. Finally, the
population is sorted by fitness value in the offspring. If the number of individuals exceeds the maximum population number,
individuals with low fitness values are deleted.

Fig. 5. Mutation Operation

3.3 Invasive Weed Optimization Algorithm

The Invasive Weed Optimization algorithm (IWO) is a metaheuristic algorithm created by Mehrabian and Lucas (Mehrabian
& Lucas, 2006). The IWO is a simple yet effective optimization algorithm that simulates weeds, such as strength, adaptability,

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 447

and randomness. This algorithm effectively approaches the global optimum by applying weed characteristics (such as seed
production, growth, and special competition) in a colony (Mehrabian & Lucas, 2006). The Invasive Weed Optimization
algorithm is developed based on inspiration of invasive weeds in nature surviving despite challenging conditions. The
algorithm is based on good weeds producing more seeds, while bad weeds produce fewer seeds (offspring). Thus, there is a
mechanism that makes good weeds gradually get better and dominate the colony. From this perspective, this is similar to the
genetic algorithm. Reasonable solutions allow us to produce more offspring, causing us to think that a better solution will be
achieved quickly. That the IWO has fewer steps than the genetic algorithm has made us believe that the algorithm can be
implemented more quickly and can work faster. The IWO algorithm has four necessary steps: initialization, reproduction,
spatial dispersal, and competitive exclusion. Each step is described below.

• Initialization

The initial colony is created by randomly distributing a certain number of weeds in solution spaces.

• Reproduction

At this stage, the number of seeds that will be formed from weeds in the colony is determined. Better weeds produce more
seeds, while worse weeds produce fewer seeds. The graph of the relationship between the fitness value and the seed number
is presented in Figure 6. The number of seeds can be calculated using Eq. (2):
 𝑆௜ = ඌ 𝑓௜ − 𝑓௠௜௡𝑓௠௔௫ − 𝑓௠௜௡ (𝑆௠௔௫ − 𝑆௠௜௡)ඐ + 𝑆௠௜௡ (2)

where ⌊ ⌋ denotes round down, and fi is the fitness value of the ith weed. 𝑓௠௔௫ and 𝑓௠௜௡ represent the maximum and minimum
fitness values of the colony, respectively. Moreover, Smax and Smin refer to the maximum and the minimum number of seeds a
weed can produce, respectively. Finally, 𝑆௜ denotes the number of seeds produced by the ith weed.

Fig. 6. Relationship Between Eligibility Value and Number of Seeds

• Spatial Dispersal

The specified number of seeds is randomly distributed in the problem space, and based on the variance relative to the average,
these seeds are located near the primary weed. Here, the standard deviation (σ) of the function will start from a predetermined
initial value (σinitial) and be reduced throughout the iteration to a final value (σfinal). The σiter calculation method is provided in
Eq. (3) (Koç, Nureddin, & Kahramanlı, 2018):

 𝜎௜௧௘௥ = (𝑖𝑡𝑒𝑟௠௔௫ − 𝑖𝑡𝑒𝑟)௡(𝑖𝑡𝑒𝑟௠௔௫)௡ ൫𝜎௜௡௜௧௜௔௟ − 𝜎௙௜௡௔௟൯ + 𝜎௙௜௡௔௟ (3)

where itermax denotes the maximum number of iteration (generation), σiter represents the standard deviation at the current
iteration, and n denotes the variance reduction component.

• Competitive Exclusion

There is competition among plants to survive. Weeds in the colony overgrow, and all weeds are considered colonies. However,
the total number of weeds in the colony should not exceed the colony’s maximum weed value. For this reason, while more
suitable weeds are included in the colony, less suitable weeds are removed from the colony (Koç et al., 2018). In this way,
the mechanism by which the weak are eliminated and the strong survive is obtained. In solving CVRP with IWO, a weed is
expressed as a customer list of routes. From this aspect, it can be said that this is the same as the genetic algorithm’s
chromosome structure. This process is performed as many times as the initial weed count. The weeds formed as a result of

448

this process are added to the colony, and thus, the starting colony is formed. The calculation of the weeds’ fitness value in the
colony and the creation of the routes are determined in the same way as in the genetic algorithm, as the total cost of the routes.
The number of seeds that each weed in the colony can produce regarding the suitability degree is determined during the
reproduction stage. In other words, in forming more seeds than useful herbs, fewer seeds than harmful herbs are created. The
best weed of the colony produces as many seeds as the maximum number of seeds, while the worst weed produces as many
seeds as the minimum number of seeds. It is ensured that the weeds are taken in order and that the seeds to be produced are
created. While forming the seeds, it is desired to form them during the reproduction stage. In spatial dispersal, it is used to
reach solutions around weeds, which is done by selecting two points of the weed and reversing it. The two selected points are
found with the help of a random distribution formula. In this way, the solutions around the weed are reached. Figure 7 presents
the production of a new seed from a weed at the stage of reproduction. Finally, in the competitive exclusion stage, the colony
is ranked according to the fitness value. The number of weeds exceeding the maximum number of weeds must be offspring;
therefore, weeds with low fitness values are destroyed.

Fig. 7. Spatial dispersal operation

3.4 Hybrid Methods

The metaheuristic algorithms discussed in this study begin with random starting solutions, and it is attempted to gradually
improve these solutions. When the stopping criterion is provided, an almost-optimal solution is produced. From this
perspective, as the algorithm’s initial solutions improve, the solution quality of the algorithm improves, as well. Considering
this, various attempts have been made to feed the savings algorithm, genetic algorithm, and IWO in this study. The result
produced by one algorithm has been added to the starting population of the other algorithm; for example, the savings
algorithm’s solution is run in a genetic algorithm and weed algorithm by adding it to the starting population. Three proposed
hybrid heuristics are formed, as follows:

• H1: Savings results included genetic algorithm,
• H2: Savings results included IWO,
• H3: Savings first, a genetic algorithm with 50% of generation second, and IWO with 50% of generation third.

4. Results and Discussion

In this chapter, the parameters of methodologies are tuned using the Taguchi method. Thereby, the optimal user-defined
parameters of the GA and IWO methods are found, as provided in Section 4.1. This study’s material is selected from 24
different P group problem instances, 27 different A group problem instances, and 23 different B group problem instances
(Augerat et al., 1995), widely used in the literature. In addition, five problem instances named CMT are selected from the
study (Christofides, Mingozzi, & Toth, 1979). These data sets are capacitated vehicle routing problem instances. Each problem
has a single depot and multiple vehicles, and the vehicles are homogeneous. The savings algorithm, genetic algorithm, weed
algorithm, and hybrid algorithms were run with these data sets and compared the results from different studies in Section 4.2.

4.1. Parameter Tuning

In this study, to determine the best user-defined parameter values, the Taguchi experimental design approach is used. The
Taguchi method, named by the pioneering engineer Genichi Taguchi, is an analysis tool based on experimental design and
statistical calculations and is used to optimize factor level values (Shrestha and Manogharan, 2017). The factor level can be
minimized or maximized considering the signal-to-noise (SN) values. In this study, Taguchi calculation of the S/N values in
the “smaller is better” condition is given in Eq. (4) due to the cost minimization, where n denotes the number of observations,
and y denotes the observed data. 𝑆/𝑁 = −10 𝑙𝑜𝑔 1𝑛൭෍𝑦௜ଶ௡

௜ୀଵ ൱ (4)

For the determination of experiments, a single-depot, 100-customer, and four-vehicle CVRP instance named P-n101-k4 is
used. Each value to be tested with this medium-scale problem is run 100 times in the algorithm. As a result, the average cost
values are calculated for 100 runs. According to the results, the most appropriate value is selected in terms of lower cost
values. In the Taguchi experiment setting, the L27 design with three different levels of population size, mutation rate, P1, and
P2 probabilities, and the number of generation parameters were applied to determine the best parameter values. The SN ratios
for the main effects with the smaller-is-better condition are presented in Figure 8. The mutation rate and population size have
the most significant parameters on the signal-to-noise ratio, while P1 and P2 appear to be insignificant. As a result of the S/N
diagram, the parameter values of the genetic algorithm were as follows:

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 449

• Population size: 75
• Mutation rate: 0.6
• P1: 0.6
• P2: 0.2
• Number of generation: 2,000

17512575

840

820

800

780

760
0.60.40.2 0.60.40.2

0.60.40.2

840

820

800

780

760
250020001500

Population

M
ea

n
of

 M
ea

ns

Mutation CR1

CR2 Iteration

Main Effects Plot for Means

(a)

17512575

-57,6

-57,8

-58,0

-58,2

-58,4

0.60.40.2 0.60.40.2

0.60.40.2

-57,6

-57,8

-58,0

-58,2

-58,4

250020001500

Population

M
ea

n
of

 S
N

ra
tio

s

Mutation CR1

CR2 Iteration

Main Effects Plot for SN ratios

Signal-to-noise: Smaller is better
(b)

Fig. 8. Taguchi results for parameter tuning of GA (a) main effects and (b) SN ratios

The Taguchi design is proposed for the IWO with the same problem as GA. The number of generations, initial number of
weeds, maximum number of weeds, and Smax, n, and σfinal parameters with three levels are considered in the L27 design. The
minimum number of seeds is considered to be 1 to give the worst individual of the colony an opportunity to produce seeds.
The standard deviation initial value is accepted as 1 because it is the parameter that becomes meaningful compared with the
standard deviation final value. The Taguchi results, presented in Figure 9, reveal that the number of initial weeds and
maximum weeds and Smax parameters significantly affect the routing costs. The best parameter values of the IWO algorithm
obtained from the SN ratio for the main effects diagram with the smaller-is-better condition were found, as follows:

• Number of generation: 500
• Initial number of weeds: 1,500
• Maximum number of weeds: 125
• Smin: 1
• Smax: 90
• n: 3
• σinitial: 1
• σfinal: 100

15001000500

820

810

800

790

780

200015001000 17512575

1209060

820

810

800

790

780

432 100010010

Iteration

M
ea

n
of

 M
ea

ns

Initial weeds Maximum weeds

Smax n Sigma final

Main Effects Plot for Means

(a)

15001000500

-57,8

-58,0

-58,2

200015001000 17512575

1209060

-57,8

-58,0

-58,2

432 100010010

Iteration

M
ea

n
of

 S
N

ra
tio

s

Initial weeds Maximum weeds

Smax n Sigma final

Main Effects Plot for SN ratios

Signal-to-noise: Smaller is better
(b)

Fig. 9. Taguchi results for parameter tuning of IWO (a) main effects and (b) SN ratios

4.2. Results

Heuristic algorithms search the solution spaces randomly; therefore, the results might change from run to run. All the
algorithms, save for the savings algorithm (a single-iteration method), are run 100 times for each problem instance. As a result
of this process, performance criteria such as the minimum cost, average cost, maximum cost, standard deviation of cost,
minimum speed, average speed, and maximum speed are selected. While evaluating the performance and quality of the
algorithms, the performance criteria are calculated for each algorithm, since the cost, standard deviation, and speed are

450

essential. All the calculations are handled by the PC with Intel Core i7-7600U CPU 2.80 GHz, 16 GB RAM having 64 bit
Windows 10 OS, and the Java Coding Platform.

4.2.1. Results for P problem instances

The results of P group problem instances are provided in Table 1. It can be said that among the savings algorithm, GA, and
IWO, the IWO mostly produces the best results. The IWO adapted to the CVRP yields exceptionally competitive and efficient
results. Moreover, it is concluded that the savings algorithm generally has the worst success; thus, the performance of both
the GA and IWO is better than that of the savings algorithm. When all results are analyzed in general, it is seen that hybrid
approaches yield better results than other algorithms. Hybrid approaches can produce results close to known reasonable
solutions. The H1 approach has generally produced worse results than other hybrids, while the H2 approach and H3 approach
are generally close to each other. However, the H3 approach is better than the H2 approach in 13 of the 24 problems. The
addition of the savings algorithm to the GA’s and the IWO’s initial populations improved the algorithms’ solutions and
provided better results. From this perspective, it can be concluded that adding the solution of another algorithm to the initial
populations of meta-heuristic algorithms improves the performance of the algorithm. When the standard deviation results in
Table 1 are examined, the hybrid approaches’ standard deviations are relatively lower. Therefore, the hybrid approaches are
considered to be more stable than other algorithms. Additionally, the means of the standard deviations of hybrid approaches
are close to one another. Among the hybrid approaches, the lowest standard deviation result was obtained from H2. As a
result, the H2 approach is more stable than the other algorithms discussed. The standard deviation of the savings algorithm is
not calculated, since it is a single iteration and provides the same solution in all runs. Table 2 displays that the average CPU
times calculated as a result of running the algorithms 100 times for each problem are evaluated. Among the algorithms, the
lowest running time—thereby the fastest algorithm—is the IWO. The results of the H2 approach are close to the IWO, as
well. According to the results, it is seen that the CPU time of the algorithms depends on the problem size. As the problem size
grew, the CPU times increased in direct proportion. Note that the savings algorithm is not included in Table 2 due to the CPU
times being relatively equal to zero seconds for all instances.

Table 1
Comparison of the methods for P group test instances

Problem Instances Total Costs Standard Deviation
BKS* Savings GA IWO H1 H2 H3 GA IWO H1 H2 H3

P-n16-k8 450 482 450.22 450.42 450.55 450.85 450.05 1.21 1.63 2.40 2.60 0.50
P-n19-k2 212 226 224.56 223.13 218.75 212.03 215.14 9.59 9.05 1.13 0.30 3.15
P-n20-k2 216 222 226.12 224.70 217.98 219.62 217.98 8.61 8.41 0.20 2.05 0.20
P-n21-k2 211 224 221.32 218.51 213.75 214.42 213.42 9.41 8.19 4.76 5.63 4.56
P-n22-k2 216 232 226.56 224.07 217.93 219.12 219.15 9.26 8.92 4.14 5.46 5.05
P-n22-k8 590 590 595.71 598.83 590.00 590.00 590.00 8.94 11.17 0.00 0.00 0.00
P-n23-k8 529 537 536.74 538.64 530.95 535.16 531.19 7.09 8.90 2.87 3.18 3.06
P-n40-k5 458 561 521.24 503.19 499.60 497.02 496.15 22.75 19.58 10.48 11.18 9.48
P-n45-k5 510 676 583.07 551.67 533.46 532.73 530.17 28.73 20.90 13.03 4.47 12.90
P-n50-k7 554 693 626.53 610.10 590.43 590.61 588.73 25.92 21.39 6.42 5.07 6.59
P-n50-k8 629 716 703.17 683.58 670.57 670.47 668.61 24.72 16.39 3.20 2.08 3.74

P-n50-k10 696 775 774.72 758.27 726.44 715.94 718.14 27.08 27.26 8.36 7.21 8.45
P-n51-k10 741 825 833.27 824.22 771.52 767.70 769.32 28.02 33.35 9.76 7.60 9.44
P-n55-k7 568 702 647.10 629.66 596.20 591.27 594.17 29.94 21.37 5.16 4.31 4.93
P-n55-k8 588 722 651.41 630.02 617.70 612.11 615.24 27.78 22.05 9.04 7.54 9.68

P-n55-k10 694 792 763.49 747.44 725.48 722.77 724.30 20.51 19.16 3.89 4.36 4.14
P-n55-k15 945 1000 1020.65 1018.94 983.98 972.07 979.13 24.79 24.57 4.11 10.00 8.09
P-n60-k10 744 859 833.91 811.29 786.05 790.12 785.74 27.37 23.09 7.81 2.59 7.58
P-n60-k15 968 1020 1060.69 1058.29 1000.29 1008.13 1000.75 24.69 25.32 2.16 6.99 1.09
P-n65-k10 792 982 884.73 865.20 846.47 861.20 844.77 27.20 18.77 10.51 8.01 9.41
P-n70-k10 827 1047 959.49 939.20 905.23 906.92 903.69 36.48 38.02 13.71 10.86 13.63
P-n76-k4 593 930 706.76 673.43 662.95 650.35 655.26 32.45 26.56 16.76 13.47 15.61
P-n76-k5 627 989 739.00 709.47 699.72 693.00 696.79 37.94 30.36 10.35 13.13 10.44

P-n101-k4 681 1266 846.84 811.81 794.06 762.99 787.54 45.37 37.48 25.63 22.99 26.82
* Best Known Solution % Difference with 3.96 3.49 1.29 1.21 1.33

The proposed H2 and H3 approaches are compared with the previous works in the literature and the best-known solution
(BKS). The algorithms find that the best result for the problem instance is presented in bold. Decreasing the difference value
causes the approaches to obtain the best-known solution. Therefore, the concept of change demonstrates the quality of the
algorithm’s solution. A comparison of the best hybrids proposed in Table 3 with the algorithm results in the previous study is
presented. According to the results, the proposed H3 approach quickly finds very similar results to BKS. Compared with other
solution methods, the BKS was reached in 16 of the 23 test samples with GA (Ahmed and Sun, 2018), 6 of the 8 test samples
with DHIWO (Zhao et al., 2016), and 17 of the 24 test samples with the proposed H3. However, since the standard deviations
of the study are unknown, these values could not be compared. According to CPU times, the proposed H3 has a slight increase
over others when the problem instances are complicated.

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 451

Table 2
CPU time (msec) comparisons of the algorithms for P group test instances

Problem Instances GA IWO H1 H2 H3
P - n16 - k8 704 62 775 65 406
P - n19 - k2 710 73 712 74 407
P - n20 - k2 736 80 741 79 420
P - n21 - k2 752 83 755 83 420
P - n22 - k2 784 87 787 87 440
P - n22 - k8 799 83 816 81 461
P - n23 - k8 835 87 849 86 474
P - n40 - k5 1264 174 1274 177 714
P - n45 - k5 1377 206 1395 217 771
P - n50 - k7 1616 241 1631 246 940
P - n50 - k8 1588 246 1597 252 893

P - n50 - k10 1584 240 1595 243 885
P - n51 - k10 1598 245 1613 271 902
P - n55 - k7 1713 283 1722 295 954
P - n55 - k8 1701 284 1719 306 976

P - n55 - k10 1704 287 1721 295 950
P - n55 - k15 1747 259 1784 265 968
P - n60 - k10 1835 332 1839 341 1004
P - n60 - k15 1824 310 1840 313 1002
P - n65 - k10 1971 385 2062 391 1063
P - n70 - k10 2075 437 2248 446 1134
P - n76 - k4 2198 480 2265 481 1210
P - n76 - k5 2235 503 2421 509 1225

P - n101 - k4 2904 828 2989 835 1590

Table 3
Comparison of the results with previous works

Problem
Instances BKS

GA DHIWO H2 H3

Costs %
Diff.

CPU
Time

(msec)
Minimum

Costs
%

Diff.
Mean
Costs

Minimum
Costs

%
Diff.

CPU
Time

(msec)
Mean
Costs

Minimum
Costs

%
Diff.

CPU
Time

(msec)
P-n16-k8 450 450 0.00 110 422 -6.22 450.85 450 0.00 65 450.05 450 0.00 406
P-n19-k2 212 212 0.00 100 ** - 212.03 212 0.00 74 215.14 212 0.00 407
P-n20-k2 216 216 0.00 350 216 0.00 219.62 216 0.00 79 217.98 216 0.00 420
P-n21-k2 211 211 0.00 320 ** - 214.42 211 0.00 83 213.42 211 0.00 420
P-n22-k2 216 216 0.00 710 216 0.00 219.12 216 0.00 87 219.15 216 0.00 440
P-n22-k8 590 603 2.20 830 589 -2.35 590.00 590 0.00 81 590.00 590 0.00 461
P-n23-k8 529 529 0.00 1020 ** - 535.16 529 0.00 86 531.19 529 0.00 474
P-n40-k5 458 458 0.00 1330 ** - 497.02 470 2.62 177 496.15 468 2.18 714
P-n45-k5 510 510 0.00 1450 ** - 532.73 526 3.14 217 530.17 510 0.00 771
P-n50-k7 554 554 0.00 1480 ** - 590.61 573 3.43 246 588.73 567 2.35 940
P-n50-k8 629 631 0.32 1050 ** - 670.47 662 5.25 252 668.61 658 4.61 893
P-n50-k10 696 696 0.00 2230 696 0.00 715.94 711 2.16 243 718.14 696 0.00 885
P-n51-k10 741 741 0.00 3380 ** - 767.70 754 1.75 271 769.32 741 0.00 902
P-n55-k7 568 568 0.00 4320 ** - 591.27 583 2.64 295 594.17 568 0.00 954
P-n55-k8 588 ** - - ** - 612.11 588 0.00 306 615.24 588 0.00 976
P-n55-k10 694 694 0.00 4940 ** - 722.77 709 2.16 295 724.30 694 0.00 950
P-n55-k15 945 989 4.66 4290 955 1.06 972.07 958 1.38 265 979.13 958 1.38 968
P-n60-k10 744 744 0.00 5830 ** - 790.12 782 5.11 341 785.74 769 3.36 1004
P-n60-k15 968 968 0.00 5370 ** - 1008.13 993 2.58 313 1000.75 968 0.00 1002
P-n65-k10 792 792 0.00 6440 ** - 861.20 822 3.79 391 844.77 823 3.91 1063
P-n70-k10 827 833 0.73 9240 ** - 906.92 880 6.41 446 903.69 873 5.56 1134
P-n76-k4 593 598 0.84 16110 595 0.34 650.35 611 3.04 481 655.26 593 0.00 1210
P-n76-k5 627 636 1.44 15850 ** - 693.00 664 5.90 509 696.79 627 0.00 1225
P-n101-k4 681 692 1.62 20170 681 0.00 762.99 719 5.58 835 787.54 681 0.00 1590 % 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝐶𝑜𝑠𝑡𝑠 − 𝐵𝐾𝑆)𝐵𝐾𝑆 ∗ 100

** are not reported

4.2.2. Results for CMT problem instances

In Table 4, the mean costs calculated as a result of running the algorithms 100 times for each problem of the CMT group are
evaluated. When the results are analyzed, the savings algorithm exhibits the least amount of success in most problem instances.

452

For all problem instances, hybrid approaches produced better results. Although the performance of hybrid approaches is close
to one another, it can be said that the H2 approach produces the best results. The H1 and H2 algorithms increase the
performance of the GA and IWO, respectively. Moreover, the IWO obtains better results compared with the GA and savings
algorithms. It can be said that the invasive weed optimization algorithm, which is a meta-heuristic algorithm adapted to the
capacitated vehicle routing problem, produces highly competitive and efficient results for CMT group data, as well. In general,
all the hybrid approaches have similar results and outperformed the savings, GA, and IWO singularly.

Table 4
Comparison of the methods for CMT group test instances

Problem Instances
Total Costs Standard Deviation

BKS* Savings GA IWO H1 H2 H3 GA IWO H1 H2 H3

CMT1(50) 524.61 731 612.84 582.72 577.64 567.56 575.33 35.8 27.4 12.2 5.50 12.8
CMT2(75) 835.26 1053 971.31 962.99 906.84 894.69 904.83 35.3 40.4 14.5 10.1 13.9
CMT3(100) 826.14 1321 1012.0 980.74 935.34 925.96 928.23 56.9 57.7 16.6 15.8 20.3
CMT4(150) 1028.4 1382 1334.3 1301.4 1181.2 1149.2 1191.4 62.3 86.8 27.2 20.2 27.5
CMT5(199) 1291.3 1722 1745.7 1709.5 1498.2 1480.5 1502.7 70.8 94.2 30.6 29.5 26.5
% Difference with BKS 38.61 24.11 20.80 12.56 10.76 12.52 5.90 6.56 2.22 1.68 2.26
* Best Known Solution

Table 4 also presents the standard deviation values calculated as a result of running algorithms 100 times for each problem
instance of the CMT group. The standard deviation values of the savings algorithm are 0 for each problem. A standard
deviation values comparison is made among the other algorithms. Here, the standard deviation of the GA and IWO is higher
than that of the hybrid approaches. When the results are examined, it could be said that the standard deviations of the hybrid
approaches are better than the others. In other words, it can be interpreted that when the initial solutions are fed with another
algorithm, the standard deviation decreases, and the algorithm’s stability increases. The H2 approach has the lowest standard
deviation in 4 of the 5 CMT problems. The lowest value belongs to the hybrid approach consisting of the savings and weed
algorithms. As a result, it can be said that the H2 algorithm is more stable than the other algorithms discussed. Table 5 presents
the evaluation of the calculated CPU times from running the algorithms 100 times for each problem in the CMT group. Among
the algorithms, the lowest running time—thereby the fastest algorithm—is the savings algorithm. It does not appear possible
to select the fastest among the algorithms other than the savings algorithm. The CPU time of the IWO is low for medium-
sized problems, but it was unable to perform as well in large-scale problems. For 199 customer problems within the CMT
group, the best CPU time belongs to the H3 approach. The hybridization of the genetic algorithm and the weed algorithm with
the savings algorithm separately affected the CPU times. Since the savings algorithm is low in terms of operating time, it can
be interpreted that hybridization does not overextend the CPU times.

Table 5
CPU time (msec) comparisons of the algorithms for CMT group test instances

Problem Instances Savings GA IWO H1 H2 H3
CMT1(50) 0 1576 252 1622 292 845
CMT2(75) 1 2092 505 2173 525 1109
CMT3(100) 1 2783 857 2883 965 1494
CMT4(150) 3 3945 2220 4231 2439 2197
CMT5(199) 0 5403 3945 5757 3988 3083

4.2.3. Results for A problem instances

In the A problem instances, nodes vary from 32 to 80, and the number of vehicles varies from 5 to 10. When the A problem
instances are examined, it is seen that the H3 algorithm reaches the BKS in a short CPU time or obtains results very close to
the BKS. It is seen that the H3 algorithm reaches the BKS in 13 of 27 test samples. Additionally, it is seen that the DHIWO
algorithm (Zhao et al., 2016) reaches the BKS in 7 of the 8 test samples. When the two algorithms are compared, it is seen
that H3 reaches the BKS in all instances where DHIWO is applied (See Table 6).

4.2.4 Results for B problem instances

In the B problem instances, nodes vary from 31 to 78, and the number of vehicles varies from 5 to 10. When the B problem
instances are examined, it is seen that the H3 algorithm reaches the BKS in a short CPU time or obtains results very close to
the BKS, similar to other problem instances. It is seen that the H3 algorithm reaches the BKS in 15 of the 23 test samples.
Additionally, it is seen that the DHIWO algorithm (Zhao et al., 2016) reaches the BKS in 5 of the 8 test samples. When the
two algorithms are compared, it is seen that H3 reaches the BKS in all instances where DHIWO is applied (See Table 7).

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 453

Table 6
Comparison of the results with previous works for problem instances A

Problem Instances

Total Costs CPU Time (msec)

BKS* DHIWO Min
(Zhao et
al.,2016)

H3 Min H3 Mean H3 Max Standard
Deviation of

H3

Min Mean Max

A-n32-k5 784 784 784 848.66 892 10.77 500 523 833
A-n33-k5 661 661 661 690.06 699 9.73 497 513 532
A-n33-k6 742 ** 742 773.66 781 5.45 491 506 530
A-n34-k5 778 778 778 797.49 824 12.22 506 519 543
A-n36-k5 799 ** 799 824.26 878 11.75 534 550 592
A-n37-k5 669 ** 693 737.24 814 17.83 538 555 575
A-n37-k6 949 ** 967 982.14 984 4.28 559 572 600
A-n38-k5 730 ** 730 772.62 823 22.29 559 587 643
A-n39-k5 822 ** 853 855.2 865 2.71 549 564 594
A-n39-k6 831 831 831 856.94 903 16.03 558 577 638
A-n44-k6 937 937 937 1006.9 1029 11.18 596 609 652
A-n45-k6 944 ** 977 986.17 1015 8.83 611 627 651
A-n45-k7 1146 ** 1155 1189.37 1215 8.40 636 649 680
A-n46-k7 914 914 914 925.29 935 4.57 630 646 683
A-n48-k7 1073 ** 1115 1134.33 1180 14.65 660 671 720
A-n53-k7 1010 ** 1010 1076.06 1183 23.64 761 782 827
A-n54-k7 1167 ** 1167 1188.54 1227 11.45 753 772 829
A-n55-k9 1073 ** 1085 1121.61 1154 16.99 777 797 855
A-n60-k9 1354 1354 1354 1389.42 1438 12.18 841 856 904
A-n61-k9 1034 ** 1048 1073.54 1109 13.46 850 867 919
A-n62-k8 1288 ** 1349 1382.91 1422 15.84 850 872 944
A-n63-k9 1616 ** 1645 1664 1694 8.56 865 882 927
A-n63-k10 1314 ** 1351 1405.31 1509 28.87 874 896 1004
A-n64-k9 1401 ** 1472 1490.9 1514 10.03 885 902 969
A-n65-k9 1174 ** 1202 1272.95 1402 38.96 885 909 968
A-n69-k9 1159 ** 1206 1262.73 1342 25.35 934 964 1057
A-n80-k10 1763 1764 1763 1885.67 1924 10.62 1067 1089 1148

% Difference with BKS
* Best Known Solution

Table 7
Comparison of the results with previous works for problem instances B

Problem Instances

Total Costs CPU Time (msec)

BKS* DHIWO Min
(Zhao et
al.,2016)

H3 Min H3 Mean H3 Max Standard
Deviation of

H3

Min Mean Max

B-n31-k5 672 672 672 703.72 729 6.77 483 503 811
B-n34-k5 788 788 788 821.64 878 16.18 510 529 579
B-n35-k5 955 ** 955 971.4 1054 19.75 517 533 585
B-n38-k6 805 ** 810 821.78 837 5.04 551 564 589
B-n39-k5 549 ** 549 616.19 635 20.92 566 589 630
B-n41-k6 829 829 829 866.01 928 22.16 584 603 643
B-n43-k6 742 ** 742 764.53 852 20.09 618 637 689
B-n44-k7 909 ** 926 931.83 936 3.69 616 628 657
B-n45-k5 751 751 751 769.89 785 7.58 631 645 679
B-n45-k6 678 ** 690 730.98 795 22.65 619 636 669
B-n50-k7 741 741 741 757.21 801 10.58 707 725 774
B-n50-k8 1312 ** 1340 1371.06 1378 10.03 705 724 777
B-n51-k7 1032 ** 1032 1048.85 1088 14.05 735 749 813
B-n52-k7 747 ** 747 758.36 774 5.17 734 754 805
B-n56-k7 707 ** 707 757.26 787 17.76 787 809 881
B-n57-k7 1153 ** 1153 1192.33 1323 36.52 795 815 907
B-n57-k9 1598 ** 1636 1662.4 1724 18.94 773 795 854

B-n63-k10 1496 1497 1496 1598.3 1659 19.31 850 865 905
B-n64-k9 861 ** 890 933.65 994 24.66 853 875 966
B-n66-k9 1316 ** 1344 1401.48 1476 26.77 885 923 1042

B-n67-k10 1032 1035 1032 1092.4 1129 11.74 890 906 955
B-n68-k9 1272 ** 1292 1304.88 1316 8.29 935 958 1014

B-n78-k10 1221 1223 1221 1301.48 1352 19.35 1002 1030 1116
% Difference with BKS

* Best Known Solution

454

5. Conclusion

Capacitated vehicle routing problems are among the NP-Hard class of problems, which are difficult to solve exactly. For this
reason, heuristic approaches have often been suggested for this problem in previous studies. In this study, the problem is
solved using different heuristic approaches in this context. The first approach is a savings algorithm, which has higher cost
routes compared with other approaches. Additionally, when the solution time is examined, it is seen that it is a reasonable
method, since there is a single-iteration solution. The second approach is a genetic algorithm, which is frequently used in
vehicle routing problems. Here, it can be seen that the results obtained are relatively better than in the savings algorithm.
However, when the speed of the algorithm is examined, it is seen that the genetic algorithm finds a solution over a long time
compared with other approaches. Therefore, the invasive weed optimization algorithm is developed for the problem. It has
been seen in previous studies that the IWO algorithm obtains good results for problems in the continuous solution space, and
it is adapted in the traveling salesman problem, as well. The IWO provides better costs in a shorter time than the other
algorithms; thus, the IWO produces extraordinarily competitive and efficient results very quickly. The hybrid versions of
these algorithms are compared, as well. For this purpose, three different hybrid heuristics that include the savings, genetic and
invasive weed optimization algorithms, named H1, H2, and H3, are proposed. While H1 improves the solutions’ costs, the
solution times are still quite long due to the genetic algorithm; meanwhile, H2 yields an excellent cost and solution time. With
this approach, reasonable costs have been achieved with very low standard deviations and acceptable solution times. The final
approach is the H3 approach, which contains all algorithms and achieves reasonable solution costs with very low standard
deviations and acceptable solution times. It is concluded that hybridizing the algorithms provides better costs and solution
times for test problem instances. Parameter selection is essential for the IWO algorithm’s solution quality adapted to the
vehicle routing problem. The use of different approaches when producing seeds during the reproduction stage is another factor
that might affect the quality of the solution. The algorithm’s solution quality can be increased if detailed studies are conducted
to select appropriate parameters in future studies and different approaches during the reproduction stage. It can investigate the
performance of the IWO in large-scale problems.

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

Ahmed, A., & Sun, J. U. (2018). Bilayer local search enhanced particle swarm optimization for the capacitated vehicle routing
problem. Algorithms, 11, 31.

Arnold, F., Gendreau, M., & Sörensen, K. (2019). Efficiently solving very large-scale routing problems. Computers &
operations research, 107, 32-42.

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D., & Rinaldi, G. (1995). Computational results with a
branch and cut code for the capacitated vehicle routing problem (Vol. 34): IMAG.

Benrahou, F., & Tairi, A. (2019). Capacitated Vehicle Routing Problem for Collection Waste Lube Oil in Algiers. Fresenius
Environ. Bull, 28, 4500-4505.

Boyzer, Z., Alkan, A., & Fığlalı, A. (2014). Cluster-first, then-route based heuristic algorithm for the solution of capacitated
vehicle routing problem. International Journal of Informatics Technologies, 7, 29-37.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling problems using genetic algorithms,
part II: hybrid genetic search strategies. Computers & Industrial Engineering, 36, 343-364.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In A. M. N. Christofides, P. Toth, C. Sandi
(Eds.) (Ed.), Combinatorial Optimization (pp. 315-338). Chichester, UK: Wiley.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations
research, 12, 568-581.

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6, 80-91.
Davis, L. (1991). Handbook of genetic algorithms, (Vol. 115). New York: Van Nostrand Reinhold.
Jahangir, H., Mohammadi, M., Pasandideh, S. H. R., & Nobari, N. Z. (2019). Comparing performance of genetic and discrete

invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery. Journal of
Intelligent Manufacturing, 30, 2327-2353.

Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing-a computational approach to learning and
machine intelligence [Book Review]. IEEE Transactions on automatic control, 42, 1482-1484.

Koç, İ., Nureddin, R., & Kahramanlı, H. (2018). Implementation of GSA (Gravitation Search Algorithm) and IWO (Invasive
Weed Optimization) for the prediction of the energy demand in Turkey using linear form. Selcuk University Journal of
Engineering Science and Techology, 6, 529-543.

Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological
Informatics, 1, 355-366.

Ü. Yıldırım and Y. Kuvvetli / International Journal of Industrial Engineering Computations 12 (2021) 455

Mohammadi, M., Razmi, J., & Tavakkoli-Moghaddam, R. (2013). Multi-Objective Invasive Weed Optimization For
Stochastic Green Hub Location Routing Problem With Simultaneous Pick-Ups And Deliveries. Economic Computation
& Economic Cybernetics Studies & Research, 47.

Mulloorakam, A. T., & Nidhiry, N. M. (2019). Combined objective optimization for vehicle routing using genetic algorithm.
Materials Today: Proceedings, 11, 891-902.

Nabiyev, V. V. (2005). Artificial Intelligence: Problems, Methods, Algorithms. Seckin Pub. Co., Ankara.
Nath, S., Chakravarty, A. K., Ghosh, S., & Sarkar, S. K. (2017). Invasive weed optimization approach to VLSI routing. In

2017 Devices for Integrated Circuit (DevIC) (pp. 615-619): IEEE.
Normasari, N. M. E., Yu, V. F., & Bachtiyar, C. (2019). A simulated annealing heuristic for the capacitated green vehicle

routing problem. Mathematical Problems in Engineering, 2019.
Pahlavani, P., Delavar, M. R., & Frank, A. U. (2012). Using a modified invasive weed optimization algorithm for a

personalized urban multi-criteria path optimization problem. International Journal of Applied Earth Observation and
Geoinformation, 18, 313-328.

Pichpibul, T., & Kawtummachai, R. (2012). An improved Clarke and Wright savings algorithm for the capacitated vehicle
routing problem. ScienceAsia, 38, 307-318.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & operations research, 34,
2403-2435.

Rojas-Cuevas, I.-D., Caballero-Morales, S.-O., Martinez-Flores, J.-L., & Mendoza-Vazquez, J.-R. (2018). Capacitated vehicle
routing problem model for carriers. Journal of Transport and Supply Chain Management, 12, 1-9.

Shrestha, S., & Manogharan, G. (2017). Optimization of binder jetting using Taguchi method. Jom, 69(3), 491-497.
Sur, C., & Shukla, A. (2013). Discrete invasive weed optimization algorithm for graph based combinatorial road network

management problem. In 2013 International Symposium on Computational and Business Intelligence (pp. 254-257):
IEEE.

Tarantilis, C. D., Ioannou, G., & Prastacos, G. (2005). Advanced vehicle routing algorithms for complex operations
management problems. Journal of Food Engineering, 70, 455-471.

Toffolo, T. A., Vidal, T., & Wauters, T. (2019). Heuristics for vehicle routing problems: Sequence or set optimization?
Computers & operations research, 105, 118-131.

Wang, L., & Lu, J. (2019). A memetic algorithm with competition for the capacitated green vehicle routing problem.
IEEE/CAA Journal of Automatica Sinica, 6, 516-526.

Wedyan, A. F., & Narayanan, A. (2014). Solving capacitated vehicle routing problem using intelligent water drops algorithm.
In 2014 10th International Conference on Natural Computation (ICNC) (pp. 469-474): IEEE.

Yücenur, G. N., & Demirel, N. Ç. (2011). A hybrid algorithm with genetic algorithm and ant colony optimization for solving
multi-depot vehicle routing problems. Sigma Journal of Engineering and Natural Sciences, 29, 340-350.

Zhang, S., Gajpal, Y., & Appadoo, S. (2018). A meta-heuristic for capacitated green vehicle routing problem. Annals of
Operations Research, 269, 753-771.

Zhao, Y., Leng, L., Qian, Z., & Wang, W. (2016). A discrete hybrid invasive weed optimization algorithm for the capacitated
vehicle routing problem. Procedia Computer Science, 91, 978-987.

456

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

