International Journal of Industrial Engineering Computations 12 (2021) 401-414

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A homogenously weighted moving average scheme for observations under the effect of serial
dependence and measurement inaccuracy

Maonatlala Thanwane?, Sandile C. Shongwe"*, Muhammad Aslam¢, Jean-Claude Malela-Majika!
and Mohammed Albassam®

“Department of Statistics, College of Science, Engineering and Technology, University of South Africa, South Africa

bDepartment of Mathematical Statistics and Actuarial Science, Faculty of Natural and Agricultural Sciences, University of the Free State;
Bloemfontein 9301, South Africa

“Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia

4Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield 0002, South Afiica

CHRONICLE ABSTRACT

Article history: The combined effect of serial dependency and measurement errors is known to negatively affect
Received December 28 2020 the statistical efficiency of any monitoring scheme. However, for the recently proposed
Received in Revised Format homogenously weighted moving average (HWMA) scheme, the research that exists concerns
April 312021 independent and identically distributed observations and measurement errors only. Thus, in this

A ted May 11 2021 .. -
Af/;?gsle On?i'ne paper, the HWMA scheme for monitoring the process mean under the effect of within-sample

May, 112021 serial dependence with measurement errors is proposed for both constant and linearly increasing
Keywords: measurement system variance. Monte Carlo simulation is used to evaluate the run-length
Autocorrelation distribution of the proposed HWMA scheme. A mixed-s&m sampling strategy is incorporated
Control chart to the HWMA scheme to reduce the negative effect of serial dependence and measurement errors
Homogeneously weighted moving and its performance is compared to the existing Shewhart scheme. An example is given to
average (HWM4) illustrate how to implement the proposed HWMA scheme for use in real-life applications.
Measurement errors

Mixed samples strategy

Multiple measurements

Skipp[ng Sampling strategy © 2021 by the authors; licensee Growing Science, Canada

1. Introduction

Monitoring schemes are efficient tools in statistical process monitoring (SPM) as they aim at efficiently monitoring streaming
processes and detecting changes in process performance, as early as possible, so that corrective measures can be taken to
ensure a minimal loss due to a downfall in the quality of whatever process that is monitored. More importantly, the main goal
of a monitoring scheme is to provide a way to distinguish between two sources of variability, i.e. chance and assignable causes
of variability. When a process runs only in the presence of chance causes of variation, it is said to be in a state of in-control
(IC). However, when it runs in the presence of assignable causes (this can be as a result of additional variations that are caused
by machinery, human and/or material error), the process is said to be out-of-control (OOC). Any efficient monitoring scheme
needs to respond to changes in the quality characteristic of interest as early as possible to aid in eliminating or reducing
unwanted waste, see Montgomery (2013). It has been proven that monitoring schemes like Shewhart-type schemes are more
efficient in detecting large shifts; while memory-type schemes like the exponentially weighted moving average (EWMA),
cumulative sum (CUSUM) and the generally weighted moving average (GWMA) tend to be more efficient in detecting small
shifts. More recently, Abbas (2018) proposed a new memory-type scheme called the homogeneously weighted moving
average (HWMA) X control chart to monitoring the mean of independent and identically distributed (i.i.d.) observations.
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Other HWMA schemes are discussed in Nawaz and Han (2020), Adegoke et al. (2020a, b), Abbas et al. (2020), Dawod et al.
(2020), Raza et al. (2020). Note that the HWMA scheme allocates a specific weight to the current sample and the remaining
weight is distributed equally (or homogeneously) among all the previous samples. Other extended HWMA schemes for i.i.d.
observations have been studied in Adeoti and Koleoso (2020), Abid et al. (2020a, b), Malela-Majika et al. (2021) and
Alevizakos et al. (2021). More recently, Thanwane et al. (2020) studied the effect of measurement errors on the performance
of the HWMA scheme and here, the focus is on the combined effect of measurement errors and serial dependency (also known
as autocorrelation). For separate literature reviews on autocorrelated processes and processes with measurement errors in a
SPM context, see Prajapati and Singh (2012) and Maleki et al. (2017), respectively.

In this paper, the well-known first-order autoregressive model (i.e. AR(1)) is considered as a starting point (other models will
be discussed in upcoming articles). The AR(1) model with positive autocorrelation is the most commonly used time series
model in SPM applications due to its simplicity as compared to other stationary time series models. For other discussions on
AR(1) model in a univariate or multivariate SPM context, see for example: Ahmad et al. (2019), Dargopatil and Ghute (2019),
Oh and Weif (2020). Note that if the process remains in equilibrium around the constant mean then the autocorrelated process
is IC; however, when there is any statistically significant difference from the constant mean, it implies that the autocorrelated
process is OOC. To reduce the negative effect of autocorrelation, there are some sampling strategies that exist that are used
in effectively improving the performance of any monitoring scheme, to count a few: the s-skip (by Costa and Castagliola,
2011), mixed samples (by Franco et al., 2014) and mixed-s-skip (by Shongwe et al., 2021). In the latter, s denotes the number
of observations that must be skipped before sampling to form a rational subgroup. The review paper by Maleki et al. (2017)
stated that, even with highly sophisticated advanced measuring instruments, an exact measurement is a rare phenomenon;
hence, measurement errors tend to exist in any manufacturing and service environment. To account for measurement errors,
the additive model (or linear covariate error) model with a constant and linearly increasing variance are used, see for instance
Linna and Woodall (2001), Maravelakis et al. (2004) and Maravelakis (2012). The most used remedial strategy to reduce the
negative effect of measurement errors is the m-measurements approach by Linna and Woodall (2001), which entails measuring
each observation m times. Some recent contributions to monitoring schemes under the effect of measurement error are
provided in Nguyen et al. (2020), Zaidi et al. (2020), Asif et al. (2020) and Arif et al. (2020). Yang and Yang (2005), Xiaohong
and Zhaojun (2009), Costa and Castagliola (2011), Shongwe et al. (2020, 2021), Shongwe and Malela-Majika (2020)
considered some monitoring schemes where the process mean is assumed to be under the combined effect of autocorrelation
and measurement errors. It has been generally concluded that the combined effect of autocorrelation and measurement errors
has a higher negative effect on the performance of any monitoring schemes than the latter two factors, individually. Therefore,
the most important contribution of this paper is to propose a dedicated HWMA X scheme, where autocorrelated observations
with measurement errors are likely to occur.

The rest of this paper is organised as follows: In Section 2, the main properties of the HWMA scheme for monitoring i.i.d
observations is discussed. Section 3 introduces the HWMA scheme for monitoring the process mean under the combined
effect of autocorrelation and measurement errors. The empirical performance of the proposed HWMA scheme is given in
Section 4. An illustrative example showing how to implement the proposed HWMA scheme is provided in Section 5. Finally,
some concluding remarks are presented in Section 6.

2. Design of the basic HWMA scheme for i.i.d. observations

Let the sequence of observations X;; {t = 1,2, ...,and i = 1, 2, ..., n} be a set of samples of i.i.d. normal random variables,
i.e. X ~ N(uo + 80y, 0y), where i is the IC mean value, oy is the IC standard deviation and § is the magnitude of the shift
in standard deviation units. When § = 0, it implies that X,; ~ N(u, 0,) and hence, the process is considered to be IC.
However, when & # 0, the process is OOC. Let X, = Y7, X,;/n be the sample mean of the t** subgroup; then the plotting
statistic of the HWMA X scheme (denoted as H,) is defined as

t—1
_ _ _ 1 &
Ho= 2%, + (1= Ky =A%, + (1 2) <mz X,,). 1)
v=1

Note that A is the smoothing constant (where 0 < A < 1) and X,_, is the mean of the previous t — 1 subgroup sample means,
with X, o (i.e. when t=1) set to be equal to the target mean p,; see Abbas (2018). It is apparent that the charting statistic H,
assigns a weight 4 to the current sample and a weight (1 — 1) is homogeneously (or equally) distributed to the previous t — 1
samples. Abbas (2018) showed that the mean and standard deviation of H, are given by

E(H,) = po 2

and
2
jzza—", t=1
n
(3)
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respectively. Note that the average run-length (4RL), defined as the mean of the run-length distribution or the average number
of rational subgroups plotted on a control chart before it gives a signal for the first time, is the most used run-length metric in
SPM literature. This metric reveals the degree of the sensitivity of a monitoring scheme towards specific shifts. Thereafter,
Abbas (2018) showed that the time-varying lower and upper control limits (i.e. LCL, and UCL,) of the HWMA X monitoring
scheme are defined by

l o — L /1270, t=1

LCL, = (4a)
2 2
{MO—L\[AZ%"+(1—A)Z%, t>1
and _
( 52
|H0+L\[/1270. t=1
UCL, = (4b)

2

lovr 13228 4 g 290 i
Lyo+ An+( A) SCEEVE t>

respectively; where L > 0 is the control limits constant that is set in order to have an IC ARL approximately equal to some
pre-specified nominal IC ARL (i.e. ARLy). Thus, the HWMA X scheme gives a signal if H, = UCL; or H, < LCL;. In case
2

the process has been running for a long time (i.e. t — 00), the term - (:31) — 0. Therefore, the control limits in (4a) and (4b)

reduce to the following asymptotic ones:

2
0
UCL/LCL = py + L\/AZ 7" (5)

3. HWMA scheme for monitoring autocorrelated observations with measurement errors
3.1 AR(1) process incorporated in the covariate error model

Let the sequence of observations X {t = 1,2,...,and i = 1, 2, ..., n} be a set of samples of autocorrelated N (i, + 87, 7p)
distribution that fits a stationary AR(1) model, given by

Xt —uo =¢(Xf—1,i_llo)+€t,f2 L, i=1,2,..,n (6)

where ¢ is the level of serial dependence (or autocorrelation) assumed to satisfy 0 < ¢ < 1 and &, are i.i.d. N(0,0,) random
variables, with g, = \/%7 and, without loss of generality, it is assumed that g, = 1. Let X{ be the sample mean of the t**

subgroup and while it is assumed that there is dependence within the computation of X{; however, between any X; and X}
(t # w) there is independence which means no cross-correlation, see Alwan and Radson (1992). Assume that the true value
ofoi defined in (6) is only observed through a value {XZ_L-_]-: t=12,..;i=1,...,n;j=1,...,m} described by the expression

tij = A+ BX ff i + & j, where A and B are two constants depending on the measurement system location error. It is worth
mentioning that Costa and Castagliola (2011) and Shongwe et al. (2021) considered the case where A = 0 and B = 1 only.
Note that m denotes the number of measurements taken in each sampled subgroup unit and ¢; ; ,~N (0, o) is a random error
due to the measurement error that is distributed independently of X ,ff i where 07 is the variance of the measurement system.
Based on the discussion in Linna and Woodall (2001), Maravelakis et al (2004) and Maravelakis (2012), it is apparent that
X¢ii~N(A + Buy, B%0§ + of;). Assuming that n observations from the sequence X;; ; at each sampling point have been

collected, then using the mixed-s-skip with m-measurements (denoted as mixed-s&m) strategy, the process mean is

calculated as follows
ne n m
M 1
Xt (s+1yi-s | T ﬁz Z Et (s+1)i-s.j ’ (7)
1

Ng-1
i= i=1 j=1

=, 1 M
Xe =4+ B; Z Xt—l,(s+1)i +
i=1

however, for the no remedy strategy (i.e. s=0 and m=1), it is calculated by

n n 1

- 1 u 1

Xt =A+BEZX“+%ZZEU'J; (8)
i=1 i=1 j=1 B _

see for instance Costa and Castagliola (2011) and Shongwe et al. (2021). Since between any X7 and X (t # w) there is

independence, it follows that

Cov(X;,X;) =0, forany t # w. )
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In the case of constant measurement system variance, lety = Z—M represents the standardized ratio of the measurement system
0

variability to the process variability. Then, from Costa and Castagliola (2011), it follows that when the ‘no remedy’ strategy
is implemented, the expected value and variance of X; are respectively given by

E(X;) = A+ B, (10
and
_ 2 n+1l _ 2 + -1
Var(X;) = %" <1 +2 <¢ nrzz — 15721 )¢>) +(B2+y2)—1) (11a)

In some situations, the measurement error 6 should no longer be considered as being a constant but it should be considered
as an increasing function of the mean of the variable X“, i.e. 04 = C + Dug and thus, Xeij~N(A+ Buy, B%6Z + C + Duy),
where C and D are two constants. It is worth mentioning that Costa and Castagliola (2011) and Shongwe et al. (2021) did not
consider the linearly increasing variance scenario. Following similar steps as done for (10) and (11), it follows that for linearly
increasing measurement system variance, the expected value of X; for the ‘no remedy’ strategy is given by (10). However,
the variance of X; is given by

Var(X;) = %g <1 +2 (d’m _nréfjlgrzl _ Dd’)) + (32 + %) -1 (11b)

Note that when the mixed-s&m strategy is implemented, the expected value of X} is the same as that in (10); however, the

variance of X; is given by
2

— O
Var(X;) = W‘Hp. (12a)

where ¢ for the constant measurement system variance is given by

_ (E s <¢(s+1)(nt+1) _ nt¢25+2 +(n, — 1)¢s+1>)
n

n(gps*t —1)?
n ¢(s+1)(nt_1+1) —-n ¢2$+2 + (TL _ 1)¢s+1 y2 (12b)
+(=+2 i i +|B*+—| -1,
n n(ps+t —1)2 m
and for the linearly increasing measurement system variance, it is given by
_ E o ¢(s+1)(nt+1) _ nt¢25+2 + (nt _ 1)¢s+1 N Neq
9 n n(gpstt —1)2 n
¢(s+1)(nt—1+1) — N 02+ (np_y — DPSH , C + Dy, (12¢)
2 B+ ——— | —
¥ < n(¢s*t —1)2 > * < * mo} >

3.2 Properties and operation of the HWMA X* scheme with mixed-s&m strategy

Based on the discussion in Sections 2 and 3.1, it follows that the plotting statistic of the HWMA X* scheme with mixed-s&m
strategy is defined by

t—1
_ = _ 1 _
Hy =A%+ (1= D) Ky = AK; + (1= 2) <mz X;), (13)
v=1

where X;_, is the mean of the previous t — 1 sample means, with X (i.e. t = 1) set to be equal to the target mean in (10),
that is,

X = A+ Bu,. 14)
Using the Eq. (10), it follows that the expected value of Hy is glven by

1 1-—
E(H;) = AECR?) + —Z E(%;) = ACA + Bug) + y—= Z(A + Buy) = A+ By, (15)

To calculate the variance of Eq (13), the following need to be determmed
Var(Hp) = 2Var(X;) + (1 — D)?Var (X;_,) + 2 z z Cov(X;:, Xi_1). (16)
Firstly, the expression of the Var(X;) are provided in (12a) to (12¢) for the mixed-s&m strategy in the case of constant and

linearly increasing measurement system variance. Secondly, the expressions of Var ()? ?—1) is determined in two parts, i.e. for
t =1andt > 1. Thatis, for t = 1, using Eq. (14), it follows that

Var(X3) = Var(A + Bu,) = 0. (17a)

However, for t > 1, using (9) and (12a), it follows that
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Var()?;_l) =Var (t 1 )

2 t=

v=1
2 t-1

(17b)

Thirdly, since Xt 1= (X1 + X5+ -+ X)), then from (9), it follows that

ZZZ Cov(X;, Xi_ 1) = ZZZCOU (Xt, (X1 + X5+ -+ X 1)) = 0. (17¢)

Thus, substituting Eq. (17a) to Eq. (17¢) in Eq. ( 16), when t =1 and t >1, it follows that
[ 290
A2 gl 2 whent =1
Var(H{) = { i o2 1 o2 (18)
kﬂ 7§0+(1—l) (m)Y(p, whent > 1.
Therefore, using Eq. (15) and Eq. (18), it follows that the time-varying lower and upper control limits (i.e. LCL, and UCL;)
of the HWMA X* scheme with mixed-s&m strategy are defined by

( o2
| (A+Buy) —L* /127<p, when t =1
LCL, = { (192)
2 2
la+Bu) -1 (228 +a-12—2_ )y, when t>1
( n nit-1),""’
and
2
(A+Bu0)+L*\[AZ%go, when t =1
(19b)

(
4'
UcL, =
| * <2_2 f’_>
L(A+B/10)+L\/)l +(1-2) =1 o, when t>1

respectively; where L* > 0 is the control limits coefficient that is set to have an IC ARL approximately equal to some pre-
specified ARLy, and ¢ is as given in (12b) and (12c) for the constant and linearly increasing measurement system variance.
Thus the HWMA X* scheme gives a signal if Hf > UCL, or Hf < LCL,. When the process has been running for a long time,

- (t 57 0 and thus, Eq. (19a) and EQ. (19b) reduce to the following asymptotic ones:

2
(oF
UCL/LCL = py + L* \//127"4). (20)

Consequently, the operational procedure of the HWMA X* scheme using the mixed-s&m strategy is summarized in Fig. 1.
4. Performance of the HWMA X* scheme
4.1 Run-length characteristics

To compute the run-length properties (i.e. the ARL and the standard deviation of the run-length (SDRL)), in this paper, the
Monte Carlo simulations approach using SAS v9.4 are used. Note that in addition to the latter, the expected ARL (EARL)
metric is also used to investigate the performance over a range of shifts. The EARL is mathematically defined by

6771(1){

1
EARLGsipime) =3 ). ARL(O), 21)
§=8min
where &pin and 8.« are the lower and upper bound of the shift (§) parameter, respectively, ARL(&) is the ARL value for a
specific shift § and A represents the number of increments between 6pin and &y,ay. Thus, the EARL values denoted by
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EARL o1}, EARL (o2}, EARL(y3) and EARL g 3] are used to investigate the performance of the HWMA X*# scheme for small
(0 < § <1), small-to-moderate (0 < § < 2), moderate-to-large (1 < § < 3) and small-to-large (0 < & < 3) shifts,
respectively. To investigate to what extent using a certain sampling strategies when ¢ > 0 and 634 > 0 has deteriorated the
HWMA X* scheme’s performance as compared to the i.i.d. case (i.e. =0 and g4=0), the percentage difference (%Diff) is
defined as a percentage difference of EARL at some specified value of ¢p and y (or ¢, C and D) from the corresponding i.i.d.
case, i.e.
* iid.
%Diff(émin,é’max] — EARL(‘Smin:‘Smaxi].i.d. EARL(‘Smin"smax]
EARL

(6minSmax]
where EARL}s denotes the EARL of the HWMA X* scheme for some specified ¢ > 0, whereas EARL:S:
[‘Smm:‘smax] _ [ammvamax]
denotes the EARL of the HWMA X scheme when ¢=0 and 64=0. Similarly, the expected SDRL is defined as
5max
1
ESDRL(S i max] = 3 Z SDRL(S), (23)
§=8min
and the %Diff of the ESDRL can be defined as in Eq. (22) using Eq. (23).

: (22)

Specify uy, 09, 4, ¢, s, ¥, m & n; use (19a) & (19b) to setup the control limits

Step 1 by adjusting L* such that the actual IC ARL is approximately equal to ARL,
A 4
Step2 [ At the next sampling point, collect a sample of size n & calculate H; ](
No ¢
Is H{ above the upper control limit, or
Step 3 below the lower control limit?
Yes

Step 4 Issue an OOC signal; then take corrective action to find and remove 1

assignable causes. Thereafter, return to Step 2.

Fig. 1. Flow chart illustrating the operational procedure of the HWMA X* scheme using mixed-s&m strategy

4.2 Sensitivity of the HWMA X* scheme with constant variance

When ¢ and y are increased, it is observed from Table 1 that the OOC ARLs and SDRLs of the HWMA X* scheme also
increase. Stated differently, for an autocorrelated process with a constant g, the performance of the HWMA X* scheme
deteriorates as the level of autocorrelation and measurement error increase. For instance, when 6=0.5, the OOC ARLs are
equal to 7.8, 10.3, 16.3 and 29.0 for both (¢,y) equal to (0,0), (0.2,0.2), (0.5,0.5) and (0.9,0.9), respectively. Similarly, the
EARL ) and ESDRL g 5) increases as both ¢ and y increase because %Diff g ) becomes significantly higher as compared to
the corresponding i.i.d. values. For instance, the EARL g, of the HWMA X* scheme when (¢,)=(0.9,0.9) is 206.3%
different from the i.i.d. one. Note that similar patterns are observed for other values of the smoothing parameter. Moreover,
for a specific value of s and m, the HWMA X* scheme (for the mixed-s&m strategy) has a similar pattern when both ¢ and
y are increased.

When designing the HWMA X* scheme, a user needs to specify a desired A and then calculate the corresponding L* such that
Step 1 in Figure 1 is satisfied. In Table 2, the effect of A on the performance of the HWMA X* scheme is illustrated. Except
for a few cases when § > 1, it is observed that as A increases, the OOC ARL and SDRL values also increase indicating that
the HWMA X* scheme deteriorates in performance. Overall, as A increases, so do the EARL and ESDRL values, indicating
that, in general, there is a deterioration performance over the majority of shifts. Note that as A increases, the design parameter
L* increases as well. Stated differently, the control limits of the HWMA X* scheme get wider as A increases which explains
the deterioration of the performance.
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Table 1
The ARL and SDRL profiles of the HWMA X* scheme (for the no remedy strategy) when 1=0.1, n=5, B=1 and ARL=500
where (¢,y) €{(0.2, 0.2), (0.5,0.5), (0.9,0.9)}

ARL SDRL
(@.7) iid. 0.2,0.2) (0.5,0.5) (0.9,0.9) i.id. 0.2,0.2) (0.5,0.5) (0.9,0.9)
0.0 500.1 502.8 501.0 499.2 407.8 409.6 407.2 409.9
0.1 95.4 120.4 171.1 2525 67.5 88.4 133.2 204.6
0.2 34.0 44.4 67.8 111.7 213 29.0 46.0 80.7
0.3 18.0 23.6 37.0 63.9 10.8 14.6 23.6 437
0.4 11.1 14.8 23.4 40.8 6.3 8.7 143 26.5
0.5 7.8 103 16.3 29.0 42 5.8 9.5 17.9
0.6 5.9 71 12.0 215 3.0 42 6.9 13.0
0.7 46 6.1 9.5 16.9 23 3.1 52 10.0
0.8 3.9 5.0 7.6 13.5 1.8 2.4 4.1 7.8
) 0.9 33 42 6.3 11.1 1.5 2.0 3.3 6.3
1.0 29 3.6 5.4 9.5 1.4 1.7 2.7 52
1.1 25 32 47 8.1 12 1.4 22 44
12 22 2.8 4.1 7.1 1.1 13 1.9 3.7
13 2.0 2.5 3.7 6.3 1.1 12 1.7 32
1.4 1.8 23 3.4 5.6 1.0 1.1 1.5 2.8
15 1.6 2.1 3.1 5.0 0.9 1.1 1.4 2.5
1.6 1.4 1.9 2.8 45 0.8 1.0 13 22
1.7 1.3 1.7 2.6 42 0.7 0.9 12 2.0
1.8 12 16 24 3.9 0.5 0.9 12 1.8
1.9 1.1 14 22 3.6 0.4 0.8 1.1 1.7
2.0 1.1 13 2.0 3.4 0.4 0.7 1.1 1.6
EARL(o 2 / ESDRL ) 10.2 13.0 19.4 31.1 6.4 8.5 13.2 22.1
%Diff(o,2) 28.5% 90.7% 206.3% 33.0% 105.8% 245.0%

Table 2
The ARL and SDRL profiles of the HWMA X* scheme (for the no remedy strategy) for different values of 1 along with the
corresponding design parameters when n=5, B=1, (¢, y)=(0.5, 0.5) and ARL,=500

ARL SDRL
AL (0.052.609)  (0.1,2.938)  (0.253.074)  (0.53.089) _ (0.05,2.609)  (0.1,2.938) _ (0.253.074) _ (0.5,3.089)
0.0 500.4 504.0 504.1 4982 3738 4072 486.9 492.8
0.1 156.5 171.1 237.6 3612 118.5 133.2 219.5 358.8
02 60.7 67.8 91.3 184.6 436 46.0 78.7 179.1
03 323 37.0 45.1 94.3 22.6 236 352 89.7
04 203 234 26.8 525 13.7 14.3 19.3 483
0.5 14.1 163 18.0 314 9.2 9.5 12.0 28.0
0.6 10.3 12.0 12.8 203 6.4 6.9 8.0 17.7
0.7 8.1 9.5 9.8 14.4 4.9 52 5.8 11.8
0.8 6.6 7.6 7.8 10.5 3.8 4.1 44 8.2
b 0.9 55 6.3 6.4 8.0 3.0 33 3.5 59
1.0 48 54 54 6.3 2.6 27 2.8 44
1.1 42 47 46 52 22 22 24 34
1.2 37 4.1 4.0 43 1.9 1.9 2.0 2.7
1.3 33 37 3.6 37 1.7 1.7 1.7 22
14 3.0 34 32 32 L5 15 L5 1.8
15 2.8 3.1 2.9 2.9 1.4 1.4 13 1.6
1.6 2.5 2.8 2.7 2.6 13 13 1.2 1.4
1.7 23 2.6 24 2.3 1.3 1.2 1.1 1.2
1.8 2.1 24 22 2.1 1.2 1.2 1.0 1.0
1.9 2.0 22 2.1 2.0 1.1 1.1 1.0 0.9
2.0 1.8 2.0 1.9 1.8 1.0 1.1 0.9 0.8
EARLgy | ESDRL () 17.33 19.35 24.52 40.69 12.14 13.17 20.16 38.44

Next, the effect of increasing s and m on the performance of the HWMA X* scheme integrated with mixed-s&m sampling
strategy is illustrated in Table 3. It is observed that as s and m increase, the ARLs, SDRLs, EARL and ESDRL decrease which
indicates that the negative effect of autocorrelation and measurement errors is reduced. Thus, it follows that, whenever ¢ and
y are greater than 0, the HWMA X* scheme integrated with mixed-s&m sampling strategy has a better performance than the
HWMA X* scheme with no remedy strategy. Note though, it is important to note that the use of the mixed-s&m sampling
strategy requires more time and effort than the no remedy strategy. Consequently, a balance needs to be struck between
performance and cost. Based on numerous simulations we conducted, we recommend a value of s equal to 1, 2, 3 and 4 for a
¢ within (0,0.3], (0.3,0.5], (0.5,0.7] and (0.7,1), respectively. Note though, for large datasets, the value of s can be increased
further when ¢ €(0.7,1) because the level of autocorrelation has a much larger negative effect on the performance of the
HWMA X* scheme than the level of measurement errors. Next, we recommend a value of m equal to 1, 2 and 3 for a ¥ within
(0,0.4], (0.4,0.8] and (0.8,1], respectively. Note that for y > 1, a value of m = 4 can be used; however, m > 4 should never
be used because the level of measurement errors do not have a significant negative effect on the performance of the HWMA
X* scheme as compared to the level of autocorrelation. Moreover, the cost and effort of R&R (repeatability & reproducibility)
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associated with measurement errors is much higher as compared to skipping or mixing samples associated with
autocorrelation.

Table 3
The ARL and SDRL profiles of the HWMA X* scheme (for the mixed-s&m strategy) with a constant variance when n=>5,
A=0.1, ¢=0.75, y=0.75, L*=2.938, ARL,=500 with s €{1,2,3,4} and m €{2,3,4,5}

ARL SDRL

(s,m) No remedy (1,2 2,3) (3.4) (4,5  Noremedy  (1,2) 2,3) (3.4) 4,5)

0.1 222.9 155.6 139.2 126.7 121.8 176.0 118.2 104.9 932 89.5

0.2 93.9 59.9 527 475 44.8 66.9 39.7 352 31.6 29.0

0.3 524 31.9 28.4 25.5 235 344 20.1 17.5 15.6 14.3

0.4 334 20.4 17.8 16.0 15.0 21.0 12.3 10.5 9.5 8.6

0.5 233 14.2 12.4 11.2 10.4 14.2 8.3 72 6.4 5.8

0.6 17.7 10.5 9.2 8.3 77 10.5 6.0 5.0 45 42

0.7 13.7 8.3 7.2 6.5 6.0 8.0 44 3.8 33 3.1

5 0.8 11.0 6.6 59 54 4.9 6.2 34 3.0 27 2.4
0.9 9.1 56 49 45 42 4.9 2.8 24 22 2.0

1.0 7.6 4.7 42 3.9 3.7 4.0 23 2.0 1.8 1.7

1.1 6.6 4.1 37 34 32 35 2.0 1.7 1.6 1.5

1.2 5.7 3.7 3.3 3.0 2.8 2.9 1.7 1.5 1.4 13

13 5.1 3.3 3.0 2.7 2.5 2.5 1.5 1.4 13 1.2

1.4 4.6 3.0 27 25 23 2.2 1.4 13 1.2 1.1

1.5 4.1 2.7 24 22 2.1 2.0 13 1.2 1.1 1.1

1.6 3.8 2.5 22 2.0 1.9 1.7 1.2 1.1 1.1 1.0

1.7 35 23 2.0 1.8 1.7 1.6 1.1 1.1 1.0 0.9

1.8 32 2.1 1.9 1.7 1.5 1.5 1.1 1.0 0.9 0.8

1.9 3.0 1.9 1.7 1.5 1.4 1.4 1.0 0.9 0.8 0.8

2.0 2.8 1.8 1.6 1.4 13 13 1.0 0.9 0.8 0.7
EARLyy5 / ESDRL o 26.4 173 153 13.9 13.1 183 115 10.2 9.1 8.5

Similarly, Fig. 2 shows that increasing the slope coefficient (i.e. B in Eq. (12b)) of the covariate error model yields an
improvement in the performance of the HWMA X* scheme with the mixed-s&m strategy (see Eq. (19a) and Eq. (19b)). That
is, as B increases, the corresponding OOC ARL values decrease, for any constant input variables.
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120 160
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g 3
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. 40
20 ‘
20 -
Q_ = = - - = T = = o |- s L I; S L o =] M -
Shift| 0.1 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 1 shit| 01 [ 02 | 03 [ 04 [ 05 [ 06 [ 07 [ 08 | 09 | 1
WB-1)127.82| 4857 | 26.00 | 1599 | 1105 | 8.36 | 6.56 | 5.52 | 4.45 | 3.87 mn=3 |163.57 6248 3397 | 2144 | 1503 | 11.03 | 8.71 | 7.12 | 590 | 5.04
B=2|123.75| 45.66 | 2429 | 1525 | 10.61 | 7.86 | 6.14 | 506 | 424 | 3.66 1=5 |126.66] 4747 | 2552 | 1599 | 11.15 | 833 | 6.4 | 5.36 | 4.47 | 3.86
B=3]12046] 44.94 | 23.86 | 15.12 ] 1042 | 7.76 | 6.11 | 498 | 4.22 | 3.65 n=10] 89.55 | 31.18 | 1622 | 1023 | 721 | 5.42 | 433 | 3.50 | 3.07 | 2.66

Fig. 2. The ARL profiles of the HWMA X* scheme (for the  Fig. 3. The ARL profiles of the HWMA X* scheme (for the

mixed-3&4 strategy) with a constant variance when n=>5, mixed-3&4 strategy) with a constant variance when B=1,
A=0.1, $=0.75, y=0.75, L*=2.938 and ARL,=500 for A=0.1, =0.75, y=0.75, L’=2.938 and ARL,=500 for
different values of B different values of n

Finally, an increase in the sample size yields an improvement in the performance of the HWMA X* scheme with the mixed-
s&m strategy, see the illustration in Fig. 3 for n €{3,5,10}. That is, the higher the sample size, the faster will the proposed
monitoring scheme yields an OOC when there is actually shift in the process.

4.3 Sensitivity of the HWMA X* scheme with linearly increasing variance

For the linearly increasing variance scenario, using Eq. (19a) and Eq. (19b) with the ¢ expression given in Eq. (12¢), as C and
D increase (with B fixed), the OOC ARL values increase indicating that the process deteriorates in performance. The latter is
illustrated graphically for € and D in Fig. 4 and Fig. 5, respectively.

Although not shown here, for a fixed C and D, when the values of s and m are increased, the HWMA X* scheme with the
mixed-s&m strategy has an improved OOC performance (this is similar to the pattern in Table 2). Moreover, for a fixed C
and D, when B is increased, the HWMA X* scheme with the mixed-s&m strategy has an improved OOC performance (this is
similar to the pattern in Fig. 2).
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Fig. 4. The ARL profiles of the HWMA X* scheme (for the  Fig. 5. The ARL profiles of the HWMA X* scheme (for the
mixed-3&4 strategy) with a linearly increasing variance mixed-3&4 strategy) with a linearly increasing variance
when D=0, C €{1,2,3} n=5, 1=0.1, ¢$=0.75, L'=2.938 and when C=0, D €{1,2,3}, n=5, 1=0.1, $=0.75, L*=2.938 and
ARL,=500 ARL,=500

4.4 Comparison of different sampling strategies
For ease in plotting, let s and m be denoted by (i —1) and i, respectively; then i €{1,2,...,10} implies that (s,m)€{(0,1), (1,

2),..., (9,10)}, with (0,1) sampling strategy denoting the ‘no remedy’ strategy. From (11a), it is observed that for the no
remedy strategy, the autocorrelated process with constant measurement errors, its ¢ is given by

n(¢ —1)?
However, that of the mixed-s&m strategy is given in (12b). Two additional methods used to reduce the negative effect of

measurement errors and autocorrelation are s&m and mixed&m strategies, see Costa and Castagliola (2011) and Shongwe et
al. (2021). The ¢ expressions for the two latter strategies are given by

3 ¢(s+1)(n+1) _ n¢23+2 + (Tl _ 1)¢s+1 yz
(p—<1+2< M EE—D )>+<BZ+E>_1 (24b)
and
(" ¢ —np* + (n, — 1)¢p? Ne_q 1t — 1t + (ne_y — 1)9?
O e S ) RS

2
+<BZ+%>—1

When 0 < ¢,y < 1, then using (12b), (24a), (24b) and (24c), it is observed from Figure 6 that the ¢ values are greater than
1. For small values of ¢ and y (e.g. p=y=0.25 in Figure 6(a)), the values of ¢ for the s&m and mixed-s&m strategies converge
towards the value of 1; however, ¢ does not equal 1 exactly, which implies it is not theoretically possible to get rid of all the
negative effect of autocorrelation and measurement errors.
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Fig. 6. The effect of different sampling strategies on ¢ when (¢, y) €{(0.25,0.25), (0.75,0.75)}, n=10, i €{2,...,10} or
(s,m) €{(0,1), (1,2),..., (9,10)}
For large values of ¢ and y (e.g. $=y=0.75 in Fig. 6(b)), the values of ¢ for the s&m and mixed-s&m strategies only start
getting close to a value of 1 at slightly higher values of s and m. The value of ¢ for the mix&m strategy is lower than the one
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of the s&m strategy only when s=1 and m=2; otherwise, the converse is true. The no remedy strategy has a significantly large
value of ¢ and should never be implemented as it yields the highest variability than any of the sampling strategies considered
here; however, the mixed-s&m strategy yields a uniformly lower variability than all the considered strategies. Note that for
the linearly increasing o scenario, a similar pattern (with slightly higher magnitudes) is observed for the values of ¢. Next,
in Table 4, the HWMA X* scheme using the no remedy, mixed-&m, s&m and mixed-s&m strategies are compared against
each other for an autocorrelated with constant and linearly increasing variance. It is observed that with respect to ARL and
EARL, the sampling strategies can be sorted in the following order in terms of better OOC performance: mixed-s&m > s&m
> mixed&m > ‘no remedy’. That is, the run-length performance of the HWMA X* scheme follows a similar pattern when
using different sampling strategies as that shown in Fig. 6.

Table 4
The ARL profiles of the HWMA X* scheme for different sampling strategies when n=5, 1=0.1, L*=2.938, B=1, ARL,=500
with s=3 and m=4

$=0.75, y=0.75 $=0.75, C=1, D=1
Strategy No remedy Mix&m s&m Mixed-s&m No remedy Mix&m s&m Mixed-s&m
0.0 501.4 501.5 499.7 502.0 499.2 502.5 501.7 500.5
0.1 223.0 149.9 143.1 129.3 259.9 163.3 158.3 149.5
0.2 93.9 55.9 53.7 48.0 116.5 64.4 61.1 56.7
0.3 52.1 30.4 28.7 25.6 66.1 34.7 334 30.0
0.4 332 19.2 18.1 16.2 424 21.8 20.8 19.0
0.5 233 13.4 12.4 11.1 30.2 154 14.6 132
0.6 17.4 10.0 9.3 83 224 11.4 10.9 9.8
0.7 13.5 7.7 7.3 6.5 17.6 8.9 8.4 7.7
§ 0.8 10.9 6.3 5.9 5.4 14.1 7.2 6.8 6.3
0.9 9.1 5.3 5.0 4.5 11.7 6.0 5.7 52
1.0 7.6 4.5 42 3.8 9.9 5.1 4.9 44
1.1 6.6 39 3.7 3.4 8.5 44 43 3.9
1.2 5.8 3.5 33 3.0 7.3 39 3.8 3.5
1.3 5.1 3.1 3.0 2.7 6.5 3.5 33 3.1
1.4 4.6 2.8 2.7 2.4 5.8 32 3.0 2.8
1.5 4.1 2.6 2.4 22 5.2 2.9 2.8 2.6
1.6 3.8 2.4 22 2.0 4.8 2.6 2.5 23
1.7 3.5 2.1 2.1 1.9 44 2.4 2.3 2.1
1.8 32 2.0 1.9 1.7 4.0 23 2.1 2.0
1.9 3.0 1.8 1.7 1.5 3.7 2.1 2.0 1.8
2.0 2.8 1.7 1.6 14 3.5 1.9 1.8 1.7
EARL (o2 26.32 16.42 15.62 14.04 32.22 18.37 17.64 16.37

Table S

A comparison of the ARL and EARL profiles of the HWMA X* scheme (and Shewhart X* scheme in parentheses) with the
mixed-s&m strategy when A=0.1, k=3.0902 n=5, s=3, m=4, ARL,=500 and (¢, y) €{(0.1,0.1),(0.3,0.3), (0.5,0.5), (0.7,0.7),
(0.9,0.9)}

(¢,7) (0.1,0.1) (0.3,0.3) (0.5,0.5) 0.7,0.7) (0.9,0.9)
0 502.4 (500.0) 501.7 (500.0) 498.5 (500.0) 499.4 (500.0) 502.7 (500.0)
0.1 95.4 (394.7) 97.6 (397.2) 106.1 (405.2) 129.6 (421.9) 196.2 (445.7)
0.2 34.1 (232.3) 35.0 (236.3) 38.3 (249.8) 48.7 (280.7) 79.3 (332.0)
0.3 18.2 (127.6) 18.1 (130.9) 20.1 (142.6) 25.8 (171.4) 43.0 (226.5)
0.4 11.1(71.2) 11.4 (73.6) 12.6 (82.0) 16.3 (103.9) 27.7 (150.5)
0.5 7.8 (41.3) 8.1 (42.9) 8.8 (48.6) 11.4 (64.3) 19.6 (100.3)
0.6 5.9 (25.0) 6.0 (26.0) 6.6 (29.9) 8.4 (40.9) 14.3 (67.8)
0.7 4.7 (15.8) 4.8(16.5) 5.2(19.2) 6.6 (26.8) 11.1 (46.7)
5 0.8 3.9 (10.4) 4.0 (10.9) 4.3 (12.7) 5.4 (18.1) 9.0 (32.8)
0.9 3.3 (7.1) 3.4(7.5) 3.7 (8.8) 4.6 (12.6) 7.5 (23.5)
1.0 2.9 (5.1) 2.9 (5.4) 3.2(6.3) 3.9 (9.0) 6.4 (17.2)
1.1 2.5(3.8) 2.6 (4.0) 2.8 (4.6) 3.5(6.7) 5.5 (12.8)
12 2229) 233.1) 2.5(3.5) 3.1(5.1) 4.8(9.7)
13 2.0 (2.4) 2.0(2.4) 22(2.8) 2.7 (3.9) 43 (7.5)
1.4 1.8 (1.9) 1.8 (2.0) 2.0(23) 25(3.2) 3.9(5.9)
15 1.6 (1.7) 1.6 (1.7) 1.8 (1.9) 2.3 (2.6) 3.5(4.8)
1.6 1.4 (1.5) 1.5(1.5) 1.6 (1.7) 2.0(.2) 3.2(3.9)
1.7 1.3 (1.3) 1.3(1.4) 1.5(1.5) 1.9 (1.9) 3.0 (3.3)
1.8 12(12) 12(1.2) 1.4(1.3) 1.7 (1.7) 2.8(2.8)
1.9 1.1(1.1) 12(12) 13(1.2) 1.6 (1.5) 2.6 (2.4)
2.0 1.1(1.1) 1.1(1.1) 12(1.2) 1.4 (1.4) 242.1)
EARL 1) 18.72 (93.05) 19.13 (94.71) 20.89 (100.49) 26.06 (114.97) 41.39 (144.30)
PCligq 497 495 4.81 441 3.49
EARL(12) 1.62 (1.89) 1.65 (1.95) 1.81 (2.20) 2.26 (2.99) 3.59 (5.52)
PCl(y 1.16 1.18 122 1.32 1.54
EARL (2 10.17 (47.47) 10.39 (48.33) 11.35 (51.35) 14.16 (58.98) 22.49 (74.91)

PCloz 4.67 4.65 4.53 4.17 3.33
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4.5 Comparison with the existing k-sigma limits Shewhart X* scheme

The ARL and EARL profiles of the HWMA and Shewhart X* schemes when (¢, ) €{(0,0),(0.2,0.2), (0.5,0.5), (0.9,0.9)}
specifically for s=3 and m=4 are compared to each other in Table 5. For comparison purpose, the performance comparison
index (PCI) is used to measure the relative effectiveness of two different schemes, which is given by

PCI (6 yin8max) = EARLGG S, 0/ EARLS

inSmax (6min.Smax]’

where EARLYES"  (EARL{E™Ms 1) is the EARL of Shewhart X* (HWMA X*) scheme over the range of shifts from

in.Smax (6min.Smax

Opmin 0 Smax» Tespectively. When the PCI is equal to 1, greater than 1 or less than 1, it implies that the HWMA X# scheme
has the same, better or worse performance than the Shewhart X# scheme, respectively. For the majority of the shifts in Table
5, it is apparent that the HWMA X* scheme has a significantly better OOC ARL performance than the Shewhart X* scheme.
In addition, for different values of ¢ and y, when &§ € (0,1], (1,2] and (0,2], the ARL and EARL of the HWMA X* scheme
outperforms those of the Shewhart X* scheme since all the PCIs for different ranges of shifts are greater than 1. A similar
pattern is observed when comparing the corresponding SDRLs and ESDRLs. Although not shown here, a similar pattern is
also observed for other different values of s and m, as well as when the autocorrelated processes are subjected to linearly
increasing 0. Hence, the HWMA X* scheme has a better OOC performance and should be implemented instead of the
existing Shewhart X* scheme.

5. Illustrative example

In this section, the yogurt cup filling process dataset taken from Costa and Castagliola (2011) which shows the weights of
different yogurt cups taken at different sampling points, is used to demonstrate the application and implementation of the
HWMA X* under the combined effect of measurement and autocorrelation using the mixed-s&m strategy. The dataset
contains 20 samples each of size 5 taken every hour and each of them weighted two times (i.e. m=2). Historical information
of this process indicated that the weight of a yogurt cup, denoted as X;; j» fits an AR(1) model with parameter ¢p=0.38, an IC
mean, (,=124.9g and an IC standard deviation, g,=0.76g. An R&R study indicates that the measurement system standard
deviation, y,=0.24g, so that y=0.316. The aim of this example is to show how to implement the mixed-s&m sampling strategy
to form rational subgroups of size n=3 (i.e., with n,_;=1 and n,=2) when s €{1,2}, m=2. The plotting statistics at each
sampling point for the mixed-1&2 and mixed-2&?2 sampling strategies are shown in Table 6. For instance, for s=m=2 and
t=3, the plotting statistic is calculated as follows:

G _ 1(Xp11tX221) | 2 (X311tX314tX321+X324)\_ 1 (124.9+125.2 | 2 (125.14+122.9+125.1+122.4
X3=3 2 *3 4 ) 2 t3 4

3
with X; = 125.03, so that ~
Hi = 2%+ (1—2) X3 = 0.1(124.27) + (1 — 0.1)125.03 = 124.96.

)=124.27,

In this example, when s=m=2, ¢ is found to be equal to 1.0322 so that the lower and upper control limits of the HWMA X*
scheme when t = 3 are calculated using Eq. (19a) and Eq. (19b) as follows:

012 x (0.76)2 (1 —0.1)? X (0.76)?
3 t T ExeoD

LCL; = 124.90 — 2938\[( >(1.0322) = 124.06, (25a)

and

0.12 x (0.76)2 (1 — 0.1)2 x (0.76)?
3 3x(2-1)

UCL; =124.90 + 2938]( )(1.0322) = 125.74. (25b)

Other time-varying control limits for ¢ > 1 can also be calculated in a similar way as shown in (25a) and (25b), respectively.
The plotting statistics and control limits of the HWMA X* scheme when (s,m) = (1,2) and (2,2) are displayed in Table 6 and
Fig. 7. For this specific example, the signal is observed for the first time on the 15" subgroup in both cases.
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Table 6
Illustration of the charting statistics of the HWMA X* scheme using the yogurt cup filling data when n=3 (i.e., with n,_;=I and n,=2) when s €{1,2} and m=2
First set Second set s=1,m=2 s=2,m=2

_ _ £
t Xii1 Xia1 Xizn Xia1 Xisi Xiio Xiao  Xisp  Xiao  Xisa X X1 H{ LCL, UCL, Signal X X1 H; LCL, UCL; (’é
1 12490 12590 12520 12460 12480 124.80 12590 124.80 12410 124.40 12477 12503  No 12477 12503 N
2 12490 12550 12410 12520 125.00 12520 125.00 123.90 12520 12560 124.63 12490 124.87 12370 12610  No 12503 12490 12491 12371 12609 N
312510 12520 12540 12290 12540 12510 124.80 12530 12240 12540 12517 124.63 124.69 12404 12576  No 12427 12503 12496 12406 12574 N
4 12610 12460 12570 12640 12490 12590 124.80 12550 12650 12570 12557 12490 12497 12420 12560 No 12585 124.65 12477 12421 12559 N
5 12580 122,60 124.10 12610 12490 12570 122,60 123.50 12630 125.00 125.18 12512 125.13 12429 12551  No 12598 12505 12514 12430 12550 N
6 12500 12550 124.80 12490 12480 12520 124.80 125.00 124.80 12420 12525 12514 12515 12435 12545 No 12523 12528 12528 12436 12544 N
7 12420 12580 12540 12640 12510 124.60 12530 12550 12620 12520 12498 12516 125.14 12439 12541  No 12527 12527 12527 12440 12540 N
8 12490 12380 12510 124.00 12440 12490 12320 12530 12450 12420 12483 12513 12510 12443 12537 No 12452 12527 12520 12444 12536 N
9 12590 12440 12630 12490 12520 12580 124.80 12570 12520 12510 12558 125.09 125.14 12446 12534  No 12527 12516 12517 12446 12534 N
10 12420 12620 12560 12440 124.10 12430 12550 125.00 12440 12430 12513 12515 12515 12448 12532 No 12483 12518 12514 12449 12531 N
11 12370 12340 12470 12310 123.10 123.60 12330 124.80 123.10 122.80 12422 125.15 12506 12450 12530 No  123.67 12514 12499 12450 12530 N
1212400 12260 123.60 12440 123.60 12410 12240 123.60 12450 123.10 123.77 125.06 12493 12452 12528  No  124.05 12499 12490 12452 12528 N
1312200 12390 12370 12430 121.90 122.50 124.00 124.10 12440 12290 12340 12494 12478 12453 12527  No 12355 12491 12477 12454 12526 N
14 12240 12280 12370 123.70 12280 123.00 123.10 12420 12410 123.10 12297 12481 124.63 12454 12526  No 12295 12479 12461 12455 12525 N
15 12390 12410 12340 123.10 12450 123.60 124.50 12290 123.10 125.10 123.20 124.67 12452 12455 12525  Yes  123.18 124.65 12450 12456 12524 Ye
16 12190 12340 12350 12530 12330 12230 12330 12330 12550 123.60 123.08 124.56 12442 12456 12524  Yes 12375 12455 12447 12457 12523 Ye
17 12330 123.60 12420 12340 12350 12290 123.50 123.80 123.60 123.40 123.07 12446 12432 12457 12523  Yes 12290 12449 12433 12458 12522 Ye
18 12200 123.60 12470 12260 12450 12220 12340 125.00 122.50 12390 123.35 12438 12427 12458 12522  Yes 12258 12439 12421 12459 12521 Ye
19 12400 12310 12390 12260 12420 12390 12340 12450 122.80 12350 12342 12432 12423 12459 12521  Yes 12292 12429 12415 12459 12521 Ye
20 12550 12220 12320 12320 123.20 12490 12230 12320 12330 123.20 124.12 12427 124.25 124.60 12520  Yes 12413 12421 12420 124.60 12520 Ye
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Fig. 7. HWMA X* scheme using the mixed-s&m strategy for the yogurt cup filling data when n=3 (i.e., with n,_;=1 and n,=2) when s €{1,2} and m=2
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6. Concluding remarks

A new HWMA scheme to monitor the process means under the effect of within-sample correlation with and
without measurement errors are proposed. To reduce the negative effect of autocorrelation and measurement
errors, sampling strategies that involve skipping and mixing different samples are integrated into the HWMA
scheme’s design. Then, using Monte Carlo simulations, it is shown that the HWMA scheme using the mixed-s&m
strategy has a uniformly better OOC performance than its competitors when the process is under the combined
effect of autocorrelation and measurement errors (for both constant and linearly increasing variance). A
comparison with the only existing basic Shewhart scheme using the mixed-s&m strategy indicates that the new
HWMA scheme is more efficient in quick detection of shifts. Although the results in this study were illustrated
for a few different sample sizes, the same conclusion holds for other values of n (or, n; and n;_;). For future
research, this study will be conducted by taking into account parameter estimation effect. Also, the use of the
mixed-s&m strategies needs to be thoroughly studied for other memory-type monitoring schemes (i.e. CUSUM,
EWMA and GWMA).

References

Abbas, N. (2020). Homogeneously weighted moving average control chart with an application in substrate
manufacturing process. Computers & Industrial Engineering, 120, 460-470.

Abbas, N., Riaz, M., Ahmad, S., Abid, M., & Zaman, B. (2020). On the efficient monitoring of multivariate
processes with unknown parameters. Mathematics, 8(5), 823.

Abid, M., Shabbir, A., Nazir, H.Z., Sherwani, R.A.K., & Riaz, M. (2020a). A double homogeneously weighted
moving average control chart for monitoring of the process mean. Quality and Reliability Engineering
International, 36(5), 1513-1527.

Abid, M., Mei, S., Nazir, H.Z., Riaz, M., & Hussain, S. (2020b). A mixed HWMA-CUSUM mean chart with an
application to manufacturing process. Quality and Reliability Engineering International, 37(2), 618-631.

Adegoke, N.A., Smith, A.N.H., Anderson, M.J.,, Sanusi, R.A., & Pawley, M.D.M. (2019a). Efficient
homogeneously weighted moving average chart for monitoring process mean using an auxiliary variable. /[EEE
Access, 7, 94021-94032.

Adegoke, N.A., Abbasi, S.A., Smith, A.N.H., Anderson, M.J., & Pawley, M.D.M. (2019b). A multivariate
homogeneously weighted moving average control chart. [EEE Access, 7, 9586-9597.

Adeoti, O.A., & Koleoso, S.0. (2020). A hybrid homogeneously weighted moving average control chart for
process monitoring. Quality and Reliability Engineering International, 36(6), 2170-2186.

Ahmad, S., Riaz, M., Hussain, S., & Abbasi, S.A. (2019). On auxiliary information-based control charts for
autocorrelated processes with application in manufacturing industry. The International Journal of Advanced
Manufacturing Technology, 100(5-8), 1965-1980.

Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2021). The extended homogenously weighted moving average
control chart. Quality and Reliability Engineering International, DOI: 10.1002/qre.2849

Alwan, L.C., & Radson, D. (1992). Time-series investigation of subsample mean chart. I/[E Transactions, 24(5),
66-80.

Arif, F., Noor-ul-Amin, M., & Hanif, M. (2020). Joint monitoring of mean and variance using likelihood ratio test
statistic with measurement error. Quality Technology & Quantitative Management, 18(2), 202-224.

Asif, F., Khan, S., & Noor-ul-Amin, M. (2020). Hybrid exponentially weighted moving average control chart with
measurement error. [ranian Journal of Science and Technology, Transactions A: Science, 44(3), 801-811.
Aslam, M., Saghir, A., & Ahmad, L. (2020). Introduction to Statistical Process Control, Hoboken, NJ, USA:

Wiley.

Costa, A.F.B., & Castagliola, P. (2011). Effect of measurement error and autocorrelation on the X chart. Journal
of Applied Statistics, 38(4), 661-673.

Dargopatil, P., & Ghute, V. (2019). New sampling strategies to reduce the effect of autocorrelation on the synthetic
T? chart to monitor bivariate process. Quality and Reliability Engineering International, 35(1), 30-46.

Dawod, A., Adegoke, N.A., & Abbasi, S.A. (2020). Efficient linear profile schemes for monitoring bivariate
correlated processes with applications in the pharmaceutical industry. Chemometrics and Laboratory Systems,
206, 104137.

Franco, B.C., Castagliola, P., Celano, G., & Costa, A.F.B. (2014). A new sampling strategy to reduce the effect of
autocorrelation on a control chart. Journal of Applied Statistics, 41(7), 1408-1421.

Linna, K.W., & Woodall, W.H. (2001). Effect of measurement error on Shewhart control charts. Journal of Quality
Technology, 33(2), 213-222.



414

Maleki, M.R., Amiri, A., & Castagliola, P. (2017). Measurement errors in statistical process monitoring: A
literature review. Computers & Industrial Engineering, 103, 316-329.

Malela-Majika, J.-C., Shongwe, S.C., & Adeoti, O.A. (2021). A hybrid homogenously weighted moving average
control chart for process monitoring: Discussion. Quality and Reliability Engineering International, DOI:
10.1002/qre.2911.

Maravelakis, P., Panaretos, J., & Psarakis, S. (2004). EWMA chart and measurement error. Journal of Applied
Statistics, 31(4), 445-455.

Maravelakis, P. (2012). Measurement error on the CUSUM control chart. Journal of Applied Statistics, 39(2), 323-
336.

Montgomery, D.C. (2013). Statistical Quality Control: A Modern Introduction, 7" ed., Singapore: John Wiley &
Sons.

Nawaz, T., & Han, D. (2020). Monitoring the process location by using new ranked set sampling based memory
control charts. Quality Technology & Quantitative Management, 17(3), 255-284.

Nguyen, H.D., Nguyen, Q.T., Nguyen, T.H., Balakrishnan, N., & Tran, K.P. (2020). The performance of the
EWMA median chart in the presence of measurement error. Artificial Intelligence Evolution, 1(1), 48-62.

Oh, J., & Wei, C.H. (2020). On the individuals chart with supplementary runs rules under serial dependence.
Methodology and Computing in Applied Probability, 22, 1257-1273.

Prajapati, D.R., & Singh, S. (2012). Control charts for monitoring the autocorrelated process parameters: A
literature review. International Journal of Productivity and Quality Management, 10(2), 207-249.

Raza, M., Nawaz, T., & Han, D. (2020). On designing distribution-free homogeneously weighted moving average
control charts. Journal Testing and Evaluation, 48(4), 3154-3171.

Shongwe, S.C., Malela-Majika, J.-C., & Castagliola, P. (2020). The new synthetic and runs-rules schemes to
monitor the process mean of autocorrelated observations with measurement errors. Communications in
Statistics — Theory and Methods, DOI: 10.1080/03610926.2020.1737125.

Shongwe, S.C., & Malela-Majika, J.-C. (2020). A new variable sampling size and interval synthetic and runs-rules
schemes to monitor the process mean of autocorrelated observations with measurement errors. International
Journal of Industrial Engineering Computations, 11(4), 607-626.

Shongwe, S.C., Malela-Majika, J.-C., & Castagliola, P. (2021). A combined mixed-s-skip sampling strategy to
reduce the effect of autocorrelation on the X scheme with and without measurement errors. Journal of Applied
Statistics, 48(7), 1243-1268.

Thanwane, M., Malela-Majika, J.-C., Castagliola, P., & Shongwe, S.C. (2020). The effect of measurement errors
on the performance of the homogeneously weighted moving average X monitoring scheme. Transactions of the
Institute of Measurement and Control, 43(3), 728-745.

Xiaohong, L., & Zhaojun, W. (2009). The CUSUM control chart for the autocorrelated data with measurement
error. Chinese Journal of Applied Probability, 25(5), 461-474.

Yang, S.F., & Yang, C.M. (2005). Effects of imprecise measurement on the two dependent processes control for
the autocorrelated observations. The International Journal of Advanced Manufacturing Technology, 26(5-6),
623-630.

Zaidi, F., Castagliola, P., Tran, K.P., & Khoo, M.B.C. (2020). Performance of the MEWMA-CoDa control chart
in the presence of measurement errors. Quality and Reliability Engineering International, 36(7), 2411-2440.

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article
@ distributed under the terms and conditions of the Creative Commons Attribution (CC-

BY) license (http://creativecommons.org/licenses/by/4.0/).



