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 The paradigm of the cyber-physical manufacturing system is playing an increasingly important 
role in the development of production systems and management of manufacturing processes. 
This paper presents an optimization model for solving an integrated problem of production 
planning and manufacturing control. The goal is to create detailed production plans for a complex 
manufacturing system and to control the skilled manual workers. The detailed optimization 
model of the problem and the developed approach and algorithms are described in detail. To 
consider the impact of human workers performing the manufacturing primary operations, we 
elaborated an extended simulation-based procedure and new multi-criteria control algorithms 
that can manage varying availability constraints of parallel workstations, worker-dependent 
processing times, different product types and process plans. The effectiveness of the proposed 
algorithms is demonstrated by numerical results based on a case study. 
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1. Introduction 

 

Due to the increasing globalization of production networks, developments aimed at the cost-effective operation of production 
systems are becoming more and more important for companies to increase their competitiveness. In addition, companies aim 
to satisfy the customers’ requirements at the highest possible level while meeting the rigorous order deadlines. The large 
number and diverse composition of production orders require an increasing degree of flexibility in production systems 
considering all levels of flexibility. Shivanand (2006) and Kumar et al. (2017) presented these levels of flexibility in detail. 
Flexible manufacturing systems (FMSs) integrate manufacturing and logistics resources (e.g. machining cells, workstations, 
automated material handling and storage equipment). The coordinated and efficient operation of FMSs is ensured by computer 
control. Michalos et al. (2010) presented the effect of system flexibility and degree of automation on product type variants 
and series sizes through the example of an automotive assembly system.  
 
Market trends also affect the operation of production systems. It is necessary to produce several types of products at the same 
time with small series sizes and high flexibility. By ensuring high flexibility, the degree of automation of the systems is 
reduced, manual processes come to the fore, and the structure of production systems is also transformed. The matrix layout 
of workstations is able to ensure a high degree of simultaneous production of different product types to meet customer needs. 
Between workstations, one-piece material flow is realized through dynamically changing material flow relations. In this case, 
the role of human resources (workers) is twofold in the production process: on the one hand, the worker ensures the movement 
of the workpiece among the workstations, and on the other hand, he or she performs the corresponding technological operation 
on the workpiece at the given workstation. Efficient operation of production systems requires the use of intelligent production 
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planning, scheduling, and control systems (Zijm, 2000), which are greatly supported by Industry 4.0 developments and 
solutions (Gania et al., 2018).  
 
In many discrete manufacturing processes, the type and number of jobs to be performed may vary. Jobs involve technological 
operations that must be performed on certain machines or workstations according to the corresponding process plans. The 
order of operations of a given job is constrained by precedence relations. Fundamental manufacturing schemes include the 
flow shop, job shop, open shop, mixed shop and general shop models, whose classification, characteristics and scheduling 
algorithms are detailed by Brucker (2007). Regarding the complexity of job shop scheduling problems, the vast majority of 
models belong to the NP-hard problem class (Sotskov and Shakhlevich, 1995; Zinder et al., 2005; Brucker et al., 2007) and 
so it is not possible to create an optimal schedule with polynomial runtime. Considering the logistical resources of real 
production systems significantly increases the complexity of production scheduling models. Zhang et al. (2013) extended the 
job shop model with delivery tasks, Liu et al. (2017) considered intermediate buffers, and Chawla et al. (2018) inserted 
automated guided vehicles (AGVs) into the job shop scheduling problems. These extended problems were solved with 
heuristic algorithms (e.g. modified shifting bottleneck, PSO with MA, etc.). 
 
In addition, human resources also appear to be an important influencing factor in examining the efficiency of the production 
system. For this reason, the impact of human resources on a flexible production system has also become an important area of 
research. Karwowski (2005) provided a theoretical perspective on human factors and ergonomics (HFE), defined as a unique 
and independent discipline that focuses on the nature of human-artefact interactions. Chung (1996) examined the effects of 
human factors in order to introduce an advanced manufacturing technology. Oliveira et al. (2019) presented the impact of 
Industry 4.0 on workers through the results of two European research projects. Peruzzini and Pellicciari (2017) focused on 
research and design of human-centred adaptive manufacturing systems (AMS) for modern companies, where aging workers 
are becoming more common. The purpose of AMS is that the system can adapt to the aging workers’ needs considering their 
reduced capability for work. Longo et al. (2017) demonstrated the application possibilities of Industry 4.0 technologies that 
help workers perform their daily tasks. Despite technological advances, digitization, and increasing levels of automation, the 
human workforce remains an integral part of manufacturing and assembly systems. As the efficiency of production processes 
is also influenced by workers, the human factor must also be taken into account in planning, scheduling and control tasks. 
 
Several studies deal with the examination of the production performance of workers. Ferjani et al. (2017) developed a heuristic 
algorithm for associating workers and jobs with different abilities. In their proposed model, the processing times of operations 
depend on the degree of worker fatigue. The paper demonstrated the efficiency of the proposed method through the results 
generated by a simulation model. The new method was also compared with other methods. Sirovetnukul and Chutima (2010) 
created a model for a U-shaped assembly cell in which workers perform one-piece material flow and the walking times are 
not negligible. Their goal was to - the number of workers. Sungur and Yavuz (2015) presented a new assembly line balancing 
problem, in which the workers have different qualifications. The goal is to find the optimal assignment of jobs and workers 
in case of each workstation in order to achieve the minimal cost. Durmaz and Koyuncu (2019), in their research, aimed to 
minimize the production cost of a production line. In the proposed model, the abilities of workers were taken into account 
when assigning jobs and workers. The results of their mathematical model showed a reduction in manufacturing costs when 
assigning the most appropriate worker to the job. In many cases, discrete manufacturing-assembly systems are based on job 
shop models and they employ human workers with different skills. The near-optimal assignment of jobs and workers 
contributes greatly to the efficient operation of the entire system. For this reason, job shop type production planning and 
scheduling models and methods need to manage human workers who have different skills in an integrated way. Al-Hinai and 
Piya (2015) presented, in a job shop environment, the effect of worker-dependent processing times on lead time. The goal 
was to minimize the lead time. Lin et al. (2016) presented a job shop scheduling model augmented with workers, in which 
processing time varies depending on the ability and experience of the workers. 
 
The objective function was the maximum completion time, which was minimized with an improved simulated annealing 
genetic algorithm (ISAGA). Workers’ skills are the basis for assigning jobs and workers. Lin and Gen (2008) presented a 
mathematical model in which the assignment of workers and jobs is solved regarding maximizing benefits and minimizing 
costs. A multi-objective hybrid genetic algorithm (mohGA) is proposed to solve the problem. Bányai et al. (2018) described 
the optimization problem of designing the number and structure of human resources. They use a simulation model based on 
Markov chains for optimizing the composition of worker groups. To solve the job shop (JSP) and flexible job shop (FJSP) 
scheduling problems, several studies have been performed in which heuristic and meta-heuristic search algorithms have been 
applied. 
 
The most common methods include the genetic algorithm (e.g. Sun et al., 2010; Ida and Oka, 2011; Amjad et al., 2018; Fu 
and Liu, 2019; Wang et al., 2019; Yang et al., 2019), the simulated annealing (e.g., Yazdani et al., 2009; Zhang, 2013), and 
the tabu search (e.g., Bożejko et al., 2010; Jia and Hu, 2014; Ziaee, 2014). In addition, many other evolutionary meta-heuristics 
are used to solve the problem. Some examples are the particle swarm (PSO) algorithm (Pongchairerks and Kachitvichyanukul, 
2009), ant colony (ACO) algorithm (Wang et al., 2017), bee colony (BCA) algorithm (Gao et al., 2016), bacteria (BA) 
algorithm (Luh and Lee, 2006) and bat (BAT) algorithm (Zaher et al., 2017). Furthermore, the application of other algorithms 
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can also be found: firefly (FFA) algorithm (Udaiyakumar and Chandrasekaran, 2014), black hole (BHO) algorithm (Jeet et 
al., 2016), flower pollination (FPA) algorithm (Yang et al., 2013) and harmony search (HS) algorithm (Gao et al., 2015).  
 
Ruiz and Vázquez-Rodríguez (2010) presented a study that summarizes hybrid flow shop (HFS) problem classes, their 
objective functions and solving algorithms. The study shows that in most cases the goal was to minimize the maximum 
completion time (Cmax). For small problems, the branch and bound (B&B) algorithm can be applied. However, the application 
of heuristic methods came to the fore to the greatest extent. Based on these experiences, it can be assumed that heuristic 
algorithms can also be used effectively to solve FJSP problems. Recently, due to the complexity of these problems, discrete 
event-driven simulation models have been used more and more frequently. These simulation frameworks are increasingly 
supporting the planning of manufacturing processes. For example, Zupan and Herakovic (2015) dealt with production line 
balancing. Kikolski (2016) performed efficiency improvements and optimization of a manufacturing system by eliminating 
the negative effects of bottlenecks. Barrera-Diaz et al. (2018) developed a simulation-based solution for an automotive 
company by developing an automatic data-handling system. Kundu et al. (2019) used a simulation model and PSO algorithm 
for supporting the KANBAN based material supply system of an assembly line.  
 
In this paper, we summarize the results of our research aimed at optimizing the operation of flexible production systems in 
which human workers are integrated in addition to machine resources. The goal is to assign jobs, workers, and workstations 
in a way that maximizes the produced quantity and the free capacity of the system over time. The developed heuristic solving 
method has been implemented in discrete event driven (DES) software. 

2. Problem Description 

2.1 Main Characteristics of the Examined Manufacturing Processes 

The motivation for our research was the production planning and scheduling problems that arise in a real production system. 
One specific industrial case study made it clear that there are scheduling problems in which not only the primary resources 
(machines, workstations) but also the secondary resources (workers) need to be considered in order to create effective 
production plans and to control the manufacturing processes. The examined production system can produce specific types of 
products. In order to create a product, a given sequence of operations has to be carried out according to a pre-developed 
technological plan. In the production system, different workstations are located in specific positions. The routes, the distances 
and the permissible traveling speeds are known. A given product type can be made according to a given technological plan 
that specifies the operations to be performed. Each product type has a given technological plan. The starting workpiece is 
selected by a worker (human resource), who visits the suitable workstations in the order fixed in the technological plan, and 
the worker performs the planned operations on the workpiece at the workstation. Finally, the worker places the finished 
product into the output storage. The worker selects the next workpiece from the input storage and performs the planned 
operations. In the production system, several workers perform their tasks at the same time. 
 
The set of suitable workstations is given for each operation. The resources are limited in the time allowed to perform 
operations. The production management defines the actual shift calendar. It is a series of time intervals (shifts) that prescribes 
the resource availability as time constraints. Workstations and workers work according to the given shift calendar. The scope 
of scheduling decisions does not extend to changing the shifts, because the active shifts for the scheduling period are given. 
A factor that further increases the complexity of the constraints is that specific workers are assigned to each shift. Only one 
operation can be performed at a time at a given station. Only one operation can be performed on a workpiece at a time. A 
given worker can only work on one workpiece at a time. The standard processing times of operations are known for each 
product type and each workstation. The workers’ working abilities are different. Our model includes special parameters to 
consider human skill factors. This means that the processing time of a given operation depends on the worker’s abilities. The 
decision-making scope of the production planning and scheduling system extends to planning the type and number of products 
to be manufactured in the shifts, and to control the work of the workers during the shift taking into account the strict 
restrictions. The control module selects which of the alternative options the worker chooses in the decision situations. This 
control task includes selecting the product type at the beginning of the cycle and selecting the specific workstation for each 
operation. 
 

2.2 Requirements and Purpose 

The essence of the solution of the outlined resource-constrained multi-level scheduling problem is that a detailed production 
schedule must be created for the given time horizon considering the actual input data. The primary goal is that the schedule 
fulfils the quantity of products required by production management, and the secondary goal is that the utilization of resources 
must be maximized while respecting the strict constraints of the applied manufacturing technology and resources. This 
scheduling problem does not directly correspond to any of the known types of scheduling problems, mainly due to the specifics 
of the regulations for workers. Therefore, a new integrated problem type of production planning, scheduling and control must 
be solved. Hereinafter, we use the term Extended Flexible Job Shop with Human Resources (EFJSHR) to denote this problem 
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type. At the company under study, the problem was handled by human decision-making. Production planning engineers made 
the necessary decisions and prepared the production plan that specifies the quantities of products to be manufactured of each 
product type in the given shifts. The control of the processes within the shift was performed by the workers themselves. 
Workers could choose the next type of product to be manufactured themselves and also selected the specific workstation from 
the set of suitable workstations for each operation to be performed. The main purpose of our research was to replace this 
decision-making based on human experience with a software solution in order to achieve more efficient production. 

3. Modelling and Solving the EFJSHR Problem 

3.1 An Approach to Solve the Problem 

The main goal of the research was to develop a detailed model and solving algorithms for the EFJSHR problem in order to 
implement a production planning and scheduling module in a simulation system that can create near- optimal detailed plans 
to meet current production needs and that can guide the workers’ activities in the strict resource-constrained production 
system. The EFJSHR problem is very complex, so we have created a two-level decision hierarchy from the two interrelated 
scheduling problems. Each level uses its own special optimization model: 
 

• At the upper level, the production planning problem is handled by a special heuristic search algorithm. 
• At the lower level, the workers’ activities are managed by special multi-criteria reactive scheduling algorithms. 

 
Each solution variant created at the upper production planning level delivers input data and constraints to the lower level. The 
set of constraints originated from the upper level is supplemented by the lower level of the hierarchy with its own constraints 
of the worker control problem (Fig.1). 
 

 
Fig. 1. Simplified flow chart of the solving method 

 
In the following subsections, a new model and new algorithms are presented to realize this two-level integrated method. We 
first define a formal optimization model for the entire problem, then we describe the algorithms for solving the subproblems 
of production planning and worker control. 
 

3.2 Problem Formulation 

To solve the EFJSHR problem, the workpieces, shifts, workers and workstations have to be assigned to each other and the 
timely execution of operations must be controlled in such a way that the goals are met and the strict constraints are satisfied. 
Basic elements, notations and relationships of the formulation will be described in the following order: 

• Input data; 
• Primary decision variables; 
• Values calculated from primary decision variables; 
• Secondary decision variables; 
• Values calculated from secondary decision variables; 
• Constraints and 
• Objective functions. 
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Input data 
 𝑃௣ product type can be produced ሺ𝑝 = 1, 2, …, 𝑁௉ሻ 𝑄௣ quantity to be produced from the product type 𝑃௣ ሺ𝑝 = 1, 2, …, 𝑁௉ሻ 
௟ operation-type ሺ𝑙 = 1, 2, …, 𝑁ሻ 
௣,௞ the kth item in the sequence of operation-types to be performed on product  

type 𝑃௣ሺ𝑘 = 1, 2, …, 𝑁,௣ሻ 𝑇௦ the sth prescribed resource availability time frame (shift) on the planning time horizon ሺ𝑠 = 1, 2, …, 𝑁ௌሻ 𝐻௛ worker (human resource) ሺℎ = 1, 2, …, 𝑁ுሻ 𝜔௣,௛ the ability of worker 𝐻௛ to perform operation-type ௣,௞ of product type 𝑃௣   during the standard processing time 
(extent of compliance with the standard time) 𝐻(𝑝) the set of workers who can manufacture product type 𝑃௣ in the current shift  
( 𝐻(𝑝) ⊆  ሼ𝐻௛ |ℎ = 1, 2, …, 𝑁ுሽ  ) 𝑀௠ workstation (machine) (𝑚 = 1, 2, …, 𝑁ெ) 𝑀(𝑝, 𝑘) the set of workstations that can execute operation-type ௣,௞ in the current shift  
( 𝑀(𝑝, 𝑘) ⊆  ሼ𝑀௠ |𝑚 = 1, 2, …, 𝑁ெሽ  ) 𝜐௣,௞,௠ the standard processing time of operation-type ௣,௞ executed at workstation 𝑀௠ 𝑡௣,௞,௠,௛ the processing time of operation-type ௣,௞ executed at workstation 𝑀௠ by worker 𝐻௛ 𝜏௠,௥,௛ the time need for worker 𝐻௛ to move from workstation 𝑀௠ to workstation 𝑀௥ 

 
Primary decision variables 
 
Primary decision variables determine the detailed production plan. 𝑞௣,௦ the planned number of workpieces to be produced from product type 𝑃௣ in shift 𝑇௦  (𝑝 = 1, 2, …, 𝑁௉), (𝑠 = 1, 2, …, 𝑁ௌ) 
 
Values calculated from primary decision variables 
 
The actual values of the primary decision variables clearly determine the number and type of workpieces to be manufactured 
in the given shifts. The job is defined as manufacturing a given workpiece. 
 𝐽௜  the ith item in the full set of jobs, ൛𝐽௜ ห 𝑖 = 1, 2,…, 𝑁௃ൟ   𝐽௦,௝ the jth item in the set of jobs assigned to the shifts Ts, (𝑠 = 1, 2, …, 𝑁ௌ), (𝑗 = 1, 2, …, 𝑁௦,௃) 𝑖൫𝐽௦,௝൯ the global index of job 𝐽௦,௝  𝑝(𝑖) the product type of job 𝐽௜ 𝑂௜,௞ the kth item in the technological sequence of operations of job 𝐽௜ , (𝑘 = 1, 2, …, 𝑁,௣(௜)) 𝑡௣(௜),௞,௠,௛ the processing time of operation 𝑂௜,௞ executed at workstation 𝑀௠ by worker 𝐻௛ 𝑡௣(௜),௞,௠,௛ =  𝜐௣,௞,௠ +  𝜐௣,௞,௠ ቀ1 −𝜔௣,௛100ቁ (1) 𝑟௜ the release time of job 𝐽௜ 𝑑௜ the due date of job 𝐽௜ 

  
Secondary decision variables 
 
Secondary decision variables determine the detailed schedule of the execution of jobs. We use the following four types of 
secondary decision variables: 
 
௜,௛ a given item (decision variable) of a two-dimensional matrix to assign jobs ൛𝐽௜ ห 𝑖 = 1, 2, …, 𝑁௃ൟ  to workers ሼ𝐻௛ |ℎ = 1, 2, …, 𝑁ுሽ: 
௜,௛ ∶=  ൜1,        if  worker 𝐻௛ perform job 𝐽௜ 0,       otherwise                                    (2) 

 𝑥௜,௞,௠ a given item (decision variable) of a three-dimensional matrix to assign operations ൛𝑂௜,௞ ห 𝑖 = 1, 2, …, 𝑁௃, k = 1, 2, …, 𝑁,௣(௜)ൟ to workstations ሼ𝑀௠ |𝑚 = 1, 2,…, 𝑁ெሽ: 𝑥௜,௞,௠ ∶=  ൜1,        if  operation  𝑂௜,௞ is performed at workstation 𝑀௠  0,        otherwise                                                                          (3) 

 𝑦௜,௞,௨,௩ a given item (decision variable) of a four-dimensional matrix to determine the execution sequence of 
operations ൛𝑂௜,௞ ห 𝑖 = 1, 2, …, 𝑁௃ , k = 1, 2, …, 𝑁,௣(௜)ൟ: 



  

 

386𝑦௜,௞,௨,௩ ∶=  ൜1,        if  operation  𝑂௜,௞ preceds operation 𝑂௨,௩ at workstation 𝑀௠  0,        otherwise                                                                                            (4) 

 𝑆௜,௞,௠ the starting time of operation 𝑂௜,௞ at workstation 𝑀௠ 
 
Values calculated from secondary decision variables 
 
(𝑂௜,௞) the worker who performs operation 𝑂௜,௞ 
(𝑂௜,௞) the workstation at which operation 𝑂௜,௞ is performed 𝐶௜,௞,௠ the completion time of operation 𝑂௜,௞ at workstation 𝑀௠ 𝐶௜ the completion time of job 𝐽௜  (𝑖 = 1, 2, …, 𝑁௃) 𝜋௜ the function that indicates the completion of job 𝐽௜ 𝜋௜ ∶=  ൜1,        if  0 < 𝐶௜ and 𝐶௜ ≤ 𝑑௜  0,        otherwise                        (5) 

 
The value ௜ = 1 indicates that job 𝐽௜ has already started ( 0 < 𝐶௜ ) and its completion time does not exceed the prescribed 
due date 𝑑௜. Due date 𝑑௜ equals the finishing time of the shift that is assigned to the job 𝐽௜. 
 
Constraints 
 
We use the following five groups of constraints: 
 
1. Restrictions on the quantities of products to be manufactured: 

• Negative quantity cannot be produced:  𝑞௣,௦ ≥ 0 (𝑝 = 1, 2, …, 𝑁௉), , (𝑠 = 1, 2, …, 𝑁ௌ) (6) 
• The total quantity to be produced has to be distributed among all shifts in the case of each product type: ∑ ൫𝑞௣,௦൯ேೄ௦ୀଵ = 𝑄௣ (𝑝 = 1, 2, …, 𝑁௉) (7) 

 
2. Restrictions on selected resources: 

• A given job can only be assigned to a suitable worker: ෍ 𝜆௜,௛ு೓ ∉ ு(௣(௜)) = 0 (𝑖 = 1, 2, …, 𝑁௃) (8) 

 
• A given job can be assigned to exactly one suitable worker: ෍ 𝜆௜,௛ு೓ ∈ ு(௣(௜)) = 1 (𝑖 = 1, 2, …, 𝑁௃) (9) 

 
• A given operation can only be assigned to a suitable workstation: ෍ 𝑥௜,௞,௠ெ೘ ∉ ெ((௣(௜),௞) = 0 ൫𝑖 = 1, 2, …, 𝑁௃൯, ൫𝑘 = 1, 2, …, 𝑁,௣(௜)൯ (10) 

 
• A given operation can be assigned to exactly one suitable workstation: ෍ 𝑥௜,௞,௠ெ೘ ∈ ெ((௣(௜),௞) = 1 ൫𝑖 = 1, 2, …, 𝑁௃൯, ൫𝑘 = 1, 2, …, 𝑁,௣(௜)൯ (11) 

 
3. Restrictions on worker activities: 

• A given worker can perform only one job at a time. A given worker can start the next job only if he or she has completed 
the previous one: 𝐶௨,௩,௥ < 𝑆௜,௞,௠ where 𝑢 ≠  𝑖  ൫𝑂௨,ଵ൯ =  ൫𝑂௜,ଵ൯  ൫𝑂௨,௩൯ = 𝑟  ൫𝑂௜,௞൯ =  𝑚  𝐶௨,ଵ,௥ < 𝑆௜,ଵ,௠ (12) 

 
• A given worker can perform only one operation at a time and the time for moving between workstations cannot be 

neglected: 𝐶௜,௞,൫ை೔,ೖ൯ + ൫ை೔,ೖ൯,൫ை೔,ೖశభ൯,൫ை೔,ೖ൯  ≤ 𝑆௜,௞ାଵ,൫ை೔,ೖశభ൯ where ൫𝑖 = 1, 2, …, 𝑁௃൯, ൫𝑘 = 1, 2, …, 𝑁,௣(௜) − 1൯ (13) 
 

4. Restrictions on the workload of workstations: 
• Only one operation can be performed at a given workstation at a time:  𝐶௜,௞,௠ ≤ 𝑆௨,௩,௠    where ൫𝑂௜,௞൯ =  ൫𝑂௨,௩൯  y௜,௞,௨,௩,௠ = 1 (14) 
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• The processing time of a given operation depends on the workstation and the worker:  𝑆௜,௞,൫ை೔,ೖ൯ + 𝑡୮(୧),୩,൫ை೔,ೖ൯,൫ை೔,ೖ൯ = 𝐶௜,௞,൫ை೔,ೖ൯ where ൫𝑖 = 1, 2, …, 𝑁௃൯, ൫𝑘 = 1, 2, …, 𝑁,௣(௜)൯ (15) 
 

5. Restrictions on the execution of jobs in the given shifts: 
• The execution of job Ji cannot start earlier than its release time (the beginning of the assigned shift): 𝑟௜ ≤ 𝑆௜,ଵ,൫ை೔,భ൯ where ൫𝑖 = 1, 2, …, 𝑁௃൯ (16) 

 

• The operations of job Ji can only be performed in the assigned shifts: 𝐶௜,௞,൫ை೔,ೖ൯  ≤ 𝑑௜                                            where ൫𝑖 = 1, 2, …, 𝑁௃൯, ൫𝑘 = 1, 2, …, 𝑁,௣(௜)൯ (17) 
 
Objective functions 
 
The optimization model is defined as finding the best solution by considering two objective functions at the same time. The 
objective functions are the following: 
 
1. Primary objective function: Quantity of manufactured products (the number of completed jobs) [pcs]: 𝑓ଵ ≔ ∑ (௜)ே಻௜ୀଵ → 𝑚𝑎𝑥.  (18) 
2. Secondary objective function: Total remaining time [min]:  𝑓ଶ ≔ ∑ ൬𝑚𝑖𝑛௝ୀଵேೞ,಻ ቀ𝑑௜൫௃ೞ,ೕ൯ − 𝐶௜൫௃ೞ,ೕ൯ቁ൰ேೄ௦ୀଵ → 𝑚𝑎𝑥.  (19) 

 
The value of objective function f2 expresses the free capacity of the production system over time. This is a new performance 
indicator that measures the length of the last section at the end of the shift when no worker is active. We refer to this time 
value by the term “remaining time”. The remaining time of a given shift is calculated by subtracting the completion time 
of the last workpiece from the finishing time of the given shift. The total remaining time of the whole system is obtained 
by summing the remaining times of the shifts. 

3.3 A New Method to Solve the EFJSHR Problem 

3.3.1 Advanced Simulation-Based Searching Algorithm to Generate Detailed Production Plans 

We have developed a heuristic method to determine the current values of primary and secondary decision variables of the 
EFJSHR problem formalized in the previous subsection. Our method is called Simulation-Based Production Planning and 
Control (SBPPC). The core of SBPPC is based on the integrated usage of an iterative improvement searching algorithm and 
two reactive rule-based control algorithms. These components are embedded in a discrete event-driven simulation framework. 
The simulation is able to calculate the current values of the objective functions based on the values of the decision variables. 
In a preparatory phase, an initializing method loads the input data, builds the current simulation model and initializes all the 
variables and parameters of the system. The pseudocode of SBPPC is presented in Fig. 2. 
 

Method SBPPC to solve the problem EFJSHR 
1: { 
2: Load the input data; 
3: Set the maximum number 𝜀௠௔௫  of iterations; 
4: Create the initial production plan by using algorithm IPP to calculate the values of primary decision  
5: variables 𝑞௣,௦; 
6: ε ←  1; 
7: while (ε ≤ 𝜀௠௔௫) 
8: { 
9: Simulate the production plan with reactive control of manufacturing processes; 
10: Calculate the values of objective functions 𝑓ଵ  and 𝑓ଶ; 
11: if ൫ 𝑓ଵ <  𝑁௃ and 𝑓ଶ >  0 ൯ 
12: { 
13: Modify the production plan by using the algorithm MPP to recalculate the values of primary decision  
14: variables 𝑞௣,௦; 
15: } 
16: else  
17: { 
18: break; 
19:  } 
20: ε ←  ε + 1; 
21: } 
22: Return the results; 
23: } 

Fig. 2. Pseudocode for the SBPPC method 
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The SBPPC method uses the IPP algorithm to create the initial production plan. This algorithm assigns the jobs to the shifts 
to create quasi-uniform loads. 
 

Algorithm IPP 
1: { 
2: p = 1; 
3: while (p ≤  𝑁௉)  
4:  { 
5:  s ←  1; 
6:  while ൫𝑠 ≤  𝑄௣ 𝑚𝑜𝑑 𝑁௦൯  
7:  { 
8:  𝑞௣,௦ ←  (𝑄௣ 𝑑𝑖𝑣 𝑁௦) + 1; 
9:  𝑠 ←  s + 1; 
10:  } 
11:  while ( s ≤ 𝑁௦ ) 
12:  { 
13:  𝑞௣,௦ ←  (𝑄௣ 𝑑𝑖𝑣 𝑁௦ ) 
14:  𝑠 ←  s + 1; 
15:  } 
16:  𝑝 ←  p + 1; 
17: } 
18: Return the primary decision variables 𝑞௣,௦; 
19: } 

Fig. 3. Pseudocode for the IPP algorithm 
 
In the definition of the IPP algorithm presented in Fig. 3. , the operator 𝑑𝑖𝑣  returns the integer value of the result of the 
division operation. The operator 𝑚𝑜𝑑  means the modulo division that returns the remainder of the division operation. The 
SBPPC method uses the MPP algorithm (Fig. 4) to improve the production plan. This algorithm modifies the assignment of 
jobs and shifts by moving unfinished jobs into suitable shifts that can perform the selected jobs. 
 

Algorithm MPP 
1: { 
2: Φ ←  1; 
3: while (Φ ≤  𝑁௦) 
4: { 
5: Create an empty list 𝑊;  
6: Select the index 𝑖 of each job 𝐽௜ assigned to shift 𝑇ః where ௜ = 0; 
7: Add the selected job indices to list 𝑊 such that symbol 𝑊௪ represents the 𝑤-th item of the list and symbol 
8:  𝑁ௐ equals to the number of items stored in list  𝑊; 
9: 𝑤 ←  1; 
10: while  (𝑤 ≤  𝑁ௐ) 
11:  { 
12:  𝜑 ←  Search the earliest suitable shift by 𝑬𝑺𝑺(𝑊ௐ ,Φ + 1,𝑁௦); 
13:  if (𝜑 ≠ 0) 
14:  { 
15:  𝑞௣(ௐೢ ),஍ ←  𝑞௣(ௐೢ ),஍ − 1; 
16:  𝑞௣(ௐೢ ),஦ ←  𝑞௣(ௐೢ ),஦ + 1; 
17:  } 
18:  else if (2 < Φ) 
19:  { 
20:  𝜑 ←  Search the earliest suitable shift by 𝑬𝑺𝑺(𝑊ௐ , 1,Φ− 1); 
21:  if (𝜑 ≠ 0) 
22:  { 
23:  𝑞௣(ௐೢ ),஍ ←  𝑞௣(ௐೢ ),஍ − 1; 
24:  𝑞௣(ௐೢ ),஦ ←  𝑞௣(ௐೢ ),஦ + 1; 
25:  } 
26: } 
27: 𝑤 ←   𝑤 + 1; 
28: } 
29: Φ ←   Φ + 1; 
30: } 
31: Return the primary decision variables 𝑞௣,௦; 
32: } 

Fig. 4. Pseudocode for the MPP algorithm 
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In the presented formal definition of the MPP algorithm, the instruction 𝑞௣(ௐೢ ),஍ = 𝑞௣(ௐೢ ),஍ − 1 expresses that the selected 
job 𝐽ௐೢ is taken out of the set of jobs assigned to shift 𝑇ః. The instruction 𝑞௣(ௐೢ ),஦ = 𝑞௣(ௐೢ ),஦ + 1 shows that the selected 
job 𝐽ௐೢ  is added to the set of jobs assigned to shift 𝑇ఝ. Function 𝐸𝑆𝑆(𝑖, 𝑙𝑏,𝑢𝑏) is used to find the earliest shift where the 
selected unfinished job 𝐽௜ can be performed. The searching range is bounded with two parameters. The parameter 𝑙𝑏 defines 
the lower bound. This expresses the smallest index from which to start the searching method. The parameter 𝑢𝑏 specifies the 
largest allowed index of the searching range as upper bound. This function examines the searching range of shifts 𝑇఑ (lb ≤ κ ≤ ub), and it returns the index κ of the earliest shift 𝑇఑ that has remaining time and includes at least one worker 𝐻௛ who 
can produce the product type 𝑃௣(௜) of the given job 𝐽௜. If there is no suitable shift then the function returns zero. The pseudocode 
of ESS is presented in Fig. 5. 
 

Function ESS(i, lb, ub) 
1: { 
2: 𝑠 ←  0; 
3: 𝜅 ←  𝑙𝑏; 
4: while (𝜅 ≤ 𝑢𝑏) 
5: { 
6: if  𝑚𝑖𝑛௝ୀଵேഉ,಻ ቀ𝑑௜൫௃ഉ,ೕ൯ − 𝐶௜൫௃ഉ,ೕ൯ቁ > 0 and 𝐻൫𝑝(𝑖)൯ ≠ ∅ 
7: { 
8: 𝑠 ←  𝜅; 
9: Return 𝑠; 
10: } 
11: κ ←  κ + 1; 
12: } 
13: Return 𝑠; 
14: } 

Fig. 5. Pseudocode for Function ESS 
 
As shown earlier, the solution of the entire optimization problem can be divided into two main levels. The upper level focuses 
on optimizing the production plan. This part has been presented so far. In the following, we propose new control algorithms 
based on reactive scheduling to perform the given production plan. 
 
The SBPPC Method includes an event-driven simulation method called “Simulate the production plan with reactive control 
of manufacturing processes”. At the beginning of the simulation, the framework initializes the virtual manufacturing system, 
actualizes the production plan and sets the current values for the control parameters. The essence of the simulation is that 
different events appear at specific times and they are processed by event-handler algorithms. In each decision-making 
situation, in which there are several options for handling the event, reactive control algorithms make the decision. The most 
important types of decision-making situations are the following: 
 

• When a worker arrives at the input container, the next job to be performed must be selected. 
• When a worker has performed a given operation, the workstation must be selected at which the next operation will be 

executed.  
 
To effectively solve these decision problems, we have developed new control algorithms. These are used in the simulation to 
determine the values of secondary decision variables.  
 

3.3.2 Control Algorithm to Assign Jobs and Workers (AJW) 

To solve this subproblem, we use a reactive method based on a weighted multi-criteria evaluation function. When worker 𝐻௛ 
arrives at the input container, the control system computes the value of function g for each selectable job, and the job with the 
largest value of function g is selected to be next job (g(𝐽௜)  ⟶𝑚𝑎𝑥). The selected job is assigned to worker Hh. This can be 
expressed with the following secondary decision variable: ௚(௃೔)→௠௔௫,௛ ≔ 1. The definition of function g is the following: 
 g(𝐽௜ ) ≔ 𝛽ଵ𝑏ଵ(𝐽௜) + 𝛽ଶ𝑏ଶ(𝐽௜) + 𝛽ଷ𝑏ଷ(𝐽௜) + 𝛽ସ𝑏ସ(𝐽௜) + 𝛽ହ𝑏ହ(𝐽௜) (20) 
 
where: 

• 𝑏ଵ(𝐽௜) (worker’s skill): the capability 𝜔௣(௜),௛ of worker 𝐻௛ to perform job 𝐽௜ in percentage [%]; 
• 𝑏ଶ(𝐽௜) (manufacturing flexibility): the ratio of the number of workers able to perform job 𝐽௜ and the total number of 

workers in shift 𝑇௦ [%]; 
• 𝑏ଷ(𝐽௜) (waiting jobs): the ratio of the current number of jobs still to be performed from product type 𝑃௣(௜) and the 

planned number 𝑞௣(௜),௦ of jobs assigned to shift 𝑇௦ according to the same product type 𝑃௣(௜) [%]; 
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• 𝑏ସ(𝐽௜) (inhomogeneity): This aspect expresses that we strive to choose the product type that has the smallest number 
of currently running jobs in the manufacturing system. Simultaneous production of different product types can be 
ensured by increasing the degree of heterogeneity of the product types. In order to prepare the definition of b4(Ji), we 
introduce the following notations: 
• 𝐿(𝑃௣): the number of currently running jobs of the product type 𝑃௣,  
• 𝑅(𝑃௣): the number of starting jobs of product type 𝑃௣: 𝑅(𝑃௣) ≔ ൜1,        if the product type 𝑃௣ is selected to start  0,        otherwise                                                         (21) 

 
In each decision-making situation, only one job can be selected to start, so the following relation is obtained: ෍𝑅൫𝑃ఓ൯ே೛
ఓୀଵ = 1 (22) 

 
 Using these formulas, we define the probability of product type 𝑃௣ as follows: 𝜉൫𝑃௣൯ = 𝐿(𝑃௣) + 𝑅(𝑃௣)∑ 𝐿൫𝑃ఓ൯ + 1ே೛ఓୀଵ  (23) 

 
By adapting the concept of entropy used in the information theory (Shannon, 1948), we define the entropy of any 
product type 𝑃௣ as follows: 𝜂൫𝑃௣൯ = −𝜉൫𝑃௣൯ logଶ 𝜉൫𝑃௣൯   (24) 

 
 If job 𝐽௜ of product type 𝑃௣(௜) is selected to start, the entropy of the system can be calculated with the following formula: 𝐸(𝑃௉(௜)) = ∑ 𝜂൫𝑃௣൯ே೛௣ୀଵ = −∑ 𝜉൫𝑃௣൯ logଶ 𝜉൫𝑃௣൯ே೛௣ୀଵ   (25) 
 
 The entropy of the system would be maximal if all the product types were in production with equal number of jobs at 

the same time. In such an ideal case, the probability 𝜉 of each product type 𝑃௣ is the following: 𝜉൫𝑃௣൯ = 1𝑁௣ (26) 

 
 Consequently, the maximal entropy of the system is the following: 𝐸௠௔௫ = −∑ 𝜉൫𝑃௣൯ே೛௣ୀଵ logଶ 𝜉൫𝑃௣൯ =  logଶ𝑁௣  (27) 
 
 The value of factor  𝑏ସ(𝐽௜) is defined in percentage as follows: 𝑏ସ(𝐽௜): = 𝐸(𝑃௉(௜))𝐸௠௔௫  (28) 

 
 From the point of view of inhomogeneity, we would like to select to start the job 𝐽௜ where the value 𝑏ସ(𝐽௜) is maximal. 

• 𝑏ହ(𝐽௜) (average lead time): the ratio of the average lead time of product type 𝑃௣(௜) of job 𝐽௜ and the average lead time 
of all product types of shift 𝑇௦ [%]. Note that the values of all factors b are expressed as a percentage. 

 
• 𝛽ଵ,𝛽ଶ,𝛽ଷ,𝛽ସ,𝛽ହ integer weights from the closed interval ሾ−5, 5ሿ . Adjusting the weight of a given aspect determines 

the degree of its consideration. 
 

3.3.3 Control Algorithm to Assign One of the Suitable Workstations to the next Operation (AWO) 

To execute a given operation 𝑂௜,௞  of job 𝐽௜, we have a set of suitable workstations: 𝑀(𝑝(𝑖),𝑘) ⊆  ሼ𝑀௠ |𝑚 = 1, 2,…, 𝑁ெሽ (29) 
 
Worker 𝐻௛ should choose one of the suitable workstations. In order to solve this subproblem, our control algorithm computes 
the function 𝑧 for each suitable workstation and the workstation with the smallest value of function 𝑧 is selected to execute 
the operation (z(𝑀௠)  ⟶𝑚𝑖𝑛). The selected workstation is assigned to the given operation. This can be expressed with the 
following secondary decision variable: 𝑥௜,௞,௭(ெ೘)→௠௜௡:=1. The definition of function 𝑧 is the following: 
 z(𝑀௠ ) ≔ 𝛼ଵ𝑐ଵ(𝑀௠) + 𝛼ଶ𝑐ଶ(𝑀௠) (30) 
 
where: 
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• 𝑐ଵ(𝑀௠): the number of currently waiting workers in front of the workstation 𝑀௠ [pcs].  
• 𝑐ଶ(𝑀௠): the number of operations completed at the workstation 𝑀௠ in the current shift 𝑇௦ [pcs]. 
• 𝛼ଵ,𝛼ଶ integer weights from the closed interval ሾ0, 100ሿ,  Adjusting the weight of a given aspect determines the degree 

of its consideration. 
 
The simulation extended with the above presented control algorithms clearly determine the execution of the jobs. During the 
simulation, all the secondary decision variables get their values according to reactive scheduling when handling the occurring 
events: 

• Decision variables ௜,௛ obtain values when the control algorithm selects and assigns jobs to workers. 
• Decision variables 𝑥௜,௞,௠ take on their values when the control algorithm selects and assigns worplaces to operations. 
• Decision variables 𝑦௜,௞,௨,௩,௠ and S௜,௞,௠ are set when operations start at workstations. 

 

3.3.4 Applicability of the Proposed Model and Algorithms 

The presented model and algorithms can solve the integrated production planning, scheduling and control problem of flexible 
manufacturing systems in which human resources are working with different individual skills. The proposed algorithms can 
flexibly and efficiently handle the changing requirements, varying resource constraints, uncertainties, and unexpected events. 
In this approach, detailed production plans are generated by the SBPPC method that includes a special search algorithm and 
advanced event-driven simulation. Reactive control algorithms are embedded into the simulation to make the necessary 
decisions at the same time as the execution of manufacturing processes. The presented production planning phase and the 
manufacturing control phase together create a two-level decision hierarchy to manage the production activities. The elaborated 
optimization model of the investigated problem, the solving approach and algorithms can be used in practice. The 
effectiveness of the proposed methods will be demonstrated with some running results in the next section.  
 
In cyber-physical environments, the real system and the simulation system can work together in real time, Taking advantage 
of this fact, the proposed algorithms can also be used to supplement such systems; therefore, the control algorithms can directly 
handle real events as well. Classical enterprise application systems (e.g. ERP, MES, APS, and SCADA) and modern 
technologies (e.g. Industry 4.0, Internet of Things, Cloud Computing and Big Data) are able to support the practical application 
of the proposed approach and algorithms by providing appropriate input data, computational capacities, and application 
environment. 

4. Some Numerical Results  

The presented algorithms have been implemented in Plant Simulation (Siemens, v15). The software ran on a personal 
computer equipped with an Intel® Core™ i7-4810MQ 2.80 GHz processor, with 8 GB of RAM memory. The operating 
system of the computer was Microsoft Windows 10 (64-bit). 
 

4.1 Examining the AWO Control Algorithm 

Simulation studies were performed, according to the parameter values given in Table 1 to Table 4, to adjust the values of 𝛼ଵ 
and  𝛼ଶ parameters. During the simulation studies performed in the test environment, the values of 𝛼 parameters were 
independent of the values of 𝛽 parameters. Assignments of jobs and workers were performed according to the Fist Suitable 
Job Selection (FSJS) strategy, which means that the worker selects the first suitable item from the queue of waiting jobs. 
 
Table 1  
The details of the illustrative test environment for adjusting 𝛼 parameter values 
Settings Values 
Number of shifts 5 
Processing times of operations Depending on workers’ skills 
Assignments of jobs and workers First Suitable Job Selection method (FSJS strategy) 

Groups of parallel workstations 
Group_1: M36, M16, M51 
Group_2: M9, M19, M71 

Assignments of suitable workstations and operations AWO control 
Production planning method IPP  
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Table 2 
Illustrative test problem data for adjusting 𝛼 parameters 
Input data Values 
Production plans  
 Production plan A: P1= Prod13; Q1= 10000 

 
Production plan B: P1= Prod111; Q1= 2500; 

P2= Prod122; Q2= 2500 
Workers in shifts 8 workers and 5 shifts: 

T1:H1, H2, H4, H5, H6, H7, H8, H9 
T2:H1, H2, H4, H5, H6, H7, H8, H9 
T3:H1, H2, H4, H5, H6, H7, H8, H9 
T4:H1, H2, H4, H5, H6, H7, H8, H9 
T5:H1, H2, H4, H5, H6, H7, H8, H9 
 
16 workers 5 shifts: 
T1: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 
T2: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 
T3: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 
T4: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 
T5: H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16 

 
 
Table 3  
Illustrative process plans for product types 
Product 
types Operations 

Parallel 
workstations 

Product 
Type Operations 

Parallel 
workstations 

Product 
Type Operations 

Parallel 
workstations 

Prod13 OP0 Start (Source) Prod111 OP0 Start (Source) Prod122 OP0 Start (Source) 
Prod13 OP1 M1 Prod111 OP1 M1 Prod122 OP1 M1 
Prod13 OP2 M47 Prod111 OP2 M30 Prod122 OP2 M39 
Prod13 OP3 M39 Prod111 OP3 M29 Prod122 OP3 M47 
Prod13 OP4 M48 Prod111 OP4 M25 Prod122 OP4 M43 
Prod13 OP5 M44 Prod111 OP5 M15 Prod122 OP5 M44 
Prod13 OP6 M49 Prod111 OP6 M40 Prod122 OP6 M45 
Prod13 OP7 M50 Prod111 OP7 M41 Prod122 OP7 M46 
Prod13 OP8 M16,M36,M51 Prod111 OP8 M35 Prod122 OP8 M16,M36,M51 
Prod13 OP9 M7 Prod111 OP9 M42 Prod122 OP9 M7 
Prod13 OP10 M8 Prod111 OP10 M16,M36,M51 Prod122 OP10 M8 
Prod13 OP11 M9, M19, M71 Prod111 OP11 M7 Prod122 OP11 M9, M19, M71 
Prod13 OP12 End (Drain) Prod111 OP12 M8 Prod122 OP12 End (Drain) 
   Prod111 OP13 M9, M19, M71    
   Prod111 OP14 End (Drain)    

 
 

 
Fig. 6. Simplified layout of the investigated flexible manufacturing system with parallel workstations (M36, M16, M51) and 
(M9, M19, M71) 
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Different production plans (A and B) were performed with different teams of workers. Some illustrative examples can be 
found in Table 2. The goal was to define the best value pair for 𝛼ଵ and 𝛼ଶ parameters, where the quantity of the produced 
products is maximal and the waiting time of workers in front of workstations is minimal. In the simulation, the amount of 
waiting time of workers was quantified by comparing the sum of the waiting times to the sum of availability times, then the 
average waiting rate was expressed with the obtained quotient value as percentage. Parameters 𝛼ଵ and 𝛼ଶ were given all 
combinations of integer values from the rangeሾ0, 100ሿ. Some illustrative running results of the simulation studies on the test 
problem data are shown in Table 5. 
 
 

 
 

Table 4 
Illustrative workers’ skills (𝜔௣,௛) [%] 
Product types Workers 
 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 
Prod13 108 93 114 94 91 84 100 101 108 103 87 51 83 89 92 0 
Prod111 101 99 98 107 88 92 111 108 110 95 84 53 84 80 89 53 
Prod122 105 102 99 103 86 82 99 111 105 109 86 0 86 90 86 0 

 
 

Table 5 
Some numerical results of simulation studies focused on 𝛼 parameters 

Parameters Number of produced products [pcs] Average waiting rate of workers in front of the workstations [%] 
(percentage of availability time) 

 8 workers 16 workers 8 workers 16 workers 
α1 α2 Production Production Production Production Production Production Production Production 

100 40 734 839 1061 1175 3.01 4.87 25.50 24.20 
90 50 734 840 1061 1177 3.01 4.75 24.71 24.17 
70 90 734 843 1061 1181 2.99 4.53 24.71 23.96 
60 30 734 840 1061 1177 3.01 4.75 24.75 24.17 
50 20 734 839 1061 1175 3.01 4.87 24.71 24.20 
40 100 734 841 1058 1178 3.01 4.58 24.71 24.15 
90 60 734 841 1061 1177 3.01 4.75 24.58 24.17 
30 100 734 841 1058 1180 3.14 4.58 24.71 24.04 
80 30 734 839 1061 1175 3.01 4.87 24.71 24.20 
1 100 726 827 1046 1160 4.06 5.91 24.71 25.04 

 
When searching the best values for 𝛼ଵ and 𝛼ଶ parameters, the primary consideration was the quantity of produced products 
and the secondary consideration was the average waiting rate of workers. The best result was obtained with the combination 𝛼ଵ = 70 and 𝛼ଶ = 90. This value pair was used in further examinations. 
 
 

4.2 Examining the AJW Control Algorithm 
 
Additional simulation studies were also performed to adjust the values of 𝛽 =  ሼ𝛽ଵ,𝛽ଶ,𝛽ଷ,𝛽ସ,𝛽ହሽ parameters. During these 
simulation studies, we used the best values of 𝛼 parameters, Assignments of jobs and workers were performed according to 
the AJW control algorithm. By changing the 𝛽 parameter values, the assignments of jobs and workers can be influenced, 
which affects the productivity of the production system. The most important settings of the test environment are summarized 
in Table 6. 
 

Table 6 
Settings of the test environment for adjusting 𝛽 parameters 

Settings Values 
Number of shifts 5 
Processing times of operations Depending on workers’ skills 
Assignments of jobs and workers AJW control algorithm 

Groups of parallel workstations  
Group_1: M36, M16, M51, M52, M53, M54 
Group_2: M9, M19, M71, M72, M73, M54 

Assignments of suitable workstations and operations AWO control 
Control parameters 𝛼ଵ = 70, 𝛼ଶ = 90 
Production plan  

P1= Prod5; Q1= 181; P2= Prod4; Q2= 231; 
P3= Prod9; Q3= 122; P4= Prod111; Q4=165; 
P5= Prod7; Q5= 156; P6= Prod6; Q6= 88; 
P7= Prod8; Q7= 101 

Production planning method IPP  
Workers in shifts T1:H1, H2, H4, H5, H6, H7, H8, H9 

T2:H1, H2, H4, H5, H6, H7, H8, H9 
T3:H1, H2, H4, H5, H6, H7, H8, H9 
T4:H1, H2, H4, H5, H6, H7, H8, H9 
T5:H1, H2, H4, H5, H6, H7, H8, H9 
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The input data and initial situation of the simulation studies were fixed and the control aspects of the AJW algorithm were 
considered with different weights. The 𝛽 parameters were given all combinations of integer values from the range ሾ0, 5ሿ. As 
a result, the productivity of the production system changed. The goal was to find the best values of 𝛽 =  ሼ𝛽ଵ,𝛽ଶ,𝛽ଷ,𝛽ସ,𝛽ହሽ 
parameters where the quantity of produced products (𝑓ଵ) and the sum (𝑓ଶ) of remaining times of the system are maximal. 
Accordingly, we performed simulation studies with different 𝛽 values and with the given settings of the test environment. 
Some typical results are summarized in Table 7. 
 
Table 7 
Running results of simulations performed with different 𝛽 parameters 

ExpNo. 𝛽ଵ 𝛽ଶ 𝛽ଷ 𝛽ସ 𝛽ହ 
Planned quantity 

[pcs] 
Produced quantity 

[pcs] 
Remaining time 

[%] 
1 4 2 2 5 2 1044 993 9.10 
2 1 4 2 5 5 1044 987 1.98 
3 3 4 1 3 4 1044 990 0.20 
4 4 4 5 3 3 1044 992 2.48 
5 2 3 4 3 5 1044 993 5.06 
6 5 4 5 3 2 1044 993 10.32 
7 1 3 4 2 4 1044 987 3.74 
8 4 3 2 4 5 1044 992 6.14 
9 5 4 2 2 1 1044 989 10.47 
10 5 1 2 1 4 1044 988 6.58 
11 2 4 2 3 5 1044 991 1.69 
12 3 1 2 3 1 1044 992 10.75 
13 4 1 1 4 4 1044 987 9.68 
14 4 5 2 2 2 1044 991 11.03 
15 2 5 1 4 2 1044 985 5.75 
16 5 1 1 1 5 1044 982 9.83 
17 2 4 3 5 2 1044 988 2.61 

 
The best result was given by the following combination: 𝛽ଵ = 5,𝛽ଶ = 4,𝛽ଷ = 5,𝛽ସ = 3,𝛽ହ = 2. The presented simulation 
examinations were able to find the values of the 𝛼 and 𝛽 parameters that ensure the most efficient operation of the control 
algorithms. In the following studies, their values do not change. 
 

4.3 Examining the SBPPC Method 

4.3.1 An Illustrative Example for Using the MPP Algorithm in the SBPPC Method 

After finding the best values for parameters of the control algorithms, we examined the efficiency of the SBPPC method. 
Before describing the details, we present how our MPP-based search method works through an example. Table 6 summarizes 
the settings of the simulation model used in this example. 
 

Table 8 
Settings of simulation for testing SBPPC method 

Settings Values 
Processing times of operations Depending on workers’ skills 
Number of shifts 5 
Algorithm and control parameters for 
assigning jobs to workers 

AJW control 
β1=5, β2=4, β3=5, β4=3, β5=2 

Groups of parallel workstations Group_1: M36, M16, M51, M52, M53, M54 
Group_2: M9, M19, M71, M72, M73, M74 

Algorithm and control parameter for 
assigning suitable workstations and 
operations 

AWO control  
α1=70, α2=90 

Active workers in shifts  
T1: H8, H9, H15, H19 
T2: H1, H2, H3, H7, H13 
T3: H4, H5, H6, H14, H18 
T4: H1, H2, H3, H7, H13 
T5: H10, H11, H12, H16, H20 

Production requirements  
P1= Prod5; Q1= 66; P2= Prod6; Q2= 81; P3= Prod4; Q3= 322;  
P4= Prod9; Q4= 48; P5= Prod111; Q5= 220; P6= Prod7; Q6= 73; 
P7= Prod10; Q7= 61; P8= Prod8; Q8= 110 

Method to create initial production 
plans for shifts IPP 
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The MPP algorithm, which modifies the detailed production plan for shifts, is an integral part of the SBPPC method. An 
illustrative simulation study was performed based on the settings summarized in Table 8. The results are shown in Table 9. 
The first column of the table contains the iteration number of SBPPC method. In the first iteration (#1), the IPP algorithm 
creates the initial solution. This is represented with the primary decision variables that determine the detailed production plans 
for shifts. The simulation, which uses the reactive control algorithms, shows that this initial solution leads to unfinished jobs 
while the manufacturing system has remaining time. In the second iteration (#2), MPP algorithm modifies the solution by 
moving unfinished jobs into suitable shifts, and then the simulation is run again with the new solution. This iterative process 
continues until the stopping conditions are met. The results of the simulation performed in each iteration are summarized in 
the rows of Table 9. 
 
Table 9 
The results of the MPP algorithm included in the SBPPC method 

Iteration 
(#) 

Number of finished jobs  
[pcs] 

Number of unfinished jobs  
[pcs] 

Remaining time 
Sum 
[min] 

Shifts 
T1 T2 T3 T4 T5 

1 957 24 115.41 0.00 21.37 45.11 26.12 22.82 
2 973 8 75.40 5.24 21.37 0.00 23.09 25.70 
3 976 5 52.56 5.24 21.37 0.00 25.95 0.00 
4 980 1 40.76 5.24 7.25 1.32 26.94 0.00 
5 981 0 42.43 5.24 7.25 1.32 21.17 7.45 

 
The SBPPC method can achieve a significant improvement in the productivity of an EFJSHR model even with a small number 
of iterations by creating a quasi-optimal production plan for shifts. Table 9 also shows that all jobs are finished (all products 
are produced) finally in this example. 

4.3.2 Comparison of MPP-based Search Method and Genetic Algorithm 

The proposed MPP-based search method was compared with the genetic algorithm of the Plant Simulation software. In this 
investigation, we focused on the production planning method that assigned the jobs to shifts. This method calculated the 
values of the primary decision variables of the EFJSHR problem. These values formed the detailed production plan. The 
control of the execution of jobs within shifts was performed by the control algorithms with the previously adjusted parameters. 
When using our MPP-based heuristic search algorithm and the genetic algorithm, we used the same simulation method and 
environment. The only difference between the two approaches was the method of assigning jobs to shifts.  
 
The genetic algorithm (PSGA) of Plant Simulation is not directly suitable for optimizing the assignments of jobs and shifts. 
To solve this problem, we developed a model transformation technique that can transform the detailed production plan into a 
permutation scheme. This can be mapped to an array that can be fully manageable with PSGA. Each candidate array is 
transformed back into a detailed production plan before simulation. Thus, the detailed production plan can be mapped to the 
permutation of given elements. Using this model transformation technique, the optimization problem of production planning 
(assigning jobs to shifts) corresponds exactly to a general combinatorial optimization problem in which the objective function 
value depends on the order of the given elements. This allows the PSGA to solve the problem. The representation scheme of 
detailed production plan was designed so that the length of the array is equal to the multiplication of the number of jobs and 
the number of shifts. The array contains the job identifiers and zero values. Each job can appear in the array exactly once. 
Zero values play a “position-filling” role. These are used to ensure that the length of the array (encoding scheme) is constant 
for a given problem, while all possible assignment options (permutations) can be represented. The position index of each 
element in the array clearly determines the target shift.  
 
For example, we have 4 jobs to be performed: 𝐽ଵ, 𝐽ଶ, 𝐽ଷ, 𝐽ସ. There are 3 shifts: 𝑇ଵ, 𝑇ଶ, 𝑇ଷ. In this illustrative case, the array 
(chromosome) contains 4 * 3 = 12 elements (genes). In the chromosome, genes 1-4 represent shift 1, genes 5-8 represent shift 
2, and genes 9-12 represent shift 3. In this problem, one possible chromosome, which describes a given solution (assignments 
of jobs and shifts), can be seen in Table 10.  
 
Table 10 
An illustrative chromosome for PSGA 
Chromosome Shifts 
  𝑇ଵ  𝑇ଶ  𝑇ଷ 
chromosome 1  𝐽ଵ 𝐽ଶ 0 0  𝐽ଷ 0 0 0  𝐽ସ 0 0 0 

 
In addition, an example population of 5 individuals is shown in Table 11. 
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Table 11 
An example population for PSGA 
Chromosome Shifts 
  𝑇ଵ  𝑇ଶ  𝑇ଷ 
chromosome 1  𝐽ଵ 𝐽ଶ 0 0  𝐽ଷ 0 0 0  𝐽ସ 0 0 0 
chromosome 2  0 𝐽ଷ 0 𝐽ଶ  0 0 0 0  𝐽ଵ 𝐽ସ 0 0 
chromosome 3  𝐽ଵ 𝐽ଶ 𝐽ଷ 0  0 𝐽ସ 0 0  0 0 0 0 
chromosome 4  0 0 0 0  𝐽ଷ 0 𝐽ସ 0  𝐽ଵ 𝐽ଶ 0 0 
chromosome 5  𝐽ସ 0 0 0  𝐽ଷ 0 0 𝐽ଵ  0 0 0 𝐽ଶ 

 
In terms of efficiency, we compared our MPP-based method with PSGA. Table 12 shows the parameter settings of PSGA. 
 
Table 12  
Settings for Genetic Algorithm of Plant Simulation (PSGA) 

Settings Values 
Decision variables the array of assignments of jobs and shifts 
Objective function (fitness): the number of the produced product (𝑓ଵ) 

the sum of the remaining time (𝑓ଶ) 
Weight 𝑓ଵ: 0.7 𝑓ଶ: 0.3 
Direction of optimization Maximum 
Number of generations 3000 
Size of population 10 
Settings for genetic operations Crossover type: OX (order crossover), initial probability: 0.8 

Genetic operation: Mutation, initial probability: 0.1 
 
The simulation settings for the PSGA tests were the same as the settings for the MPP-based SBPPC (Table 8). The initial 
populations for PSGA was generated by using the IPP algorithm. Fig. 7 shows the results of a simulation study of 30,000 
detailed production plans generated by PSGA. 
 

 
Fig. 7. Running results of PSGA 

 
During PSGA optimization, the values of primary objective function (number of performed jobs) ranged from 868 to 973. 
Despite generating and simulating 30,000 candidate solutions, PSGA could not find the solution that was determined by the 
MPP-based search algorithm, whose objective function value was 981 and where only 5 iterations were required to find it. 
The disadvantage of PSGA appears when generating newer populations. PSGA only and exclusively takes into account the 
settings of genetic operations. In contrast, our proposed search method uses purposefully designed modification operations.  
 
Further comparative studies were performed with different problem instances and parameter settings. These demonstrated 
that the proposed MPP-based search algorithm solves EFJSHR problems more efficiently than the genetic algorithm. 
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5. Conclusions 

In our research, we focused on modelling and solving an integrated production planning, scheduling and control problem of 
on-demand flexible manufacturing. Key features of the modelled manufacturing system include a resource-constrained 
manufacturing environment, skilled manual workers, worker-dependent individual processing and material handling times, 
alternative technological routes, limited available workstations, and predefined shifts. During the research, we developed 
production planning, scheduling and control algorithms that can flexibly adapt to changing requirements and resource 
constraints. To generate detailed production plans, we developed a predictive search algorithm that includes advanced event-
driven simulation. We also developed reactive control algorithms that are embedded into the simulation to make the necessary 
decisions at the same time as the execution of manufacturing processes. To solve the integrated problem, we proposed a new 
approach based on a two-level decision hierarchy. The upper level uses a special multi-objective heuristic search algorithm 
to generate detailed production plans by determining the values of primary decision variables, while at the lower level, the 
values of the secondary decision variables are calculated by multi-criteria control algorithms. In this paper, we have described 
the detailed optimization model of the investigated problem, the solution method and the key algorithms. The effectiveness 
of the proposed algorithms is demonstrated by presenting some running results. We compared our search algorithm with the 
genetic algorithm of the Plant Simulation software.  
 
The results show that the proposed search algorithm is much more efficient than the genetic algorithm. The optimization 
model of the integrated problem of production planning and production control was formulated in such a way that the 
individual skills of the workers were also taken into account. Due to the complexity of the reactive control and the large 
number of influencing factors, classical one-way rule-based heuristic algorithms cannot work effectively in different extreme 
situations. The proposed multi-criteria decision-making algorithms are able to adapt to changing conditions due to their 
flexibility. Considering several aspects simultaneously is very important because it allows practical needs to be incorporated 
into the model. By modifying the weights (control parameters) of decision aspects, the management strategy can be fine-
tuned. Our further research plans include the study of the possibilities of systematic and/or flexible change of decision aspects 
within the operation of control algorithms. 
 
The results of the experiments, which focused on the 𝛼 and 𝛽 control parameters, have shown that the usage of all decision 
aspects provides better results than the consideration of only one aspect. When adjusting weights, we have found that any 
aspect alone works less effectively than all together. Moreover, ignoring any of aspects produces a worse result than the usage 
of all aspects together. These results demonstrate that the usage of workers’ intuitive decisions is less effective than the 
application of the proposed control algorithms.  
 
Our simulation studies have also shown that taking workers' skills into account contributes greatly to increasing performance. 
In addition, proactively generated production plans can be performed more accurately, thus fewer corrections have to be made 
during the execution of processes. 
 
The presented models and solution algorithms are suitable for control of various specific production systems operating in 
industrial practice. In a cyber-physical environment, the real system and the simulation system can work together in real time, 
so the control algorithms are able to handle directly real events as well. Workers’ skills can be continuously updated in the 
model. As time progresses, stored values that express the actual ability of workers to perform operations can be continuously 
refined. The method can also be used to control automated production systems, for example, in the case of automated guided 
vehicles (AGVs) for material supply, to assign tasks and resources. The proposed approach and model can be adapted to any 
manufacturing or service processes using appropriately chosen abstract objects. 
 
Cyber-Physical Production Systems, Industry 4.0, Internet of Things (IoT), Cloud Computing and Big Data paradigms and 
technologies are playing an increasingly important role in the development and management of production systems and virtual 
enterprises. These technologies allow the practical application of the proposed decision models and algorithms for companies 
by providing the appropriate input data, computational capacities, and application environment. This makes it possible to 
integrate the models into applied systems of enterprises. 
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