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 Optimizing the trade-off between crucial decisions has been a prominent issue to help decision-
makers for synchronizing the production scheduling and distribution planning in supply chain 
management. In this article, a bi-objective integrated scheduling problem of production and 
distribution is addressed in a production environment with identical parallel machines. Besides, 
two objective functions are considered as measures for customer satisfaction and reduction of 
the manufacturer’s costs. The first objective is considered aiming at minimizing the total 
weighted tardiness and total operation time. The second objective is considered aiming at 
minimizing the total cost of the company’s reputational damage due to the number of tardy 
orders, total earliness penalty, and total batch delivery costs. First, a mathematical programming 
model is developed for the problem. Then, two well-known meta-heuristic algorithms are 
designed to spot near-optimal solutions since the problem is strongly NP-hard. A multi-objective 
particle swarm optimization (MOPSO) is designed using a mutation function, followed by a non-
dominated sorting genetic algorithm (NSGA-II) with a one-point crossover operator and a 
heuristic mutation operator. The experiments on MOPSO and NSGA-II are carried out on small, 
medium, and large scale problems. Moreover, the performance of the two algorithms is 
compared according to some comparing criteria. The computational results reveal that the 
NSGA-II performs highly better than the MOPSO algorithm in small scale problems. In the case 
of medium and large scale problems, the efficiency of the MOPSO algorithm was significantly 
improved. Nevertheless, the NSGA-II performs robustly in the most important criteria. 

© 2021 by the authors; licensee Growing Science, Canada 
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1. Introduction 

It is essential for supply chains that customers and manufacturers work together in a coordinated approach in order to achieve 
information sharing, communication, and high efficiency. For the sake of these objectives, there should be a quick flow of 
information between manufacturers, retailers, distribution centers, delivery systems, and customers (Simchi-Levi, 2004). The 
challenge of the integrated supply chain scheduling at different levels has been one of the most significant issues in Supply 
Chain Management (SCM) and Operations Research (OR) (Thomas & Griffin, 1996). In classical production environments, 
schedules and delivery dates are fixed and certain, and the transportation unit is not taken into account. Moreover, decisions 
on production scheduling and delivery schedules are considered separately (Ho & Chang, 1995). Thus, the Integrated 
Production and Distribution Scheduling (IPDS) model refers to issues that consider production and distribution scheduling 
simultaneous and integrated (Chen & Vairaktarakis, 2005; Wang et al., 2014). In IPDS problems concerning the batch delivery 
system, dispatching jobs should wait until all of them are processed in the same batch. Accordingly, the shipping date of each 
batch has to be equal to the last completed job, which belongs to the batch, and the number of batches that are sent for the 
customer affects delivery costs. On the one hand, the waiting time of the jobs for processing the batches may raise the number 
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of tardy jobs, resulting in an increase in tardiness costs. On the other hand, sending several jobs in batches brings about a 
decline in delivery costs and earliness penalties (Chen, 2010). Therefore, there is a trade-off between the tardiness penalties, 
the operation time of the entire process (makespan), and the earliness penalties and delivery costs. In this regard, simultaneous 
optimization of this trade-off can make the problem more complicated, but makes it closer to reality. One of the conventional 
production systems in the supply chain scheduling problems is the “parallel machines” environment. A parallel production 
planning problem consists of a set of 𝑛 jobs which should be processed and scheduled on a set of 𝑚 parallel machines. Hence, 
a sequence of processing jobs must be found in order to optimize the total operation time and other supply chain costs using 
one or more objective functions (Cheng & Sin, 1990; Sivrikaya-Şerifoǧlu & Ulusoy, 1999). In this article, the sequential 
processing of jobs is considered as the production ability, in which each job has only one action that can be processed by each 
machine. Then, the other jobs from the same batch are sequentially processed; thereby, the batch processing time equals the 
sum of processing times of all jobs belonging to it.  

Wang and Cheng (2000) performed the first research on parallel machines scheduling with batch delivery aiming at 
minimizing the total operation time and delivery costs. Lenstra et al. (1977) have shown that parallel production scheduling 
is a strongly NP-hard problem for 𝑚 ≥ 3. Furthermore, if the problem is considered with multiple objectives, it will become 
more complicated (Wang & Liu, 2015). Hence, researchers have begun to develop approximated solution methods, and as a 
result, several meta-heuristic algorithms have been introduced for solving multi-objective scheduling problems (Coello, 2002; 
Tyagi & Gupta, 2018). As claimed by Deb (2014), three solution methods, including a priori, a posteriori, and interactive 
approaches are suggested to solve multi-objective optimization problems (MOPs). According to the second approach, the 
Pareto curve is created by a set of Pareto solutions. So, decision-makers are able to choose some solutions from the Pareto 
curve as the optimal solution. In the last decade, researchers have taken into account the second approach in an attempt to 
resolve multiple objectives problems (Ojstersek et al., 2020). In this study, a bi-objective scheduling for production and 
distribution will be integrated in a production environment with identical parallel machines. Moreover, minimizing total 
weighted tardiness and total operation time is taken into account as the first objective function. In addition, minimizing the 
total weighted number of tardy orders, total earliness penalty, and total batch delivery costs is considered as the second 
objective function. Then, a bi-objective problem is modeled using a mixed integer linear programming (MILP) approach. 
Subsequently, two meta-heuristics algorithms are proposed to solve the problem. The first one is the multi-objective particle 
swarm optimization (MOPSO), and uses a mutation function. The second one is the non-dominated sorting genetic algorithm 
(NSGA-II), and uses a one-point crossover operator and a heuristic mutation operator. The Taguchi parameter tuning method 
is applied to adjust the algorithms’ parameters. After setting the parameters, the performance of the two algorithms is 
examined in small, medium, and large scale problems, using five comparing criteria. Finally, the interpretations of the 
experiments are presented. 

The rest of the article is organized as follows: In Section 2, the literature on the IPDS problem is reviewed to identify the 
research gap and explain the main contributions of this article. In Section 3, the problem definition is presented, and the 
notations used throughout the paper are given. Section 4 provides the mathematical model for this problem, including the 
objective functions and constraints, along with their explanations. In Section 5, the details of the MOPSO and the NSGA-II 
algorithms are explained. In Section 6, experimentation and computational results are provided. The last section (Sect.7) 
draws conclusions and proposes future research directions. 

2. Literature review 

A review of the studies on the IPDS problem in the parallel machines environment is provided. Furthermore, the researchers’ 
achievements in the meta-heuristic algorithms in this field, as well as the main contributions of this article, are also presented 
in this section. 

2.1. Integrated production and distribution scheduling 

Most studies have focused on the IPDS problem with respect to maximizing customer service levels and minimizing customer 
delivery time, where delivery costs were not considered. Chen (2010) conducted a proper review of scheduling problems with 
regard to dispatching. He introduced the symbol 𝛼/𝛽/𝜇/𝛿/𝛾 to illustrate related problems. Here, 𝛼 represents the structure 
of machines, 𝛽 represents the constraints and specific conditions. Besides, 𝜇 denotes the characteristics of the delivery process 
shown as 𝑣ሺ𝑥, 𝑦ሻ, which 𝑥 and 𝑦 represent the number of vehicles and their capacity, respectively. Furthermore, 𝛿 indicates 
the number of customers, and finally, 𝛾 denotes the objective function(s). To cite an example, Potts (1980) was among the 
first to investigate an IPDS problem. This problem involves a type of delivery time regardless of transportation costs, and is 
in the category of single and immediate delivery. As one of the first studies on batch delivery and transportation costs, Cheng 
and Kahlbacher (1993) examined the 1//𝑣(∞,∞),𝑑𝑖𝑟𝑒𝑐𝑡/1/∑𝐸௝ + 𝑇𝐶 problem aiming at minimizing the total weighted 
earliness and delivery costs, and revealed that it is an ordinarily NP-hard problem. Chang et al. (2014) investigated an IPDS 
problem in order to minimize total job delivery time and batch delivery costs. Besides, an ant colony optimization (ACO) was 
designed to solve the problem. Gao et al. (2015) studied the IPDS problem concerning batch delivery with limited vehicle 
capacity to multiple customers aiming at minimizing the makespan. They also proved that the general version of the IPDS 
problem is strongly NP-hard. Aminzadegan et al. (2019) investigated the 1/𝑏𝑎𝑡𝑐ℎ/𝑣(∞,∞),𝑑𝑖𝑟𝑒𝑐𝑡/𝑛/𝜃 ∑ 𝑌௕ே௕ୀଵ + 𝑒 ∑𝑓௝ +
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distribution, and resource allocation to minimize tardiness, lost sale and batch delivery costs, and resource allocation. 
Moreover, an ant lion optimization (ALO) algorithm and adaptive genetic algorithm (AGA) were customized to solve the 
problem. In a make-to-order (MTO) strategy, Liu et al. (2020) considered the IPDS problem with vehicle routing problem as 
transportation stage aiming at minimizing the total order delivery time. To solve the problem, the variable neighborhood 
search (VNS) algorithm was applied using ten neighborhood structures and a local search algorithm. As a result, the 
effectiveness of the algorithm was superior to memetic and large neighborhood search (LNS) algorithms.  

The problem of supply chain scheduling in parallel machines environment has been studied by researchers in recent years 
(Munoz-Villamizar et al., 2019; Nikabadi & Naderi, 2016). Lin and Jeng (2004) examined the 𝑃௠/𝑆௧௕/𝑣(∞,∞),𝑑𝑖𝑟𝑒𝑐𝑡/1/𝐿𝑚𝑎𝑥 and 𝑃௠/𝑆௧௕/𝑣(∞,∞),𝑑𝑖𝑟𝑒𝑐𝑡/1/∑𝑈௝ problems to minimize tardiness and the total number of late orders. Their 
computational results indicated that the dynamic programming algorithm was able to solve the small size problems, and 
problems up to 500 jobs and five machines were solved using heuristic algorithms. Considering the different setup times for 
unrelated parallel machines, Liu and Lu (2016) investigated the 𝑅௠ → 𝐷,ℎ/𝑟 − 𝑎, 𝑣 = 1, 𝑐 ≥ 1/𝐷𝑚𝑎𝑥 and 𝑅௠ → 𝐷, ℎ/𝑛𝑟 −𝑎, 𝑣 = 1, 𝑐 ≥ 1/𝐷𝑚𝑎𝑥 problems. In their model, orders are processed on parallel machines and then they are delivered to 
customers. They also considered the availability and unavailability of the machines and interruption of jobs constraints for 
these problems. Joo and Kim (2017) considered the IPDS problem with sequence-dependent setup time and minimized the 
makespan to ascertain machine scheduling, batching, and distribution schedule. The problem was solved by several types of 
the GA framework and the analysis indicated the outperformance of the GA_CRC type algorithm.  The work of Ekici et al. 
(2019) proposed an MTO strategy aiming at minimizing total tardiness and earliness penalties in the attendance of sequence-
dependent setup time and the other features of unrelated parallel machines. To address the problem, three heuristic methods 
and a Tabu search-based meta-heuristics were designed. 

In studies carried out on the IPDS problem with identical parallel machines, Shim and Kim (2008) examined an identical 
parallel machines scheduling problem to minimize total tardiness of orders with the notation of 𝑃௠//𝑉(∞,∞), 𝑠𝑝𝑙𝑖𝑡,𝑑𝑖𝑟𝑒𝑐𝑡/1/∑𝑇௝. Ullrich (2013) considered the IPDS problem in an identical parallel machines environment with machine ready times, 
and delivery time windows for the vehicle routing problem. Afterward, a GA was adopted to handle the problem. Schaller 
(2014) solved the scheduling problem with an objective function in an attempt to entirely eliminate total tardiness in identical 
parallel machines by taking into account setup times for the machines. By using Tabu-search and GA, and the optimal branch 
and bound method, he showed that GA performed much better in problem-solving. Chen et al. (2015) studied the 𝑃௠/𝑝𝑚𝑡𝑛/𝐷𝑚𝑎𝑥 problem, which was a two-stage scheduling problem. That is, the orders are processed on identical parallel 
machines, and afterward are delivered to customers by a single vehicle. They solved the problem by using an approximate 
algorithm with a constrained boundary to minimize the maximum delivery time. Moreover, Chen et al. (2016) developed the 
work of Chen et al. (2015) by considering a set of 𝑛 due dates assigned to 𝑛 jobs. Wang et al. (2019) solved an IPDS problem 
with some characteristics such as machine-dependent ready times, and multi-trip vehicle routing with time windows and 
uncertain travel times. They proposed a robustness approach to handle uncertain travel times, and a memetic algorithm for 
minimizing the tardiness and delivery costs. Wang et al. (2019) considered an IPDS problem in the hybrid flow-shop 
environment including identical parallel machines in three stages. To address the problem, a four-layered constructive (𝐶𝐻௏ேௌ), a hybrid heuristic method (𝐶𝑂𝑁𝑆௏ேௌ), and a VNS algorithm were proposed to minimize the delivery completion 
time. 

2.2. Use of the meta-heuristic algorithms 

Synchronization of production and distribution scheduling is an NP-hard problem. Accordingly, several meta-heuristics 
algorithms (i.e., PSO, GA, ACO) have been designed and customized to solve these supply chain scheduling problems. 
Subsequently, multi-objective meta-heuristics algorithms (i.e., NSGA-II, MOPSO, SPEA-II, MOACO) have also been 
proposed by researchers to optimize the trade-off between various objectives in supply chain scheduling problems. Cakici et 
al. (2012) proposed a bi-objective GA with different heuristics to minimize total weighted tardiness and delivery costs for an 
MTO scheduling problem. Besides, the work of Cakici et al. (2014) solved an IPDS problem in a parallel machines production 
environment with a single vehicle and multiple customers. Hamidinia et al. (2012) examined the 1//∑∑𝛼௜௝𝑇௜௝ + 𝛽௜௝𝐸௜௝ +ℎ௜௝𝐻௜௝ + 𝐷௝𝑌௝௞ problem with a single machine for processing jobs and multiple customers. Also, mathematical programming 
was designed to minimize total earliness, tardiness, holding penalties, and batch delivery cost. Furthermore, they used a GA 
and integer programming to solve the problem. The findings demonstrated that the proposed GA had high performance.  
Rajkanth et al. (2017) examined the single machine and parallel machines scheduling problems, in which the parallel machines 
problem was solved using two models including the jobs sequence and jobs assignment. As a result, an appropriate upper 
limit was achieved from a GA to assess the efficiency of the meta-heuristic algorithm provided for parallel machine 
scheduling. Raghavan et al. (2018) examined a scheduling problem for challenges faced by factories that produced certain 
electronic components, including reworking and re-processing. They showed that, compared to the CPLEX solver and 
modified shortest total estimated processing time (MSTEPT) algorithm, the modified GA had the best quality solutions in 
small to medium size problems. However, the MSTEPT outperformed the modified GA in large-scale problems.  
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Assarzadegan and Rasti-Barzoki (2016) investigated the 1/𝑣(∞,∞),𝑑𝑖𝑟𝑒𝑐𝑡/𝑘/𝑇𝑚𝑎𝑥+∑∑𝛼௝௞ × 𝑚𝑎𝑥( 0,𝑑௝௞ − 𝐴௝௞) +∑𝜃௞𝐵௞ scheduling problem based on the due date assignment for a single machine and several customers. Then, they solved 
the problem by using the parallel simulated annealing (PSA) and AGA algorithms. Jiang et al. (2017) examined the 𝑃௠/𝑏𝑎𝑡𝑐ℎ, 𝑡௜ ,𝑝௝ , 𝑠௝ ≤ 𝑐/𝐶𝑚𝑎𝑥 problem, which is a scheduling coordination problem on identical parallel machines along 
with batch delivery. They applied some constraints such as different processing times and sizes, as well as a smaller number 
of jobs than the capacity of the machine. To solve the problem, they used a combination of the DPSO and GA algorithms. 
Saeidi (2016) solved a multi-objective scheduling problem on parallel machines with the intention to minimize both the 
makespan and machine costs by using MOPSO and NSGA-II. By comparing the obtained solutions, the NSGA-II 
demonstrated a higher performance than the MOPSO algorithm. Hassanzadeh et al. (2016) addressed a bi-objective IPDS 
problem in the flow-shop environment using the HCMOSPO and HBNSGA-II algorithms. Then they compared the results 
with the MOPSO algorithm and the NSGA-II. They reported that the developed algorithms had a superior performance than 
the other algorithms. Sheikh et al. (2018) developed multiple-objectives scheduling problem in a flow-shop environment. 
Additionally, three objective functions were considered, including minimizing total tardiness, total completion time, and the 
makespan. Also, the problem was solved using heuristic and meta-heuristics algorithms, i.e., the NSGA-III and the MOPSO 
algorithm. The results indicated the superiority of the meta-heuristics algorithms, with the NSGA-III exceeding the MOPSO 
algorithm in one of the three performance criteria. Ganji et al. (2020) applied three meta-heuristic algorithms, including 
MOACO, NSGA-II, and MOPSO, to address a green multi-objective IPDS problem to minimize customer dissatisfaction, 
total tardiness penalty, fuel costs, emitted carbon from vehicles, and distribution costs. The outcomes of experiments revealed 
the outperformance of NSGA-II compared to the other two algorithms. Some studies were performed in the context of multi-
objective optimization parallel machines scheduling problems with meta-heuristic algorithms. Guo et al. (2016) studied a bi-
objective IPDS problem in an unrelated parallel machines environment. The study aims to minimize the total number of 
delayed orders and the sum of holding costs, labor costs, tardiness and earliness costs, and batch delivery costs. A bi-level 
evolutionary optimization (BLEO) algorithm was used to solve the problem. Shahidi-Zadeh et al. (2017) developed a multi-
objective problem in the unrelated parallel machines environment, and considered characteristics such as ready jobs, release 
time, and the batch’s capacity constraint. Two objective functions were considered, including minimization of total tardiness, 
total earliness, and costs of purchasing the machinery, and minimization of the makespan. The results showed a better 
performance of the bi-objective harmonic search (MOHS) algorithm compared to the other algorithms. Zhou et al. (2018) 
considered the 𝑃௠/𝐵, 𝑟௝/𝐶𝑚𝑎𝑥,𝑇𝐸𝐶 problem. They defined two objective functions, including minimization of total 
electricity consumption costs, which is an environmental sustainability indicator, and minimization of the makespan. They 
solve the large instances by using a multiple-objectives discrete differential evolution algorithm. Afterward, the performance 
was compared to the NSGA-II and AMGA (the archive-based micro-genetic algorithm). It was revealed that the suggested 
algorithm had a preferable performance regarding the quality of solutions. Wu and Che (2019) considered a multi-objective 
energy-efficient scheduling problem for unrelated parallel machines. Afterward, they employed two objective functions in an 
attempt to minimize the total energy consumption and the makespan. They developed a memetic differential evaluation 
(MDE) algorithm and showed that the MDE algorithm was considerably superior than the multi-objective SPEA-II and 
NSGA-II. 

2.3. Main contributions 

There is a significant research gap according to the literature review. As can be seen from Table 1, optimizing the trade-off 
between crucial criteria of decision-making in the multi-objective IPDS problem has not been considered, to the best of our 
knowledge. So, a new bi-objective IPDS problem in the identical parallel machine environment will be optimized to fill the 
research gap. The first objective is considered as a measure to increase customer satisfaction (minimizing tardiness penalty 
and makespan). The second one is considered as a measure to reduce some manufacturer’s costs such as warehouse cost, 
increasing the company’s reputation, and transportation costs. Accordingly, the main contributions are as follows: 

 Concept: The idea of integrated production and distribution scheduling is conceptualized so as to help 
decision-makers for evaluating the trade-off between customer service costs and manufacturer’s costs. After 
that, the idea is operationalized in a problem of supply chain scheduling in an identical parallel machines 
environment.  

 Model: A new multi-objective MILP model is developed to assess the trade-off between two crucial objective 
functions. The first objective minimizes the total weighted lateness and total operation time. The second one 
minimizes the total earliness penalty, total weighted number of tardy orders, and total batch delivery costs. 

 Solution approach: Two meta-heuristics algorithms are suggested to address the small, medium, and large scale 
problems. First, the MOPSO algorithm with a mutation function is proposed, followed by the NSGA-II with a one-
point crossover operator and a heuristic mutation operator. Afterward, the algorithms are compared using five 
comparing criteria. It should be noted that a trade-off between batch delivery costs and the customer’s contractual due 
date is examined in detail as using these algorithms.
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3. Problem description 

In this section, we explain the notations applied in the whole article, followed by describing the details and assumptions of 
the problem. 

Notations 

Indices 𝑖 Job (order) index, 𝑖 ∈ {1, … ,𝑛} 𝑏 Batch index, 𝑏 ∈ {1, … ,𝑛} 𝑘 Machine index, 𝑘 ∈ {1, … ,𝑚} 

Parameters 𝑛 Total number of jobs (orders) 𝑚 Total number of machines 𝑑௜ Contractual delivery time of job 𝑖 𝑤௜ Reputational weight of the job 𝑖 (The cost of the company’s reputational damage 
for job 𝑖) 𝑝௜ Processing time of the job 𝑖 𝑆௕ Setup time of sub-batch from batch 𝑏 𝜃 Delivery cost 𝛼௜ The weight of lateness for job 𝑖 per elongated time unit 𝛽௜ The penalty of earliness for job 𝑖 𝑀 A huge positive number  

Decision variables 𝐶௠௔௫ Makespan  𝐶௜ Completion time of the processed job 𝑖 (delivery time) 𝐶௕,௞ௌ஻ Completion time of sub-batch from batch 𝑏 on the machine 𝑘 𝐶௕ Completion time of the batch 𝑏 𝑇௜ Lateness of the job 𝑖 𝐸௜ Earliness of the job 𝑖 𝑍௕ 1 if the batch 𝑏 is formed and otherwise 0 𝑥௜௕௞ 1 if the job 𝑖 is in the batch 𝑏 and on the machine 𝑘 and otherwise 0 𝑎௕௞ 1 if a sub-batch of the batch 𝑏 is on the machine 𝑘 and otherwise 0 𝑈௜ 1 if the job 𝑖 is tardy and otherwise 0 

Details and assumptions of the problem 

This study presents a bi-objective scheduling problem of production and distribution in the production environment with 
identical parallel machines, as defined by Chen (2010): 𝑃௠/𝑆௕, 𝑏𝑎𝑡𝑐ℎ/𝑣(∞,𝑛),𝑑𝑖𝑟𝑒𝑐𝑡/1/∑ 𝛼௜𝑇௜ + 𝐶௠௔௫ ,∑ 𝑤௜𝑈௜௡௜ୀଵ +௡௜ୀଵ∑ 𝛽௜𝐸௜ + 𝜃 ∑ 𝑍௕௡௕ୀଵ௡௜ୀଵ . It means that there is a processing system for 𝑛 jobs that includes 𝑚 parallel machines and the 
sequence-independent setup time to form each sub-batch of batch 𝑏; here, orders are delivered directly in batches to the 
customer. Finally, two objective functions are addressed. The following assumption are considered for the problem: 

 The number of 𝑛 independent jobs must be processed. Each job is processed at a time on one of the 𝑚 machines. 
 At time zero, all jobs are available. 
 The processing time for each job (𝑝௜) is definite and above zero. 
 Each machine 𝑘 can only process one job 𝑖 at a time and all machines are accessible at all time. 
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 The preemption of the job is not allowed. 
 Setup times are independent of the sequence for forming the sub-batches of each batch on the parallel machines. 

Consider a supply chain scheduling problem in an identical parallel machines environment, which includes a production 
system with 𝑚 machines and 𝑛 jobs. A customer orders 𝑛 jobs to a manufacturer which each job 𝑖 has a priority weight of 𝑤௜, 
a processing time of 𝑝௜, and a contractual due date of 𝑑௜. If the job’s completion time (𝐶௜) is longer than its contractual due 
date (𝑑௜), the job is tardy, and a job is early if the job’s completion time (𝐶௜) is lower than its contracted due date (𝑑௜). 
Subsequently, an earliness penalty of 𝛽௜ for early jobs and a tardiness cost of 𝛼௜ for tardy jobs are considered. Besides, the 
number of tardy jobs delivered to the customer has a notable impact on the manufacturer's reputation. Hence, there is another 
type of tardiness cost called “the cost of the company’s reputational damage” that only depends on the number of tardy jobs 
based on their priority weight (𝑤௜) and not depends on the amount of tardiness. 

In the manufacturing unit, jobs are sequentially processed in batches, and each batch is delivered to the customer by a 
vehicle with  the capacity of 𝑛. In this problem, when a job is completed in a batch, it waits for all jobs to be completed. Each 
batch can include one or several sub-batches that are processed on different machines. Afterward, the sequence-independent 
setup time (𝑆௕) is imposed when a sub-batch on any machine is created from each batch and it is applied before the beginning 
of the sub-batch processing. After this setup time, jobs in the same sub-batch are sequentially processed. So, the variable 𝐶௕,௞ௌ஻ 
is a time when all the sub-batch (SB) jobs of the batch 𝑏 on the machine 𝑘 are processed and equals to the last completed job 
which belongs to the sub-batch of batch 𝑏. Moreover, variable 𝐶௕ is a time that all jobs in batch 𝑏 are processed and it equals 
to the latest completion time of the sub-batch (𝐶௕,௞ௌ஻). Here, 𝑥௜௕௞ is a binary variable and if the job 𝑖 is in the batch 𝑏 and on 
machine 𝑘, its value is 1, and 0 otherwise. Similarly, in the case of 𝑈௜, if the job 𝑖 is tardy, the 𝑈௜ value is 1 and otherwise 0. 
Moreover, in the case of 𝑍௕, if batch 𝑏 is formed, i.e., it contains the job, its value is 1 and 0 otherwise. The batch delivery 
date to the customer is the maximum value of the jobs’ completion times (𝐶௜) in that batch. So, the maximum completion 
time of all orders is equal to the total operation time (makespan). Later on, delivery costs can be reduced by batch delivery, 
in which the delivery system has one or several batches. In this problem, there are sufficient vehicles with the capacity of 𝑛, 
and the delivery cost for each batch is equal to 𝜃. For instance, if the batch delivery cost (𝜃) is raised by a third-party logistics 
company, the manufacturer will decide to decrease the dispatching number of batches; thereby, the tardiness penalty can 
increase, and vice versa. As a result, finding an optimal sequence of jobs processing on the parallel machines and assigning 
them to the batch are the primary purposes of this IPDS problem in order to optimize the trade-off between the decision 
variables. Fig. 1 indicates the schematic view of the problem. 

 

 
  

 

 

 

 
 

 

 
 

Several jobs with different 
priority weights are ordered 
by the customer to the 
manufacturer 

The manufacturing unit with 
identical parallel machines 
with sequence-independent 
setup times to form each 
batch 

Sufficient capacity-
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different batch delivery 
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One customer with 
different contractual due 
dates  

  

Fig. 1. The problem schematic view 

4. Mathematical modeling 

In this study, we consider the production environment with identical parallel machines and present a multi-objective model 
with mixed integer linear programming. Moreover, we attempt to minimize the most important costs based on the completion 
time of the orders and batch delivery. Hence, we attempt to minimize the two objective functions simultaneously. The 
objectives are (1) minimizing the total tardiness penalty and makespan, and (2) minimizing the total cost of the company’s 

Production stage Delivery stage 
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reputational damage due to the number of tardy orders, total earliness penalty and total batch delivery costs. The multi-
objective problem is as follows:  

Minimize ෍𝛼௜𝑇௜௡
௜ୀଵ + 𝐶௠௔௫ (1) 

Minimize ෍𝑤௜𝑈௜௡
௜ୀଵ + ෍𝛽௜𝐸௜௡

௜ୀଵ + 𝜃෍𝑍௕௡
௕ୀଵ  (2) 

s.t. 𝑀(1 − 𝑈௜) + 𝑇௜ ≥ 𝐶௜ − 𝑑௜ ∀𝑖 (3) 𝑀𝑈௜ + 𝐸௜ ≥ 𝑑௜ − 𝐶௜ ∀𝑖 (4) 𝑀.𝑈௜ ≥ 𝐶௜ − 𝑑௜ ∀𝑖 (5) 

෍෍𝑥௜௕௞௡
௕ୀଵ

௠
௞ୀଵ = 1 ∀𝑖 (6) 

𝑀.𝑎௕௞ ≥෍𝑥௜௕௞௡
௜ୀଵ  ∀𝑘, 𝑏 (7) 

𝐶௕,௞ௌ஻ ≥෍𝑥௜௕௞௡
௜ୀଵ . 𝑝௜ + 𝑎௕௞. 𝑆௕ + 𝐶(௕ିଵ),௞ௌ஻  ∀𝑘 , 𝑏 (8) 

𝐶଴,௞ௌ஻ = 0 ∀𝑘 (9) 𝐶௕ ≥ 𝐶௕,௞ௌ஻ .𝑎௕௞ ∀𝑘, 𝑏 (10) 

𝐶௜ = ෍෍𝐶௕ .௠
௞ୀଵ

௡
௕ୀଵ 𝑥௜௕௞ ∀𝑖 (11) 

𝐶௠௔௫ ≥  𝐶௜ ∀𝑖 (12) 

𝑀.𝑍௕ ≥෍෍𝑥௜௕௞௡
௜ୀଵ

௠
௞ୀଵ  ∀𝑏 (13) 

𝑀(1 − 𝑍௕) ≥ −෍෍𝑥௜௕௞௡
௜ୀଵ

௠
௞ୀଵ  ∀𝑏 (14) 

𝐶௠௔௫ ,𝐶௜ ,𝐶௕,௞ௌ஻,𝐶௕,𝐸௜ ,𝑇௜ ,𝐻௕,௞ௌ஻ ,𝑂௜௕௞ ≥ 0 ∀𝑖, 𝑘, 𝑏 (15) 𝑥௜௕௞,𝑍௕ ,𝑎௕௞,𝑈௜ ∈ {0,1} ∀𝑖, 𝑘, 𝑏 (16) 

The first objective function, presented in Relation (1), minimizes the total weighted tardiness and total operating time. Tardy 
jobs are crucial for producer in terms of the level of customer service and customer satisfaction with the timely delivery of 
orders. Therefore, one of our goals is to minimize total weighted tardiness (𝛼௜𝑇௜) and total operation time (𝐶௠௔௫). The second 
objective function, presented in Relation (2), minimizes the total cost of the company’s reputational damage (𝑤௜𝑈௜); if the 
job is tardy, it imposes a reputation cost on the company based on its weight or priority, total earliness penalty (𝛽௜𝐸௜) and 
total batch delivery cost to the customer. Relations (3) and (4) calculate the amount of tardiness and earliness for job 𝑖, 
respectively. Relation (5) determines whether or not job 𝑖 is tardy. Equation (6) assures that each job is only processed in one 
batch and on one machine because no preemption is allowed. Relation (7) specifies whether a sub-batch of batch 𝑏 is located 
on machine 𝑘. Constraint (8) calculates the completion time for a sub-batch of batch 𝑏 processed on machine 𝑘. Equation (9) 
considers the starting schedule at time zero. The completion time of batch 𝑏 is calculated in Constraint (10), and the delivery 
time of job 𝑖 is calculated in equation (11). Relation (12) calculates the makespan and constraints (13) and (14) guarantee that 
if the number of members in the batch is zero, it does not form and otherwise, the batch is formed and the cost of delivery is 
included in the objective function (2). Relations (15) and (16) are used to demonstrate the natures of the decision variables. 
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As observed above, the model is nonlinear since some variables are multiplied in relations (10) and (11). Thus, auxiliary 
variables are defined, including 𝐻௕,௞ௌ஻ = 𝐶௕,௞ௌ஻ . 𝑎௕௞ in relation (10) and 𝑂௜௕௞ = 𝐶௕. 𝑥௜௕௞ in equation (11), and some relations are 
used to linearize constraints (10) and (11). The relations are defined as follows: 𝐶௕ ≥ 𝐻௕,௞ௌ஻  ∀𝑘, 𝑏 (10-1) 𝐻௕,௞ௌ஻ ≤ 𝑀.𝑎௕௞ ∀𝑘, 𝑏 (10-2) 𝐶௕,௞ௌ஻ −𝑀(1 − 𝑎௕௞) ≤ 𝐻௕,௞ௌ஻  ∀𝑘, 𝑏 (10-3) 𝐻௕,௞ௌ஻ ≤ 𝐶௕,௞ௌ஻ ∀𝑘, 𝑏 (10-4) 

𝐶௜ = ෍෍𝑂௜௕௞௠
௞ୀଵ

௡
௕ୀଵ  ∀𝑖 (11-1) 

𝑂௜௕௞ ≤ 𝑀. 𝑥௜௕௞ ∀𝑖, 𝑘, 𝑏 (11-2) 𝐶௕ −𝑀(1 − 𝑥௜௕௞) ≤ 𝑂௜௕௞ ∀𝑖, 𝑘, 𝑏 (11-3) 𝑂௜௕௞ ≤ 𝐶௕ ∀𝑖, 𝑘, 𝑏 (11-4) 

The nonlinear model converts to a MILP model by replacing the above relations instead of constraints (10) and (11). 

5. Solution approach 

Solving real-life problems is impossible or takes a very long time, due to their large scales. Moreover, the mentioned problem 
is a bi-objective optimization problem and is strongly NP-hard (Lenstra et al., 1977). Hence, two multi-objective meta-
heuristics, including MOPSO and NSGA-II, are designed for solving the problem as approximated solution methods since the 
exact solution methods cannot efficiently solve this problem. 

This section includes defining and explaining the details of the MOPSO and the NSGA-II algorithms presented in this article 
as efficient meta-heuristics algorithms for optimizing the mentioned bi-objective mathematical model. 

5.1. The MOPSO approach  
 

Eberhart and Kennedy (1995) first introduced the particle swarm optimization (PSO) algorithm. This algorithm is based on 
an uncertain search method to optimize the function inspired by the collective movement of birds or fishes seeking food. In 
the PSO algorithm, each particle has a fitness value calculated by a fitness function. Whatever a particle is closer to the 
objective (optimization) in the solution space, it has more competency. Coello et al. (2004) introduced a multi-objective type 
of the PSO algorithm called the MOPSO in 2004 and developed it in 2006 and 2007 (Coello et al., 2007; Coello, 2006). Since 
a unique optimal solution cannot be defined in the multi-objective optimization structure, the MOPSO uses a non-dominated 
solution procedure where particles randomly choose their leaders from an approximated Pareto curve. In this algorithm, a grid 
structure is defined to search for the solution space. Moreover, the best non-dominated solution is stored in an external memory 
(repository). After the particle updates its velocity and location, the best solution should be optimized. The pseudo-code of 
the MOPSO in detail is demonstrated in Appendix A. 

5.1.1. The MOPSO algorithm characteristics  

In this sub-section, the particles’ structure is defined, and then the fitness function, and the mutation operator applied on the 
MOPSO are explained in detail. 

Particles’ structure 

The MOPSO algorithm begins its work with a set of particles, which are the initial solution. Due to the need for a feasible 
solution, at first, the feasible solution must be saved according to a specific structure called particles' structure. Since the PSO 
algorithm has a continuous solution space, an initial solution is generated with random numbers between 0 and 1. 

Fig. 2 shows three strings generated by random numbers between 0 and 1 for an initial solution. The first string indicates the 
job number; the second string indicates the machine number allocated to the 𝑖௧௛ job. The batch number allocated to the 𝑖௧௛ 
job is also displayed in the third string; the number of jobs from 1 to 𝑛 is equal to the length of the strings. 
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Fig. 2 The strings generated by random numbers between {0, 1} 

Fitness function 

Particles are created for the initial solution in a continuous space. Thus, the numbers between 0 and 1 must be transformed to 
integer numbers to turn the continuous solution space into a discrete solution space. Finally, the values of the objective 
functions can be computed.The first decision is to assign the machine number to the 𝑖௧௛ job. To do so, the random numbers 
in interval [0,1] are generated and equation (17) is used to transform random numbers between 0 and 1 to integer numbers for 
the string of machine numbers: 𝑖ଶ = 1 + ሾ(𝑚− 1) × 𝛿(2, 𝑖)ሿ,𝑤ℎ𝑒𝑟𝑒 𝛿 ∈ {0, 1} (17) 

According to Eq. (17), 𝑚 is the number of machines and 𝛿 is the random number between 0 and 1, which assigned to the 𝑖௧௛ 
job in the second string. Thus, 𝑖ଶ illustrates the integer machine number, which is assigned to the 𝑖௧௛ job in the second string. 
The second decision is to assign the batch number to the 𝑖௧௛ job. To do so, the random numbers in interval [0,1] are generated 
and Eq. (18) is used to transform numbers between 0 and 1 to integer numbers for the string of batch number: 

According to Eq. (18), 𝑏 is the number of batches and 𝛿 is the random number between 0 and 1, which assigned to the 𝑖௧௛ job 
in the third string. So, 𝑖ଷ indicates the integer batch number, which is assigned to the 𝑖௧௛ job in the third string. According to 
Fig. 2, suppose that the customer orders six jobs that must be processed on three machines and delivered to the customer in 
three batches. Figure 3 shows the method is used to transform  the random numbers to integer numbers in the strings of Fig. 2 
and also, both the machine number and batch number are assigned to each job. 

 
Fig. 3 Random numbers are converted to integer numbers 

Use of a mutation function 

A mutation operator is utilized to intercept premature convergence, and better Pareto solutions can be obtained. In the MOPSO 
algorithm, after a mutation operation is performed on any of the genes in the structure, a new particle is created, in which the 
mutation rate (𝑚𝑢) is applied to each gene and the particle mutates with the probability of mutation (𝑝𝑚). In the mutation, a 
gene may be removed from a set of particle genes or a gene is added to the collection that has not so far existed in the 
population. Figure 4 indicates the mutation of genes in the strings of Fig. 2. Moreover, Fig. 5 shows a new mutated particle 
after the conversion from continuous to discrete operation. 

The mutation function is performed in accordance with the following steps: 

1. The genes are selected randomly in the strings based on a function of the number of jobs. 

2. A random number with a uniform distribution is allocated to each selected gene. Random numbers are obtained 
in the interval {𝑙𝑏,𝑢𝑏} with uniform distribution according to the following Eq. (19) to Eq. (22): 𝑝𝑚 = |(1 − (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1)/(𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1))(ଵ/௠௨)| 𝑑𝑥 = 𝑝𝑚 × (𝑉𝑎𝑟ெ௔௫ − 𝑉𝑎𝑟ெ௜௡) 𝑙𝑏 = |𝑥(𝑖, 𝑗) − 𝑑𝑥| 𝑢𝑏 = |𝑥(𝑖, 𝑗) + 𝑑𝑥| 

(19) 

(20) 

(21) 

(22) 

3. The batch and machine numbers associated with the 𝑖௧௛ job are determined, and then allocated to their positions 
in the strings. 

4. Previous steps are repeated until a new mutated population is completed. 

Job number 1 2 3 4 5 6
Machine number 0.53 0.86 1 0.41 0 0.68

Job Batch 0.47 1 0.74 0 0.52 0.83

Job number 1 2 3 4 5 6
Machine number 2 2 3 1 1 2

Job Batch 1 3 2 1 2 2

𝑖ଷ = 1 + ሾ(𝑏 − 1) × 𝛿(3, 𝑖)ሿ,𝑤ℎ𝑒𝑟𝑒 𝛿 ∈ {0, 1} (18) 
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Fig. 4 Random selection of genes and performing a mutation operator on them and new genes generated by 

random numbers in created intervals 
 

 
Fig. 5 A new particle created after conversion of random numbers to integer numbers 

5.2. The NSGA-II approach 

Goldberg and Holland (1988) were the first scholars to generalize the concept of multi-objective fitness problems. They used 
the non-dominated solution sorting concept and approached the algorithm for the Pareto solution set in consecutive iterations. 
Goldberg’s idea in the concept of the Pareto set was directly used by Deb et al. (2002). Actually, by using the idea of preference 
for non-dominated solutions and assigning them more fitness, a GA was created with non-dominated sorting. The NSGA-II 
is among the most well-known algorithms for multiple objectives optimization. Following the introduction of the first version 
of the algorithm to provide a variety of optimal solutions for the Pareto curve in 2002, the developers of the algorithm 
generated an elitist mechanism based on the importance of non-dominated queues under the name NSGA-II. The pseudo-code 
of the NSGA-II in detail is shown in Appendix A. 

5.2.1. The NSGA-II characteristics 
 

In this sub-section, the structure of the chromosome is defined, and then a one-point crossover operator and a mutation operator 
are explained in detail. 

Chromosomes’ structure 

Each repetitive meta-heuristic algorithm requires a structure (encoding) for representing solutions. A GA begins with the 
initial solutions of a set of chromosomes. Each of these chromosomes has a value for the objective function, called the fitness 
value. Subsequently, the chance of survival and reproduction is higher for a chromosome if it has a better fitness function 
value. These chromosomes are referred to as initial populations and can be produced in various ways, such as random 
reproduction, heuristic methods, and so on. In this paper, each chromosome has a length equal to the number of jobs from 1 
to 𝑛 and has three rows: the first row indicates the job number, the second and third rows illustrate the machine number and 
batch number, respectively, which are randomly determined and assigned to the 𝑖௧௛ job. Therefore, the initial population is 
randomly generated. Figure 6 indicates the chromosome structure. 

 
Fig. 6 A sample chromosome 

Suppose there is a problem with six jobs, three batches, and two machines. Figure 6 represents the 𝑖௧௛ job is processed on the 𝑘௧௛ machine and delivered to the customer in the 𝑏௧௛ batch. For example, the second job is processed on the second machine 
and delivered to the customer in the first batch. 

The crossover operator 

The most important operator in genetic algorithms is the crossover operator. Crossover is a process in which the old 
chromosome generation is mixed and combined to form a new chromosome generation. The couples considered as the parent 
in the selection section will share their genes and create new members. The crossover in a GA eliminates the genetic dispersion 
or genetic diversity of the population, as it provides a condition so that good genes can be found by other genes. In this study, 
we use a one-point crossover operator used in the literature on the scheduling problems (please see (Bose et al., 2019; Shen, 

lb=0.26 ub=0.8

Job number 1 2 3 4 5 6
Machine number 0.53 0.45 1 0.86 0.74 0.68

Job Batch 0.47 0.67 0.74 0.56 0.38 0.83

lb=0.45 ub=0.7

Job number 1 2 3 4 5 6
Machine number 2 1 3 2 2 2

Job Batch 1 2 2 2 1 2

Job number 1 2 3 4 5 6
Machine number 1 2 2 2 1 1

Job Batch 3 1 1 2 2 3
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2019)). The one-point crossover is applied to both second and third rows for machine assignment and batching the jobs. The 
one-point crossover operator on chromosomes is shown in Fig. 7. 

  

  
Fig. 7 The crossover operator 

The mutation operator 

A mutation is another operator that creates other feasible solutions. In genetic algorithms, after generating a member in a new 
population, each gene mutates with the probability of mutation and produces a mutated population. In this paper, the mutation 
operator is applied according to the following steps: 

1. The genes are selected randomly on the chromosome and the number of selected genes is determined by a function of 
the number of jobs. 

2. To mutate the genes in the second row, random numbers are selected from the interval [0,𝑀], where 𝑀 is the number 
of machines and assigned to the machine number for the 𝑖௧௛ job. 

3. To mutate the genes in the third row, random numbers are selected from the interval [0,𝐵], where 𝐵 is the number of 
batches and assigned to the batch number for the 𝑖௧௛ job. 

4. Previous steps are repeated to generate new offsprings until a new mutated population is completed. 

Fig. 8 indicates the mechanism of mutation operator for machine assignment to the 𝑖௧௛ job and batching the jobs. 

 
 

 
Fig. 8 The mutation operator 

6. Experimentation and computational results 

In this section, computational results are used to compare the efficiency and effectiveness of the NSGA-II and the MOPSO 
algorithm to solve small, medium, and large scale problems for nine classes presented in the following section (please see 
Sect. 6.2.). Firstly, the algorithm’s parameters are tuned using the Taguchi design method. Secondly, the effectiveness of both 
algorithms is compared using the comparison criteria, and the results of the meta-heuristic algorithms are finally analyzed. 

6.1. Parameter tuning 
 

The efficiency of meta-heuristic algorithms is directly related to their parameters so that the correct choice of parameters 
increases the efficiency of the algorithm and also increases the quality of solutions. There are several methods for setting the 
parameters of the algorithms. In this research, the Taguchi method is used to ascertain the optimum value of parameters with 
their levels in algorithms. The controlled parameters of the Taguchi method are shown in Tables 2 and 3 for tuning parameters 
with their levels for the NSGA-II and the MOPSO algorithm, respectively. The problem is divided into three scales and the 
experiments are implemented for nine classes. Moreover, Minitab 16 was used to carry out all experiments related to the 
Taguchi method. For this purpose, a problem with 15 jobs and five machines is considered as a small scale problem, and a 
problem with 100 jobs and 15 machines is considered as a medium and large scale problem to adjust the parameters. Each 

Job number 1 2 3 4 5 6 7
Machine number 1 2 2 3 3 1 2

Job Batch 2 3 2 1 4 3 1

Parent 1

Job number 1 2 3 4 5 6 7
Machine number 2 3 1 1 2 3 3

Job Batch 1 4 3 2 3 1 2

Parent 2

Job number 1 2 3 4 5 6 7
Machine number 1 2 1 1 2 3 3

Job Batch 2 3 3 2 3 1 2

Offspring 1

Job number 1 2 3 4 5 6 7
Machine number 2 3 2 3 3 1 2

Job Batch 1 4 2 1 4 3 1

Offspring 2

Job number 1 2 3 4 5 6 7
Machine number 2 3 1 1 2 3 3

Job Batch 1 4 3 2 3 1 2

Job number 1 2 3 4 5 6 7
Machine number 2 2 1 3 1 3 2

Job Batch 1 2 3 3 4 1 4
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experiment number included nine classes and five random instances were generated for each class; each sample was solved 
five times with algorithms, and the average is presented. Therefore, 405 small scale and 405 medium and large scale sample 
problems are created to tune the parameters of the NSGA-II. In addition, the number of 1215 small scale and 1215 medium 
and large scale sample problems are created to adjust the parameters of the MOPSO. Finally, a total of 3240 sample problems 
were created. 

 

Table 2  
Factors and their level in the NSGA-II 

   Small scale  Medium and large scale 
Name Notation  level 1 level 2 level 3  level 1 level 2 level 3 
Population size A  50 80 100  200 300 350 
Maximum iteration B  100 150 200  100 200 250 
Crossover Probability C  0.65 0.7 0.8  0.75 0.8 0.85 
Mutation Probability D  0.3 0.4 0.5  0.15 0.2 0.25 

 

Table 3  
Factors and their level in the MOPSO 

   Small scale  Medium and large scale 
Name Notation  level 1 level 2 level 3  level 1 level 2 level 3 
Population size A  50 80 100  200 300 350 
Capacity of repository B  50 80 100  200 300 350 
nGrid C  8 10 12  8 10 12 
Maximum iteration D  100 150 200  100 200 250 
C1, C2  E  0.5 1 2  0.5 1 2 
W F  0.8 0.9 1  0.8 0.9 1 
Mutation rate G  0.3 0.4 0.5  0.15 0.2 0.25 
Alpha H  0.08 0.1 0.2  0.08 0.1 0.2 

 

To use the Taguchi method, several comparison criteria are used so that the efficiency and effectiveness of each algorithm 
can be assessed (please see Sect. 6.3.). Moreover, a weight is allocated to each criterion based on its importance. Finally, each 
criterion is unscaled by the related deviation index (RDI), and then a response variable for the Taguchi method is achieved. 
Fig. 9 shows the signals to noise charts from the implementation of these tests. Based on the charts in Fig. 9, the selected 
NSGA-II and MOPSO algorithm factors levels are demonstrated in Tables 4 and 5, respectively. 

  

  

Fig. 9 Signal to noise charts by the Taguchi method 
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Table 4  
The factors and their level for NSGA-II 

Factors Small 
scale 

Medium and 
large scale 

Population size 100 200 
Maximum 

iteration 150 100 

Crossover 
Probability 0.65 0.85 

Mutation 
Probability 0.5 0.2 

Table 5  
The factors and their level for MOPSO  

Factors Small scale Medium and large 
scale 

Population size 80 120 
Capacity of repository 80 120 
nGrid 10 10 
Maximum iteration 200 200 
C1, C2 1 1 
W 1 1 
Mutation rate 0.3 0.15 
Alpha 0.2 0.08 

 

6.2. Data generation 

For the aim of evaluating the effectiveness of the NSGA-II and the MOPSO algorithm, problems are designed into two scales, 
then the performance of the algorithms is compared and analyzed using the five criteria. The meta-heuristics algorithms 
MOPSO and NSGA-II were encoded in MATLAB 2015b, and a Core i7 CPU and 8 GB RAM computer with Windows 10 
(64 bit) was used as a test system. In small scale sample problems, the number of jobs is assumed to be 8, 12, 16, 20 and 24, 
and the number of machines is assumed to be 2, 4 and 6. In the medium and large scale sample problems, the number of jobs 
is considered to be 40, 80, 120, 180 and 250, and the number of machines is considered to be 8, 16, and 27. Other parameters 
were produced randomly based on a uniform distribution in the following intervals. 

 The contractual due dates (𝑑௜) for customers in the intervals on [0.25𝑃/𝑚,𝑃/𝑚], [1,𝑃/𝑚], and [1,0.75𝑃/𝑚], where 𝑃 = ∑𝑝௜ 
 The batch delivery cost (𝜃) unit in the intervals on [1,𝑊/𝑛], [10,𝑊/𝑛], and [30,𝑊/𝑛], where 𝑊 = ∑𝑤௜ 
 The processing time (𝑝௜) in the interval [1,100] 
 The priority weight of the job 𝑖 (𝑤௜) in the interval [1,100] 
 The weight of tardiness (𝛼௜) in the interval [5,10] 
 The earliness cost (𝛽௜) in the interval [5,10] 
 The setup time of the sub-batch from each batch (𝑆௕) in the interval [1,0.2𝑃/𝑚] 

 

A summary of the information above can be found in Table 6. Additional problem information, such as the number of 
machines and jobs, is also shown in Table 7. 

 

Table 6  
Parameters and their values 
Parameter Value Level 
contractual due date (𝑑௜) [0.25𝑃/𝑚,𝑃/𝑚] Loose 
 [1,𝑃/𝑚] Moderate [1,0.75𝑃/𝑚] Tight 
Batch delivery cost (𝜃) [1,𝑊/𝑛] Low 
 [10,𝑊/𝑛] Medium [30,𝑊/𝑛] High 
Processing time (𝑝௜) [1,100]  
Reputational weight of job i (𝑤௜) [1,100]  
Weight of tardiness (𝛼௜) [5,10]  
Earliness cost (𝛽௜) [5,10]  
Setup time (𝑆௕) [1,0.2𝑃/𝑚]  

 

Table 7  
The Number of machines and jobs 
Factors Small scale Medium and large scale 
Number of jobs 8, 12, 16, 20, 24 40, 80, 120, 180, 250 
Number of machines 2, 4, 6 8, 16, 27 

The batch delivery costs can be associated with the priority of jobs (𝑤௜) and therefore, the delivery costs are introduced 
according to the weight of jobs. In addition, since the complexity of the problem could be affected by the delivery cost, three 
classes of the problem with low, medium, and high costs of delivery are generated: Classes A, B, and C represent low, 
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medium, and high costs of delivery (𝜃), respectively. Furthermore, due to the impact of contractual due dates of jobs on the 
complexity of the problem, three sub-classes of problems of classes A, B and C are considered. Each sub-class 1, 2, and 3 
represents the loose, moderate, and tight contractual due date (𝑑௜), respectively. Table 8 shows all nine classes. For any 
combination of jobs and machines (five jobs×three machines) in each class; from A1 to C3, there are 15 problems that five 
random instances generated for each problem. In the case of small scale, the number of sample problems is 675 (9 × 15 × 5), 
and 675 sample problems are also generated for medium and large scale. Each sample is run five times by the algorithms. 
The ultimate result equals the average of five runs for each class. 

Table 8  
The classes generated for the problem 

 Factors 
Class Name Contracted due date Batch delivery cost 
A1 [0.25𝑃/𝑚,𝑃/𝑚] [1,𝑊/𝑛] 
A2 [1,𝑃/𝑚] [1,𝑊/𝑛] 
A3 [1,0.75𝑃/𝑚] [1,𝑊/𝑛] 
B1 [0.25𝑃/𝑚,𝑃/𝑚] [10,𝑊/𝑛] 
B2 [1,𝑃/𝑚] [10,𝑊/𝑛] 
B3 [1,0.75𝑃/𝑚] [10,𝑊/𝑛] 
C1 [0.25𝑃/𝑚,𝑃/𝑚] [30,𝑊/𝑛] 
C2 [1,𝑃/𝑚] [30,𝑊/𝑛] 
C3 [1,0.75𝑃/𝑚] [30,𝑊/𝑛] 
6.3. Comparing criteria  

In single objective problems, an optimal solution is chosen for the purpose of the problem, while in multiple objective 
problems, we encounter a collection of Pareto solutions at the end of solving problems and the performance of the algorithms 
cannot be easily evaluated. Evaluation criteria are important since they can be used to examine the performance of algorithms. 
In this research, we apply five comparison criteria from the literature to assess the performance of algorithms (Attar et al., 
2014; Piroozfard et al., 2018; Zarei & Rasti-Barzoki, 2018). The comparing criteria are including quality metric criterion 
(QM), spacing metric criterion (SM), diversification metric (DM), CPU time (CPUT), and mean ideal distance (MID). A lower 
value of SM, MID, and CPUT criteria, and a higher percentage of QM criterion, and a higher value of DM criterion indicate 
better efficiency of the algorithm. The characteristics of comparing criteria are described in detail in Appendix B. 

6.4. Comparison results and analysis for small scale samples 

In this sub-section, the performance of NSGA-II and MOPSO algorithms is investigated for small scale problems according 
to the preceding criteria. Here, the charts of the three classes A, B, and C are examined, each being derived from the mean of 
classes A1 to C3 (The resulting data of each class is provided in Appendix C).  

 
Fig. 10. SM criterion for the two algorithms in the small scale sample problems 
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Fig. 11. QM criterion for the two algorithms in the small scale sample problems 

 

 
Fig. 12. MID criterion for the two algorithms in the small scale sample problems 

 

 
Fig. 13. DM criterion for the two algorithms in the small scale sample problems 
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Fig. 14. CPUT criterion for the two algorithms in the small scale sample problems 

According to Figs. 10, 11 and 12, the NSGA-II performs better than the MOPSO algorithm due to its smaller values in the 
SM criterion. In the important QM criterion, it is shown that the NSGA-II reaches a major portion of the Pareto solutions. The 
graph shows that increasing the number of machines and jobs gradually decreases the percentage of Pareto solutions in the 
NSGA-II, while the MOPSO algorithm shows an upward trend. In the MID criterion, the NSGA-II had better results than the 
MOPSO algorithm in 66 percent of class A, 60 percent of class B and 80 percent of class C. It is noteworthy that the MOPSO 
algorithm is able to outperform the NSGA-II in the experiments 2|20, 2|24, and 4|24 in all the three classes, and in general, 
the MOPSO algorithm shows a weaker performance when the number of machines and jobs increases. As revealed in Figs. 
13 and 14, in the DM criterion, the MOPSO algorithm performed superior to the NSGA-II in a variety of Pareto-solutions in 
66 percent of class A as well as in 73 percent of classes B and C. It is noteworthy that the performance of NSGA-II is improved 
when the number of jobs increase from 16 to 24 in the number of machines from 2 and 4. In the CPUT criterion, it can be 
easily concluded that the solving time by the MOPSO in all the classes is about one-fifth of the NSGA-II solving time. 

6.4.1. Comparison of algorithms by Standard Error and average value 

The Standard Error (SE) and the average value (Mean) for each of the criteria are calculated for better analysis and assessment 
of the quality of the presented solutions. The quality of statistics is usually measured by using the. Thus, the performances of 
the two algorithms are compared in each of the nine classes A1 to C3 using the SE and the average value. The lower value of 
the SE is preferable. According to Fig. 15 and Table 9, the mean value and SE for the SM criterion are lower in all the classes 
in the NSGA-II than in the MOPSO algorithm. The NSGA-II has a higher average value in the QM criterion than in the 
MOPSO algorithm, and the SE is the same for both algorithms. In the MID criteria, it can be deduced by comparing the two 
algorithms that the MOPSO algorithm has a lower average value except for classes A2, B3, and C3. Moreover, the MOPSO 
algorithm has a lower SE in all the classes compared to the NSGA-II, meaning that the MOPSO algorithm is preferable in 
overall performance in this criterion. In the DM criterion, although the NSGA-II is more diverse except for classes A2, B3, 
C1, and C3, the SE in this criterion is lower for the MOPSO algorithm than for the NSGA-II in the rest of the classes. This 
means that the MOPSO algorithm has a more robust solution with a lower mean value for the DM criterion. Eventually, the 
MOPSO algorithm is shown to perform well on both factors in the CPUT criterion except for class C3. Table 10 indicates the 
best class in each of the criteria based on the SE and average value achieved by the MOPSO algorithm and the NSGA-II for 
small scale problems. 

  

0
5

10
15
20
25
30
35
40
45

2|8 2|12 2|16 2|20 2|24 4|8 4|12 4|16 4|20 4|24 6|8 6|12 6|16 6|20 6|24

CP
U
T(
s)

Machine | Job

CPUT(s)

 Class A NSGA-II  Class A MOPSO
 Class B NSGA-II  Class B MOPSO
 Class C NSGA-II  Class C MOPSO

0.00

0.50

1.00

1.50

A1 A2 A3 B1 B2 B3 C1 C2 C3

SM

Mean NSGA-II Mean MOPSO

0%
20%
40%
60%
80%

100%

A1 A2 A3 B1 B2 B3 C1 C2 C3

QM

Mean MOPSO Mean NSGA-II



  

 

266

 
Fig. 15 Mean value for the two algorithms and small scale sample problems for each class 

 

 

Table 9  
SE and Mean values for the two algorithms in small scale sample problems for each class 
A1_NSGA-II  A1_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.332 83.5 5019 11559 32 Mean 0.812 16.5 4271 10413 6.3 
SE 0.0200 1.937 610 1393 0.167 SE 0.0413 1.937 346 755 0.079 
A2_NSGA-II  A2_MOPSO 

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.423 89.0 4688 11002 35 Mean 1.021 11.0 5094 12852 6.4 
SE 0.0282 1.388 539 1290 0.334 SE 0.0377 1.388 434 1030 0.245 
A3_NSGA-II  A3_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.429 80.1 4563 10727 34 Mean 0.799 19.9 3957 9771 6.7 
SE 0.0274 1.672 614 1270 0.104 SE 0.0589 1.672 307 680 0.101 
B1_NSGA-II  B1_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.425 89.9 5086 11699 34 Mean 0.810 10.1 4809 11686 6.7 
SE 0.0270 1.424 576 1339 0.323 SE 0.0423 1.424 430 878 0.271 
B2_NSGA-II  B2_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.233 86.3 4720 11092 32 Mean 0.682 13.7 4040 10113 6.6 
SE 0.0191 2.041 634 1473 0.128 SE 0.0321 2.041 393 895 0.127 
B3_NSGA-II          B3_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.415 92.0 3836 10021 34 Mean 0.912 8.0 4245 10617 6.5 
SE 0.0280 0.673 430 1127 0.618 SE 0.0407 0.673 322 719 0.209 
C1_NSGA-II          C1_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.3 85.6 5324 12101 33 Mean 0.757 14.4 5173 12578 6.3 
SE 0.0213 1.297 713 1527 0.092 SE 0.0477 1.297 487 992 0.091 
C2_NSGA-II  C2_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.226 90.2 5328 12881 33 Mean 0.986 9.8 4781 11301 6.0 
SE 0.0190 1.208 669 1657 0.142 SE 0.0488 1.208 407 847 0.089 
C3_NSGA-II  C3_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.246 86.0 4042 9745 34 Mean 1.039 14.0 4286 10150 5.8 
SE 0.0164 2.548 463 1049 0.086 SE 0.0441 2.548 410 862 0.114 
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Table 10  
The best classes achieved by Mean value and Standard Error for small scale sample problems 

 NSGA-II MOPSO 
Criterion Class Name Class Name 
SM C3 B2 
QM B3 A3 
MID B3 A3 
DM C3 A3 
CPUT C3 A1 

6.5. Comparison results and analysis for medium and large scales samples 

With regard to the mentioned criteria, this sub-section examines the performance of the NSGA-II and the MOPSO algorithm 
for problems with the medium and large scales. The charts of the three classes A, B, and C, each respectively, derived from 
the mean of classes A1 to C3, are investigated (The resulting data of each class is provided in Appendix C).  

 
Fig. 16 SM criterion for the two algorithms in the medium and large scale sample problems 

 

 
Fig. 17 QM criterion for the two algorithms in the medium and large scale sample problems 
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Fig. 18 MID criterion for the two algorithms in the medium and large scale sample problems 

 

 
Fig. 19 DM criterion for the two algorithms in the medium and large scale sample problems 

 
According to Figs. 16, 17, and 18, it could be noticed that the performance of the NSGA-II in the SM criterion is better than 
that of the MOPSO algorithm except in the tests of 8|180 and 8|250 for all classes. In addition, considering the MOPSO 
diagram, it can be inferred that the performance of this algorithm is enhanced with an increasing problem scale to medium 
and large. With increasing the number of jobs and machines in medium and large scale in the QM criterion, the difference 
between the two algorithms is less than that in the small scale for covering the non-dominated solutions, meaning the 
performance of the MOPSO algorithm improved greatly in high dimensions. In other words, with moving from medium to 
large in the number of jobs and machines, the efficiency of the two algorithms became closer to each other. However, at 60% 
problems of class A, 77% problems of class B, and 73% problems of class C, the NSGA-II had better performance than the 
MOPSO algorithm. In the MID criterion, the NSGA-II included 86%, 80%, and 86% of the solutions in classes A, B, and C, 
respectively, and had better performance than the MOPSO algorithm. In experiments such as 8|180 and 8|250, the MOPSO 
algorithm was able to perform better in all the classes than the NSGA-II, demonstrating that the performance of the NSGA-II 
was reduced with an increase in the number of jobs. However, when the number of machines increases, the NSGA-II again 
showed better performance. Compared to small scale problems, it can also be concluded that the performance of the NSGA-
II improved in the MID criterion with increasing problem dimensions. Regarding Figs. 19 and 20, in the DM criterion, the 
MOPSO algorithm had a greater diversity of solutions than the NSGA-II in 66% problems of class A, 73% problems of class 
B and 66% problems of class C in all the tests. On the other hand, the NSGA-II had more diversification than the MOPSO 
algorithm in all the three classes in the tests such as 8|120, 8|180, 8|250, and 16|250, meaning that the NSGA-II had better 
efficiency in the fewer number of machines and more jobs, but had decreased efficiency with increasing the number of 
machines. At last, it can be realized that the MOPSO algorithm solves problems six times faster than the NSGA-II in all the 
classes. 
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Fig. 20 CPUT criterion for the two algorithms in the medium and large scale sample problems 

 
6.5.1. Comparison of algorithms by Standard Error and average value 

The performance of the two algorithms in each of the nine classes A1 to C3 is compared using the SE and the average value 
for medium and large scale sample problems.  

According to Fig. 21 and Table 11, the NSGA-II has a lower average value and lower SE in the SM criterion than the MOPSO 
algorithm and is more efficient. The NSGA-II allocates more non-dominated solutions than the MOPSO algorithm in the QM 
criterion, but both algorithms have the same SE. In the MID criterion, the comparison of the two algorithms shows that the 
average value in the NSGA-II is the lowest except for classes A3, B3, and C3. However, the MOPSO algorithm has more 
robust solutions with higher mean value since the SE value for all MOPSO classes is lower than the NSGA-II. In the DM 
criterion, it could be noticed that the MOPSO algorithm provides solutions with more robust features than the NSGA-II 
because of having a lower SE with a lower average. By comparing the two algorithms in the CPUT criterion, it can be 
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Table 11  
SE and Mean values for the two algorithms in medium and large scale sample problems for each class 
A1_NSGA-II  A1_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.392 62.3 131016 456631 245.6 Mean 0.547 37.7 146382 341563 42.7 
SE 0.0126 2.500 28526 86980 1.801 SE 0.0178 2.500 21632 47529 2.074 
A2_NSGA-II   A2_MOPSO 
  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.451 59.2 145218 448873 209.3 Mean 0.615 40.8 162139 359917 35.8 
SE 0.0136 2.769 31091 84569 3.448 SE 0.0227 2.769 24408 50962 2.056 
A3_NSGA-II  A3_MOPSO 

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.500 56.9 161546 430415 230.7 Mean 0.847 43.1 107758 262403 39.8 
SE 0.0334 3.317 35119 80225 2.296 SE 0.0332 3.317 13800 33950 1.799 
B1_NSGA-II B1_MOPSO 

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.432 66.6 148050 446751 185.8 Mean 0.576 33.4 148333 354175 30.9 
SE 0.0192 2.952 28886 86537 0.993 SE 0.0213 2.952 18807 44664 1.557 
B2_NSGA-II B2_MOPSO 

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.402 59.3 127944 443956 199.2 Mean 0.582 40.7 138171 328547 32.0 
SE 0.0142 2.855 22886 80562 0.764 SE 0.0286 2.855 17134 40141 1.593 
B3_NSGA-II  B3_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.428 55.0 131148 435360 197.1 Mean 0.769 45.0 126261 312042 31.1 
SE 0.0209 3.798 25327 81331 0.683 SE 0.0244 3.798 14706 36280 1.583 
C1_NSGA-II  C1_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.423 67.2 143677 443802 195.3 Mean 0.603 32.8 165076 385931 31.4 
SE 0.0189 2.721 28219 80543 0.613 SE 0.0302 2.721 23737 54239 1.566 
C2_NSGA-II C2_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.475 63.7 156685 439195 187.7 Mean 0.556 36.3 164746 374370 31.7 
SE 0.0152 2.765 34131 80958 0.940 SE 0.0210 2.765 23657 52417 1.599 
C3_NSGA-II  C3_MOPSO   

  SM QM MID DM CPUT   SM QM MID DM CPUT 
Mean 0.4221 63.9 140925 445023 193.8 Mean 0.8519 36.1 123001 290038 31.2 
SE 0.0162 3.250 30639 85577 0.591 SE 0.0361 3.250 13589 31535 1.603 
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perceived that the NSGA-II has robust Pareto solutions with a higher average due to having a lower SE in all the classes 
except for classes A2 and A3, as compared to the MOPSO algorithm. Table 12 shows the best class in each of the criteria 
based on the SE and average value of the NSGA-II and the MOPSO algorithm for medium and large scale problems. 

  

  

 

Fig. 21 Mean value for the two algorithms in medium and large scale sample problems for each class 

Table 12  
The best classes achieved by Mean value and Standard Error for medium and large scale sample problems 

 NSGA-II MOPSO 
Criterion Class Name Class Name 
SM A1 A1 
QM A1 A1 
MID B2 C3 
DM A3 C3 
CPUT C3 B1 

 
7. Conclusion and suggestions 
In this research, a bi-objective scheduling problem of production and distribution was integrated in an identical parallel 
machines environment. First, a mathematical model was presented for the problem. Then, two meta-heuristics algorithms, 
including the MOPSO algorithm and the NSGA-II were customized to solve the problem. The NSGA-II was used with a one-
point crossover operator and a mutation operator, in which the number of mutations is a function of the number of jobs to 
generate more mutated offsprings to spot the best optimum solution in the solution space. Also, the MOPSO algorithm was 
used with a mutation function for generating new particles to find better quality solutions. In the second step, the parameters 
tuning of the two algorithms was performed for small, medium, and large scale problems using the Taguchi method so that 
the algorithms could improve problem-solving. After tuning the parameters, the sample problems were solved in small, 
medium, and large scale problems. Besides, five comparing criteria including SM, QM, MID, DM, and CPUT were utilized 
to compare the performance and efficiency of the meta-heuristic algorithms in nine classes of problems by multiplying three 
levels of delivery costs and three levels of the contractual due dates. Finally, the Standard Error (SE) and the average value 
(Mean) of each criterion were used for the precise analysis of the classes. The results of the small scale sample problems 
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showed that the NSGA-II was completely superior to the MOPSO algorithm in the five criteria except for the CPUT and 
diversity of Pareto solutions in most of the generated samples. Moreover, in the medium and large scale sample problems, the 
results revealed the significantly improved performance and efficiency of the MOPSO algorithm in some performance criteria 
such as QM, and DM. However, generally, the NSGA-II performed better than the MOPSO algorithm in solving problems in 
all the tests except for the CPUT and DM. For future research, the corresponding model can be extended with constraints 
better describing real-life conditions. Additionally, a vehicle routing problem for transportation can be investigated as a more 
detailed examination of distribution costs. Moreover, other multi-objective algorithms can be used to address the problem and 
their performance can be evaluated by comparing with the algorithms presented in the current study. 
 

References 
 
Aminzadegan, S., Tamannaei, M., & Rasti-Barzoki, M. (2019). Multi-agent supply chain scheduling problem by considering resource 

allocation and transportation. Computers & Industrial Engineering, 137, 106003. 
Assarzadegan, P., & Rasti-Barzoki, M. (2016). Minimizing sum of the due date assignment costs, maximum tardiness and distribution costs 

in a supply chain scheduling problem. Applied Soft Computing, 47, 343-356. 
Attar, S., Mohammadi, M., Tavakkoli-Moghaddam, R., & Yaghoubi, S. (2014). Solving a new multi-objective hybrid flexible flowshop 

problem with limited waiting times and machine-sequence-dependent set-up time constraints. International Journal of Computer 
Integrated Manufacturing, 27(5), 450-469. 

Bose, A., Biswas, T., & Kuila, P. (2019). A Novel Genetic Algorithm Based Scheduling for Multi-core Systems Smart Innovations in 
Communication and Computational Sciences (pp. 45-54): Springer. 

Cakici, E., Mason, S. J., Geismar, H. N., & Fowler, J. W. (2014). Scheduling parallel machines with single vehicle delivery. Journal of 
Heuristics, 20(5), 511-537. 

Cakici, E., Mason, S. J., & Kurz, M. E. (2012). Multi-objective analysis of an integrated supply chain scheduling problem. International 
Journal of Production Research, 50(10), 2624-2638. 

Chang, Y.-C., Li, V. C., & Chiang, C.-J. (2014). An ant colony optimization heuristic for an integrated production and distribution 
scheduling problem. Engineering Optimization, 46(4), 503-520. 

Chen, Y., Lu, L., & Yuan, J. (2015). Preemptive scheduling on identical machines with delivery coordination to minimize the maximum 
delivery completion time. Theoretical Computer Science, 583, 67-77. 

Chen, Y., Lu, L., & Yuan, J. (2016). Two-stage scheduling on identical machines with assignable delivery times to minimize the maximum 
delivery completion time. Theoretical Computer Science, 622, 45-65. 

Chen, Z.-L. (2010). Integrated production and outbound distribution scheduling: review and extensions. Operations research, 58(1), 130-
148. 

Chen, Z.-L., & Vairaktarakis, G. L. (2005). Integrated scheduling of production and distribution operations. Management Science, 51(4), 
614-628. 

Cheng, T., & Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 
47(3), 271-292. 

Cheng, T. C. E., & Kahlbacher, H. G. (1993). Single-machine scheduling to minimize earliness and number of tardy jobs. Journal of 
optimization theory and applications, 77(3), 563-573. 

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state 
of the art. Computer methods in applied mechanics and engineering, 191(11-12), 1245-1287. 

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5): 
Springer, 79-104. 

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions 
on evolutionary computation, 8(3), 256-279. 

Coello, C. C. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE computational intelligence magazine, 
1(1), 28-36. 

Deb, K. (2014). Multi-objective optimization Search methodologies (pp. 403-449): Springer. 
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions 

on evolutionary computation, 6(2), 182-197. 
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper presented at the Micro Machine and Human 

Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on. 
Ekici, A., Elyasi, M., Özener, O. Ö., & Sarıkaya, M. B. (2019). An application of unrelated parallel machine scheduling with sequence-

dependent setups at Vestel Electronics. Computers & Operations Research, 111, 130-140. 
Ganji, M., Kazemipoor, H., Molana, S. M. H., & Sajadi, S. M. (2020). A green multi-objective integrated scheduling of production and 

distribution with heterogeneous fleet vehicle routing and time windows. Journal of Cleaner Production, 259, 120824. 
Gao, S., Qi, L., & Lei, L. (2015). Integrated batch production and distribution scheduling with limited vehicle capacity. International 

Journal of Production Economics, 160, 13-25. 
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99. 
Guo, Z., Zhang, D., Leung, S. Y.-S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and 

transportation scheduling. Applied Soft Computing, 42, 215-228. 
Hamidinia, A., Khakabimamaghani, S., Mazdeh, M. M., & Jafari, M. (2012). A genetic algorithm for minimizing total tardiness/earliness 

of weighted jobs in a batched delivery system. Computers & Industrial Engineering, 62(1), 29-38. 
Hassanzadeh, A., Rasti-Barzoki, M., & Khosroshahi, H. (2016). Two new meta-heuristics for a bi-objective supply chain scheduling 

problem in flow-shop environment. Applied Soft Computing, 49, 335-351. 
Ho, J. C., & Chang, Y.-L. (1995). Minimizing the number of tardy jobs for m parallel machines. European Journal of Operational Research, 

84(2), 343-355. 
Jiang, L., Pei, J., Liu, X., Pardalos, P. M., Yang, Y., & Qian, X. (2017). Uniform parallel batch machines scheduling considering 

transportation using a hybrid DPSO-GA algorithm. The International Journal of Advanced Manufacturing Technology, 89(5-8), 1887-
1900. 



  

 

272

Joo, C. M., & Kim, B. S. (2017). Rule-based meta-heuristics for integrated scheduling of unrelated parallel machines, batches, and 
heterogeneous delivery trucks. Applied Soft Computing, 53, 457-476. 

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems Annals of discrete mathematics (Vol. 1, pp. 
343-362): Elsevier. 

Lin, B., & Jeng, A. (2004). Parallel-machine batch scheduling to minimize the maximum lateness and the number of tardy jobs. International 
Journal of Production Economics, 91(2), 121-134. 

Liu, L., Li, W., Li, K., & Zou, X. (2020). A coordinated production and transportation scheduling problem with minimum sum of order 
delivery times. Journal of Heuristics, 26(1), 33-58. 

Liu, P., & Lu, X. (2016). Integrated production and job delivery scheduling with an availability constraint. International Journal of 
Production Economics, 176, 1-6. 

Munoz-Villamizar, A., Santos, J., Montoya-Torres, J., & Alvaréz, M. (2019). Improving effectiveness of parallel machine scheduling with 
earliness and tardiness costs: A case study. International Journal of Industrial Engineering Computations, 10(3), 375-392. 

Nikabadi, M., & Naderi, R. (2016). A hybrid algorithm for unrelated parallel machines scheduling. International Journal of Industrial 
Engineering Computations, 7(4), 681-702. 

Ojstersek, R., Brezocnik, M., & Buchmeister, B. (2020). Multi-objective optimization of production scheduling with evolutionary 
computation: A review. International Journal of Industrial Engineering Computations, 11(3), 359-376. 

Piroozfard, H., Wong, K. Y., & Wong, W. P. (2018). Minimizing total carbon footprint and total late work criterion in flexible job shop 
scheduling by using an improved multi-objective genetic algorithm. Resources, Conservation and Recycling, 128, 267-283. 

Potts, C. N. (1980). Analysis of a heuristic for one machine sequencing with release dates and delivery times. Operations Research, 28(6), 
1436-1441. 

Raghavan, V. A., Yoon, S. W., & Srihari, K. (2018). A Modified Genetic Algorithm Approach to Minimize Total Weighted Tardiness with 
Stochastic Rework and Reprocessing Times. Computers & Industrial Engineering, 123, 42-53. 

Rajkanth, R., Rajendran, C., & Ziegler, H. (2017). Heuristics to minimize the completion time variance of jobs on a single machine and on 
identical parallel machines. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1923-1936. 

Saeidi, S. (2016). A Multi-objective Mathematical Model for Job Scheduling on Parallel Machines Using NSGA-II. International Journal 
of Information Technology and Computer Science (IJITCS), 8(8), 43-49. 

Schaller, J. E. (2014). Minimizing total tardiness for scheduling identical parallel machines with family setups. Computers & Industrial 
Engineering, 72, 274-281. 

Shahidi-Zadeh, B., Tavakkoli-Moghaddam, R., Taheri-Moghadam, A., & Rastgar, I. (2017). Solving a bi-objective unrelated parallel batch 
processing machines scheduling problem: a comparison study. Computers & Operations Research, 88, 71-90. 

Sheikh, S., Komaki, G., & Kayvanfar, V. (2018). Multi objective two-stage assembly flow shop with release time. Computers & Industrial 
Engineering, 124, 276-292. 

Shen, J. (2019). An uncertain parallel machine problem with deterioration and learning effect. Computational and Applied Mathematics, 
38(1), 3. 

Shim, S.-O., & Kim, Y.-D. (2008). A branch and bound algorithm for an identical parallel machine scheduling problem with a job splitting 
property. Computers & Operations Research, 35(3), 863-875. 

Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2004). Managing the Supply Chain: Definitive Guide: Tata McGraw-Hill Education. 
Sivrikaya-Şerifoǧlu, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. Computers & Operations 

Research, 26(8), 773-787. 
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European journal of operational research, 94(1), 1-15. 
Tyagi, R., & Gupta, S. K. (2018). A Survey on Scheduling Algorithms for Parallel and Distributed Systems Silicon Photonics & High 

Performance Computing (pp. 51-64): Springer. 
Ullrich, C. A. (2013). Integrated machine scheduling and vehicle routing with time windows. European Journal of Operational Research, 

227(1), 152-165. 
Wang, D., Zhu, J., Wei, X., Cheng, T., Yin, Y., & Wang, Y. (2019). Integrated production and multiple trips vehicle routing with time 

windows and uncertain travel times. Computers & Operations Research, 103, 1-12. 
Wang, D. Y., Grunder, O., & Moudni, A. E. (2014). Integrated scheduling of production and distribution operations: a review. International 

Journal of Industrial and Systems Engineering, 19(1), 94-122. 
Wang, G., & Cheng, T. E. (2000). Parallel machine scheduling with batch delivery costs. International Journal of Production Economics, 

68(2), 177-183. 
Wang, S., & Liu, M. (2015). Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive 

maintenance planning. Journal of Manufacturing Systems, 37, 182-192. 
Wang, S., Wu, R., Chu, F., & Yu, J. (2029). Variable neighborhood search-based methods for integrated hybrid flow shop scheduling with 

distribution. Soft Computing, 24, 8917–8936. 
Wu, X., & Che, A. (2019). A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega, 82, 155-

165. 
Zarei, H., & Rasti-Barzoki, M. (2019). Mathematical programming and three metaheuristic algorithms for a bi-objective supply chain 

scheduling problem. Neural Computing and Applications, 31, 9073–9093. 
Zhou, S., Li, X., Du, N., Pang, Y., & Chen, H. (2018). A multi-objective differential evolution algorithm for parallel batch processing 

machine scheduling considering electricity consumption cost. Computers & Operations Research, 96, 55-68. 
 

 

 

© 2021 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


