
  

* Corresponding author   
E-mail: omerryilmaz@gmail.com (Ö. Yılmaz) 
  
2022 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2021.11.001 
 
 

 
 

International Journal of Industrial Engineering Computations 13 (2022) 237–254 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
A new hybrid algorithm based on MVO and SA for function optimization 

 

 

Ömer Yılmaza*, Adem Alpaslan Altunb and Murat Köklüb  
 
 

aDepartment of Information Technologies, Tokat Vocational and Technical Anatolian High School, 60100, Tokat, Turkey 
bDepartment of Computer Engineering, Faculty of Technology, Konya Selcuk University, 42130, Konya, Turkey 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received May 11  2021 
Received in Revised Format  
June 28 2021 
Accepted October 22 2021 
Available online  
October, 27  2021 

 Hybrid algorithms are widely used today to increase the performance of existing algorithms. In this 
paper, a new hybrid algorithm called IMVOSA that is based on multi-verse optimizer (MVO) and 
simulated annealing (SA) is used. In this model, a new method called the black hole selection 
(BHS) is proposed, in which exploration and exploitation can be increased. In the BHS method, the 
acceptance probability feature of the SA algorithm is used to increase exploitation by searching for 
the best regions found by the MVO algorithm. The proposed IMVOSA algorithm has been tested 
on 50 benchmark functions. The performance of IMVOSA has been compared with other latest and 
well-known metaheuristic algorithms. The consequences show that IMVOSA produces highly 
successful and competitive results.  
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1. Introduction 

Optimization is defined as the process of finding the best solution among alternative solutions in line with the conditions given 
for a specific problem. The basic goal of the optimization method is to find the necessary parameters for the best result of the 
fitness function (Murty, 2003). Due to the tremendous recent development of information technology, the use of optimization 
methods has increased. Many real-world problems can be seen as optimization problems and many algorithms have been used 
to solve optimization problems. Metaheuristic algorithms are the popular algorithms that are used for solving optimization 
problems.  
 
Metaheuristic algorithms aim to examine the search space effectively and efficiently in optimization problems where the 
mathematical model cannot be established or where it is very costly to build a model. Although it is not always possible to 
find the best global solution with these algorithms, the convenience of their application, their ability to produce fast and 
effective solutions to large-scale and complex problems, the fact that the metaheuristic method developed for any problem 
can also be applied to other problems makes these methods very useful (Kaya & Fığlalı 2018; Talbi, 2009). The most important 
advantage of the metaheuristic algorithm can be said to be the ability to reach the global best without getting stuck with the 
local best (Laporte et al., 2000). Considering the publications, there are various metaheuristic algorithms that have been used 
and accepted in many studies. Differential Evolution (DE) (Storn, 1996; Storn & Price, 1997), Ant Colony Optimization 
(ACO) (Colorni et al., 1991; Jovanovic & Tuba, 2013), Artificial Bee Colony (ABC) (Karaboga, 2005), Gravity Search 
Algorithm (GSA) (Rashedi et al., 2009), Cat Swarm Optimization (CSO) (Chu et al., 2006), Animal Migration Optimization 
(AMO) (Li et al., 2014; Luo et al., 2016), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Simulated 
Annealing (SA) (Kirkpatrick et al., 1983), Harris Hawks Optimization (HHO) (Heidari et al., 2019), Multi-verse Optimizer 
(MVO) (Mirjalili et al., 2016) algorithms can be given as examples of metaheuristic algorithms.  
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The common goal of metaheuristic algorithms is to find the best result in current conditions. In order for algorithms to achieve 
this common goal, they must have two main features. These two main features are exploration and exploitation. Achieving 
the balance between exploration and exploitation will significantly enhance the success of the algorithm. When researches are 
examined, it is seen that metaheuristic algorithms are classified as population-based algorithms (e.g., evolutionary algorithms, 
swarm intelligence) that are exploration-oriented, and single-solution algorithms (e.g., simulated annealing, local search) that 
are exploitation-oriented (Mafarja & Mirjalili, 2017). Combining optimization algorithms is a way to balance exploration and 
exploitation capability (Mirjalili & Hashim, 2010; Mafarja & Mirjalili, 2017). Combining a metaheuristic algorithm with at 
least one algorithm using different and advantageous aspects is defined as a hybrid metaheuristic algorithm. In order to 
increase the efficiency of optimization algorithms, it is seen that various processes such as hybridization, improvement and 
modification are developed in many studies (Alizada, 2019). Considering the studies conducted, it is seen that generally good 
results are obtained when applied in an optimization problem using the advantageous aspects of two or more algorithms. Our 
aim in this study is to combine MVO and SA algorithms with a new hybrid method to increase performance for function 
optimization. 
  
In general, hybrid algorithms can be basically detached into two groups as collaborative and integrative (Ting et al., 2015). 
Collaborative hybrids are a combination of multiple algorithms, operating in sequence or in parallel. In collaborative hybrids, 
the effects of algorithms on performance are half. Integrative hybrids are created by integrating a secondary algorithm into a 
main algorithm. This is accomplished by replacing a function in the metaheuristic algorithm with another metaheuristic (Talbi, 
2002). In integrative hybrids, the effect of the second algorithm on the results is much less than the main algorithm. In this 
paper, the integrative hybrid model in which a population-based algorithm (MVO) is hybridized with another single-solution-
based algorithm (SA) is used for function optimization. In the proposed model, the SA algorithm will increase the exploitation 
in the MVO algorithm. Different hybrid models of metaheuristic algorithms have been developed for function optimization 
so far. However, a hybrid model using MVO and SA algorithms has not been encountered in the studies and this model will 
be applied for the first time.  
  
The SA algorithm has an important place among metaheuristic algorithms and has been used in many studies. SA is one of 
the local search algorithms developed for the solution of combinatorial optimization problems and used in the solution of 
continuous and discrete problems (Alizada, 2019; Henderson et al., 2003). The most remarkable characteristic of the SA 
algorithm is its capability to avoid the local best. In the algorithm, it is sometimes possible to get rid of local best points by 
accepting randomly determined aspirant solutions that may cause an increase or decrease in the objective function (Dupanloup 
et al., 2002). The major shortcoming of SA is that its efficiency is not satisfactory. This is because SA cannot learn enough 
from its search history while sampling to generate aspirant solutions (Wang et al., 2016).  
  
MVO algorithm is one of the current metaheuristic optimization algorithms suggested in 2015 (Mirjalili et al., 2016). MVO's 
inspiration is the three basic notions of multiverse theory: wormholes, black holes and white holes. The notions of black hole 
and white hole are used by MVO to explore search areas. In contrast, wormholes are used for exploitation in the local area 
achieved through the exploration stage to find the best global solution. Mirjalili, the architect of this algorithm, showed in his 
study that MVO achieved ambitious consequences compared to other metaheuristic algorithms. However, information 
exchange is not sufficient in the structure of the MVO algorithm, so it has problems such as low accuracy, slow convergence, 
changeable system and easily stuck to local minimums (Jia et al., 2019; Song et al., 2020).  
  
GSMVO (Jia et al., 2019), H-MVO (Abasi et al., 2020), QMVO (Sayed et al., 2019), DE-SMVO (Chen et al., 2021), HPSO-
MVO (Jangir et al., 2017), WOASA (Mafarja & Mirjalili, 2017), SA-MFO (Sayed & Hassanien, 2018), SA-PSO (Pan et al., 
2019), CSA (Alkhateeb & Abed-Alguni, 2019), HHOBSA (Abdel-Basset et al., 2021) are many studies in which MVO and 
SA are hybridized with other algorithms and are used in subjects such as function optimization, engineering problems, training 
of artificial neural networks. These hybrid algorithms aim to reduce the likelihood of catching a local best. In this study, a 
hybridization method was tried to complement the shortcomings of MVO. It was seen that there was no hybrid study 
conducted with MVO and SA in the literature review. In this study, a simulated annealing method was applied while updating 
the universes in the standard version of MVO to further increase the success of MVO. IMVOSA has SA's ability to escape 
local best and MVO's learning mechanism and quick search capability to guide the creation of aspirant solutions. IMVOSA 
was tested with 50 well-known benchmark functions that are commonly used in the literature for experimental study. Test 
consequences show that the suggested algorithm can meaningfully improve the success of the MVO. Furthermore, 
experimental consequences show that IMVOSA produces better results than other algorithms.  
  
In the second part of this study, the original MVO and SA algorithms are briefly explained. In the third chapter, detailed 
information about the proposed hybrid algorithm (IMVOSA) and its components is given. In the fourth chapter, comparative 
test results with other optimization algorithms of IMVOSA are given and the success of the proposed algorithm is evaluated. 
Finally, in the fifth chapter, the consequences obtained from the study were evaluated and suggestions were made for 
prospective studies. 
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2. MVO and SA algorithms 
 
2.1.  MVO 
 
Multi-verse optimizer was suggested by Seyedali Mirjalili in 2015 (Mirjalili et al., 2016). Inspired by the notions of 
wormholes, black holes and white holes in multiverse theory and the big bang theory. Wormholes, black holes and white 
holes are mathematically modeled for local search, exploration and exploitation in this population-based algorithm. The 
objective function for each search agent is specified by the inflation rate. Each object and each universe in the search agent 
represent a variable and an aspirant solution.  
 
Object exchange among universes occurs when universes which have high inflation rates try to send objects to universes 
which have low inflation rates. However, in order to be a stable universe in low inflation rate universes, it takes objects from 
universes with high inflation rates. In the optimization process, the above steps are initiated in each iteration and then adjusted 
according to the inflation rates. 
 
During the optimization process, the following rules apply to MVO's universes: 
 

− the high rate of inflation increases the opportunity of having white holes; 
− the low rate of inflation increases the opportunity of having black holes; 
− universes which have high inflation rates frequently send objects to white holes; 
− universes which have low inflation rates are more likely to take objects from black holes; 
− objects in every universe can perform a random move approaching the best universe, independent of the rate of 

inflation with wormholes. There is invariably an opportunity to transfer objects from a universe which has a high 
inflation rate to a universe which has a low inflation rate. 

 
The conceptual model of the proposed algorithm is shown in Fig. 1. 

 
Fig. 1. Conceptual Model of MVO Algorithm (Mirjalili et al., 2016). 

 
The mathematical model of this algorithm is as follows: 
 

𝑈 ൌ ⎣⎢⎢
⎡𝑥ଵଵ 𝑥ଵଶ … 𝑥ଵௗ𝑥ଶଵ 𝑥ଶଶ … 𝑥ଶௗ⋮ ⋮  ⋮𝑥௡ଵ 𝑥௡ଶ … 𝑥௡ௗ⎦⎥⎥

⎤
 (1) 

 
where 𝑛 is the number of universes (aspirant solutions), 𝑑 is the number of parameters (variables) 
 𝑥௜௝ ൌ ቊ𝑥௞௝ 𝑟𝑛𝑑1 ൏ 𝑁𝑅ሺ𝑈𝑁௜ሻ𝑥௜௝ 𝑟𝑛𝑑1 ≥ 𝑁𝑅ሺ𝑈𝑁௜ሻ (2) 
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where 𝑥௜௝ identifies the 𝑗th parameter of 𝑖th universe, 𝑥௞௝ identifies the 𝑗th parameter of 𝑘th universe chosen by a roulette wheel 
selection, 𝑟𝑛𝑑1 is a number obtained randomly in the range [0, 1],  𝑁𝑅ሺ𝑈𝑁௜ሻ is normalized inflation rate of the 𝑖th universe, 𝑈𝑁௜ shows the 𝑖th universe. 
  
It is seen that wormholes randomly alter the objects of universes without taking into account inflation rates in order to preserve 
the variety of the universes and to exploit them. Wormhole tunnels are always assumed to be built between a universe and the 
best universe ever generated. The mathematical model of this structure is as follows: 
 

𝑥௜௝ = ൞ቊ𝑋௝ + TDR × ((𝑢𝑏௝ − 𝑙𝑏௝) × 𝑟𝑛𝑑4 + 𝑙𝑏௝)    𝑟𝑛𝑑3 < 0,5𝑋௝ − TDR × ((𝑢𝑏௝ − 𝑙𝑏௝) × 𝑟𝑛𝑑4 + 𝑙𝑏௝)     𝑟𝑛𝑑3 ≥ 0,5  𝑟𝑛𝑑2 < WEP𝑥௜௝                                                                                                      𝑟𝑛𝑑2 ≥ WEP  (3) 

 

where 𝑋௝ identifies the 𝑗th parameter of best universe generated up to now, 𝑥௜௝ identifies the 𝑗th parameter of 𝑖th universe, 
WEP and TDR are the coefficients, 𝑢𝑏௝ is the upper bound of 𝑗th variable,  𝑙𝑏௝ shows the lower bound of 𝑗 th variable, and 𝑟𝑛𝑑2, 𝑟𝑛𝑑3, 𝑟𝑛𝑑4 are numbers obtained randomly in the range [0, 1]. 
From Eq. (3) it can be seen that the MVO has two coefficients: Wormhole existence probability (WEP) and Travelling 
distance rate (TDR). The mathematical model for both coefficients is as follows:   
 WEP = min + 𝑙 × ቀ୫ୟ୶ି୫୧୬௅ ቁ                                        (4) 

 

where, 𝐿 is the maximum iterations, 𝑙 is the current iteration,  𝑚𝑎𝑥 is the maximum value which is 1 the original MVO paper 
and 𝑚𝑖𝑛 is the minimum value which is 0.2 in the original MVO paper. 
 TDR = 1 − ௟భ/೛௅భ/೛                                                      (5) 
 
where p identifies the accuracy of exploitation on iterations. Higher value p means earlier and more correct local search - 
exploitation. The pseudo-code for MVO algorithm is given in Algorithm 1. Details about the algorithm can also be found in 
(Mirjalili et al., 2016). 
 
Algorithm 1. MVO 

1: Generate random universes (UN) 
2: Initialize BestUniverse,WormholeExistenceProbability,TravellingDistanceRate 
3: SUN = Sorted universes 
4: NR = Normalize inflation rates (fitness) of the universes 
5: while Time < Max_time 
6:   Assess the fitness of all universes 
7:   for each universe indexed by i       
8:      Update TravellingDistanceRate, WormholeExistenceProbability 
9:      BlackHoleIndex = i; 

10:     for each object indexed by j 
11:        rnd1 = random([0, 1]); 
12:    if rnd1 < NR(Ui) 
13:          WhiteHoleIndex = Roulette_Wheel_Selection(-NR); 
14: UN(BlackHoleIndex, j) = SUN(WhiteHoleIndex,j); 
15: end if 
16: rnd2 = random([0, 1]); 
17: if rnd2 < WormholeExistenceProbability 
18: rnd3 = random([0, 1]); 
19: rnd4 = random([0, 1]); 
20: if rnd3 < 0.5 
21: UN(i,j)= BestUniverse(j)+TravellingDistanceRate ×  

((ub(j) - lb(j)) × rnd4 + lb(j));  
22: else 
23: UN(i,j)= BestUniverse(j)-TravellingDistanceRate ×  

((ub(j) - lb(j)) × rnd4 + lb(j));  
24: end if 
25: end if 
26: end for 
27: end for 
28: end while 
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2.2.  SA algorithm 
 
Simulated annealing was suggested by Kirkpatrick et al. (1983), based on the hill climbing method and applied to solve 
optimization problems. The algorithm is inspirited by the annealing operation, which is based on replacing the properties of 
a particular material with heat treatment. The creation of fresh solutions in the simulated annealing algorithm is performed 
randomly or based on predetermined rules. At each iteration, the existing solution is compared with the newly created solution. 
SA can accept not only new solutions that improve the existing solution, but also worse results that meet certain criteria in 
order not to stick to the local best and to find the global best. The acceptance probability of new solutions that do not improve 
the existing solution varies depending on the temperature (Henderson et al., 2003). These criteria are determined by the 
Boltzmann probability, and this mechanism is defined as follows: 
 Pr = 𝑒൬ష(ಷ(ೊ)షಷ(ೊబ))೅ೖ ൰    (6) 
 

where Pr is identified as the acceptance probability. 𝐹(𝑌଴) represents the objective function for current solution and 𝐹(𝑌) 
represents the objective function for neighbor solution. When 𝐹(𝑌଴) is better than 𝐹(𝑌), SA uses the acceptance probability 
mechanism to determine whether the neighbor solution should be considered as the current solution. 𝑇௞ is the temperature 
value at time 𝑘 and its value in each iteration is calculated as follows: 
 𝑇௞ାଵ = 𝑎 × 𝑇௞      (7) 
 

where 𝑎 refers to the temperature coefficient. In studies, the 𝑎 value generally takes a value between 0.8 and 0.99. 𝑇௞ is the 
initial temperature value and 𝑇௞ାଵ is the temperature at time 𝑘, 𝑟 is a number obtained randomly in the range [0, 1]. Starting 
the simulated annealing algorithm with a relatively high temperature value will prevent it from being attached to the local best 
(Eglese, 1990). Detailed information about the simulated annealing algorithm can be found in (Kirkpatrick et al., 1983). The 
pseudo-code for SA algorithm is given in Algorithm 2. 
 
Algorithm 2. SA 

1: T = Temperature value 
2: T0 = Final temperature value 
3: 𝑎 = Temperature coefficient 
4: S = First solution               
5: f(S) = Fitness value of the first solution                       
6: while T > T0                       
7: S' = A new solution in the S neighborhood 
8: f(S') = Calculate the fitness value of S'  
9: if f(S') < f(S)           

10: NS = S'; 
11: f(NS) = f(S'); 
12: else 
13: ∆f = f(S') - f(S)                     
14: r = random[0, 1];               
15: if r > exp(− ∆f / T ) 
16: NS = S'; 
17: f(NS) = f(S'); 
18: else 
19: NS = S; 
20: f(NS) = f(S); 
21: end if 
22: end if 
23: S = NS; 
24: T = T × 𝑎 
25: end while 

 
3. IMVOSA algorithm 
 

MVO is a population-based algorithm with successful consequences in many optimization problems. Although the MVO 
algorithm has many advantages, the exchange of information in the structure of this algorithm is not enough, so it has 
disadvantages such as slow convergence, low accuracy and sticking to local minimums (Jia et al., 2019; Song et al., 2020). 
To overcome these shortcomings, improvements to the original algorithm's structure are proposed. Details of these 
improvements are described below.  
 

In the MVO algorithm, updating objects in a universe is performed by a simple location update (Jia et al., 2019). Equation 2, 
used during the exploration phase of the original MVO algorithm, is proposed as follows to increase the exploration and 
exploitation of the universe near the best universe. 
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where 𝑥௜௝ identifies the 𝑗th parameter of 𝑖th universe, 𝑋௝ identifies the 𝑗th parameter of best universe generated up to now, 𝑥௞௝ 
identifies the 𝑗th parameter of 𝑘th universe chosen by a roulette wheel selection ,  𝑟𝑛𝑑1 is a number obtained randomly in the 
range [0, 1],  𝑈𝑁௜ shows the 𝑖th universe,  𝑁𝑅(𝑈𝑁௜) is normalized inflation rate of the 𝑖th universe.  
 
Tidal disruption is an astronomic event that happens when a star gets close enough to a supermassive black hole and the black 
hole shreds by tidal force, resulting in an event called spaghettification (Hawking, 1988; Komossa, 2015). Due to the tidal 
event, all objects in the black hole's gravitational field are pulled towards the center of the black hole, forming spirals around 
the black hole. In supermassive black holes, it is possible to cross the event horizon in one piece. However, this is impossible 
in smaller massive black holes. Today, there is no proven, clear information about the state of objects crossing the event 
horizon regarding black holes.  
 
Based on the tidal disruption effect of black holes and the phenomenon of spaghettification of objects exposed to this effect, 
we propose a new method in the MVO algorithm. In this method, in order to achieve global best, objects that cross the event 
horizon and enter the black hole can be altered by the influence of the black hole, in this way exploration and exploitation can 
be increased. In this method, we used the SA algorithm in an integrative hybrid model structure to avoid local minimum and 
increase exploitation.  
 
This method, which we call the black hole selection method (BHS), obtains a new set of solutions consisting of the total 
number of probabilities, taking into account the possibility that each object is in three positions when the black holes of low 
inflation-value universes draw objects from high inflation-value universes. Within this solution set, a sub-solution set is 
created at certain intervals and randomly determined in each iteration. From this sub-solution set, the universe with the best 
fitness value is selected by the black hole. The mathematical representation of the proposed method is as follows: 
 𝑁𝑈 = 3ௗ (9) 
 𝑁𝑈 shows the total number of universes calculated for three locations of objects in a black hole, and 𝑑 (Equation 1) identifies 
the number of objects in a universe. 
 𝑅 = ே௎௠௔௫ାଵି௟  (10) 
 𝑅 identifies an integer identifying the number of universes to search, 𝑁𝑈 (Equation 9) identifies the total number of universes 
calculated for three locations, 𝑚𝑎𝑥 (Equation 4) identifies the total number of iterations, 𝑙 (Equation 4) identifies the number 
of valid iterations. 
 𝑟𝑛𝑑2 = [0.𝑅] (11) 
 𝑟𝑛𝑑2 is a random integer that takes a value between 0 and 𝑅 (Equation 10). 𝑅 identifies the number of universes to search. 
 𝑁𝑆𝑈 = 𝑟𝑛𝑑2 × (𝑚𝑎𝑥 + 1 − 𝑙)    (12) 
 𝑁𝑆𝑈 identifies the number of the first universe to start searching, 𝑟𝑛𝑑2 (Equation11) is a randomly selected integer, 𝑚𝑎𝑥 
(Equation 4) is the total number of iterations, 𝑙 (Equation 4) is the number of valid iterations. 
 𝑁𝐸𝑈 = 𝑟𝑛𝑑2 × (𝑚𝑎𝑥 + 1 − 𝑙) + (𝑚𝑎𝑥 − 𝑙) (13) 
 𝑁𝐸𝑈 identifies the number of the last universe to complete the search, 𝑟𝑛𝑑2 (Equation11) is a randomly selected integer, 𝑚𝑎𝑥 (Equation 4) the total number of iterations, 𝑙 (Equation 4) the number of current iterations. In this study, the three location 
values that each object can be found in the black hole are calculated as follows: 
 𝑥௝ = 𝑋௝ − 𝑥௝  (14) 𝑥௝ = 𝑥௝ + 𝑇𝐷𝑅 × 𝑟𝑛𝑑3 × (𝑋௝ − 𝑥௝) (15) 𝑥௝ = 𝑥௝ − 𝑇𝐷𝑅 × 𝑟𝑛𝑑3 × (𝑋௝ − 𝑥௝) (16) 
 

where 𝑥௝ identifies the 𝑗th parameter of thre universe inside the black hole, 𝑋௝ identifies the 𝑗th parameter of best universe 
generated up to now, TDR (Equation 5) is a coefficient, 𝑟𝑛𝑑3 is a number obtained randomly in the range [0, 1]. 
 
In our proposed BHS method, we used the acceptance probability feature of the SA algorithm to make acceptable not only 
new solutions that improve the existing solution, but also worse results that meet certain criteria in order to avoid to the local 
best and to find the global best. In this way, the values of the objective function of the solutions produced will not tend to 
decrease continuously, and in some cases, the solutions with high objective function will be accepted and the search for the 
global best will be performed. The main purpose of metaheuristic algorithms is to find the best solution or close to best 
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solutions. For this purpose, the two basic components of metaheuristic algorithms, exploration-exploitation concepts come to 
the fore (Blum & Roli, 2003). Exploration generally means the ability to visit many and different regions of the search area, 
while exploitation means the ability to obtain better solutions in areas identified by exploration. A good and balanced 
combination of these two main components will increase the chances of achieving a global solution (Yang, 2010). In this 
context, we have made the following changes in the exploitation phase (Equation 3) of the standard MVO algorithm to attain 
a balance between exploration and exploitation in the IMVOSA algorithm. 
 𝑥௜௝ = ൞ቊ𝑋௝ + TDR × ((𝑢𝑏௝ − 𝑙𝑏௝) × 𝑟𝑛𝑑6 + 𝑙𝑏௝)  𝑟𝑛𝑑5 < 0,5𝑋௝ − TDR × ((𝑢𝑏௝ − 𝑙𝑏௝) × 𝑟𝑛𝑑6 + 𝑙𝑏௝)   𝑟𝑛𝑑5 ≥ 0,5 𝑟𝑛𝑑4 > WEP𝑥௜௝                                                                                                     𝑟𝑛𝑑4 ≤ WEP  (17) 

 

where 𝑋௝ identifies the 𝑗th parameter of best universe generated up to now, WEP and TDR are the two main coefficients, 𝑢𝑏௝ 
is the upper bound of 𝑗th variable,  𝑙𝑏௝ is the lower bound of 𝑗 th variable, 𝑥௜௝ identifies the 𝑗th parameter of 𝑖th universe, and 𝑟𝑛𝑑4, 𝑟𝑛𝑑5, 𝑟𝑛𝑑6 are numbers obtained randomly in the range [0, 1]. Unlike the standard MVO algorithm, an update will be 
made if the 𝑟𝑛𝑑4 value is greater than the WEP coefficient. This process occurs when 𝑟𝑛𝑑4 value is less than WEP coefficient 
in standard MVO algorithm. With the change made in this section, the local search or exploitation near the best solution found 
up to the current iteration, tends to decrease from the first iteration to the last iteration, as opposed to the standard MVO 
algorithm. The pseudo-code of the IMVOSA algorithm is as follows: 
 
Algorithm 3. IMVOSA (continued overleaf) 

1: Generate random universes (UN) 
2: Initialize BestUniverse,WormholeExistenceProbability,TravellingDistanceRate 
3: SUN = Sorted universes 
4: NR = Normalize inflation rates (fitness) of the universes 
5: while Time < Max_time 
6:   Assess the fitness of all universes 
7:   for each universe indexed by i       
8:      Update TravellingDistanceRate, WormholeExistenceProbability 
9:      BlackHoleIndex = i; 

10:     for each object indexed by j 
11:        rnd1 = random([0, 1]); 
12:    if rnd1 < NR(Ui) 
13:          WhiteHoleIndex = Roulette_Wheel_Selection(-NR); 
14: UN(BlackHoleIndex, j) = SUN(WhiteHoleIndex,j); 
15: else 
16: UN(BlackHoleIndex, j) = BestUniverse(j); 
17: end if  
18: end for 
19: S = UN(BlackHoleIndex) 
20: f(U) = Calculate fitness value of UN(BlackHoleIndex) 
21: Calculate NU, R, NSU, NEU values according to Equations 9, 10, 12, 13 
22: if NEU > NU 
23: NEU = NU 
24: for each universe in the sub-solution set 
25: for each object indexed by j 
26: m = k % 3௝ାଵ      
27: if m < 3௝ 
28: S(j) = BestUniverse(j) - UN(BlackHoleIndex, j) 
29: else  
30: rnd2=random([0,1]); 
31: if m<3௝ × 2 
32: S(j)=UN(BlackHoleIndex,j)+TravellingDistanceRate × 

 rnd2 ×BestUniverse(j)-UN(BlackHoleIndex, j)) 
33: else 
34: S(j)=UN(BlackHoleIndex,j)-TravellingDistanceRate × 

 rnd2 ×BestUniverse(j)-UN(BlackHoleIndex, j)) 
35: end if 
36: end if 
37: end for 
38: f(S) = Calculate the fitness value of S 
39: if f(S) < f(UN(BlackHoleIndex)) 
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Algorithm 3. (continued) 
40: UN(BlackHoleIndex) = S 
41: else 
42: ∆f = f(S) - f(UN(BlackHoleIndex)) 
43: rnd3 = random([0, 1]); 
44: if rnd3 < exp(-∆f / T) 
45: UN(BlackHoleIndex) = S 
46: end if     
47: end if 
48: T = T × a 
49: end for 
50: for each object indexed by j 
51: rnd4 = random([0,1]); 
52: if rnd4 < WormholeExistenceProbability 
53: rnd5 = random([0, 1]); 
54: rnd6 = random([0, 1]); 
55: if rnd5 < 0.5 
56: UN(i,j)= BestUniverse(j)+ TravellingDistanceRate × 

((ub(j) - lb(j)) × rnd6 + lb(j)); 
57: else 
58: UN(i,j)= BestUniverse(j)- TravellingDistanceRate × 

((ub(j) - lb(j)) × rnd6 + lb(j)); 
59: end if 
60: end if 
61: end for 
62: end for 
63: end while 

 
4. Experimental Results 
 
4.1. Test Functions and Comparison Algorithms 
 
In this study, 50 benchmark functions with different characteristics commonly used in publications were used to assess the 
success of the proposed IMVOSA algorithm. Mathematical formulas and properties of benchmark functions are listed in Table 
1. As shown in table 1, functions such as 𝐹ଵ - 𝐹ଶ଴ unimodal and 𝐹ଶଵ - 𝐹ହ଴ multimodal are divided into two groups. Unimodal 
functions with a global best reveal the exploitation capabilities of algorithms, while multimodal functions demonstrate the 
algorithms' ability to exploration and avoid local minimums. Unimodal functions with a global best reveal the exploitation 
capabilities of algorithms, while multimodal functions demonstrate the ability of algorithms to avoid local minimums and to 
exploration. Bounds, dimensions and global minimum values of functions are listed in Table 2. 
 
Table 1 
Unimodal and multimodal benchmark functions (continued overleaves) 
Name Type Equation 

Ackley N.2 Uni ( ) 2 20.2
1 200 x yF x e− += −   

Booth Uni ( ) ( ) ( )2 2
2 1 2 1 22 7 2 5F x x x x x= + − + + −   

Brent Uni ( ) ( ) ( ) 2 22 2
3 1 210 10 x yF x x x e− −= + + + +   

Brown Uni ( ) ( )
2 21

1 ( 1) ( 1)

1

2 2
4 1( )i i

d x x

i
i iF x x x+ + +

=

−

+= +   
Dixon & Price Uni ( ) ( ) ( )

2

22 2
5 1 1 2 1

d

i
i

iF x x i x x
=

= − + − −   
Drop-Wave Uni 

( )
( )

( )( )
2 2
1 2

6 2 2
1 2

1 cos 12

0.5 2

x x
F x

x x

+ +
= −

+ +
  

Leon Uni ( ) ( ) ( )2 23
7 2 1 1100 1F x x x x= − + −   

Matyas Uni ( ) ( )2 2
8 1 2 1 20.26 0.48F x x x x x= + −   
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Table 1. (continued) 

Name Type Equation 
Powell Sum Uni ( ) 1

9
1

d
i

i
i

F x x +

=

=   
Schwefel's Problem 1.2 Uni 

( )
2

10
1 1

d i

j
i j

F x x
= =

 
=  

 
    

Schwefel's Problem 2.20 Uni ( )11
1

d

i
i

F x x
=

=   
Schwefel's Problem 2.21 Uni ( )12 max , 1iF x x i d= ≤ ≤   
Schwefel's Problem 2.22 Uni ( )13

1 1

d d

i i
i i

F x x x
= =

= + ∏   
Schwefel's Problem 2.23 Uni ( ) 10

14
1

d

i
i

F x x
=

=    
Step Uni ( )15

1

d

i
i

F x x
=

=       
Step 2 Uni ( )16

1

0.5
d

i
i

F x x
=

=  +      
Sum Squares Uni ( ) 2

17
1

d

i
i

F x ix
=

=    
Trecanni Uni ( ) 4 3 2

18 1 1 1 24 4F x x x x x= − + +   
Wayburn Seader 1 Uni ( ) ( ) ( )2 26 4

19 1 2 1 217 2 4F x x x x x= + − + + −   
Wayburn Seader 2 Uni ( ) ( ) ( ) ( )

22 2 2
20 1 2 21.613 4 0.3125 4 1.625 1F x x x x = − − − − + −    

Ackley Multi 
( ) ( )

( )

2
21

1 1

1 120exp 0.2 exp( cos 2 )

20 exp 1

d d

i i
i i

F x x x
d d

π
= =

 
= − − −  

 
+ +

     
Alpine 1 Multi ( ) ( )22

1
sin 0.1

d

i i i
i

F x x x x
=

= +    
Bartels Conn Multi ( ) ( ) ( )2 2

23 1 2 1 2 1 2sin cosF x x x x x x x= + + + +   
Beale Multi ( ) ( ) ( ) ( )2 22 2 3

24 1 1 2 1 1 2 1 1 21.5 2.25 2.625F x x x x x x x x x x= − + + − + + − +   
Bohachevsky 1 Multi ( ) 2 2

25 1 2 1 22 0.3cos(3 ) 0.4cos(4 ) 0.7F x x x x xπ π= + − − +   
Bohachevsky 2 Multi ( ) 2 2

26 1 2 1 22 0.3cos(3 )0.4cos(4 ) 0.3F x x x x xπ π= + − +   
Bohachevsky 3 Multi ( ) 2 2

27 1 2 1 22 0.3cos(3 4 ) 0.3F x x x x xπ π= + − + +   
Cross-in-Tray Multi 

( ) ( ) ( )
( ) 0.52 2

1 2

0.1
100 /

28 1 20.0001 sin sin 1
x x

F x x x e
π − + 

 
 = − +
  
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Table 1. (continued) 
Name Type Equation 

Csendes Multi ( ) 6
29

1

1(2 sin )
d

i
i i

F x x
x=

= +    
Colville  Multi ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( )

2 22 2 2 22 2
30 1 2 1 4 3 3 2 4

2 4

100 1 90 1 10.1 1 1

19.8 1 1

F x x x x x x x x x

x x

= − + − + − + − + − + −

+ − −
  

Deckkers-Aarts  Multi ( ) ( ) ( )2 45 2 2 2 2 5 2 2
31 1 2 1 2 1 210 10F x x x x x x x−= + − + + +   

Griewank Multi 
( )

2

32
1 1

cos 1
4000

d d
i i

i i

x x
F x

i= =

 = − + 
 

 ∏    
Goldstein-Price  Multi 

( ) ( )
2

2 1 1 2
33 1 2 2

1 2 2

2
1 12

1 2 2
2 1 2 2

19 14 3 14
1 1 .

6 3

18 32 12
30 (2 3 )

48 36 27

x x x
F x x x

x x x

x x
x x

x x x x

  − + −
= + + +   + +   

  − +
+ −   + − +   

  
Helical Valley Multi 

2

1
1

arctan
0

2

x
x

x θ
π

 
 
 ≥  = , 

2

1
1

arctan
0

2

x
x

x
π

θ
π

 
+ 

 <  =  

  ( ) ( )2 2 2 2 2
34 3 1 2 3100 10 ( 1)F x x x x xθ = − + + − +

 
  

Himmelblau Multi ( ) ( ) ( )2 22 2
35 1 2 1 211 7F x x x x x= + − + + −   

Holder-Table Multi 
( ) ( ) ( ) ( ) 0.52 2

1 21 /

36 1 2sin cos
x x

F x x x e
π − + = −   

Keane Multi 
( ) ( ) ( )2 2

1 2 1 2
37 2 2

1 2

sin sinx x x x
F x

x x

− +
= −

+
  

Kowalik Problem Multi 0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246a =  
1 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16b− = 

( ) ( ) ( )
11

2 2
38 1 2 3 4

1
( ( ) / )i i i i i

i

F x a x b b x b b x x
=

= − + + +    

Levy N.13 Multi ( ) ( ) ( ) ( )( ) ( ) ( )( )2 22 2 2
39 1 1 2 2 2sin 3 1 1 sin 3 1 1 sin 2F x x x x x xπ π π= + − + + − +  

Pathological  Multi 
( )

( )
2 2 21

1
40 22 21 1 1

sin 100 0.5
0.5

1 0.001 2

d
i i

i i i i i

x x
F x

x x x x

−
+

= + +

 + − = +
 + − + 

    

Price 2 Multi ( ) ( )2 2
1 22 2

41 1 21 sin sin 0.1 x xF x x x e− += + + −   

Price 3 Multi ( ) ( ) ( )
22 22

42 2 1 2 1100 6 6.4 0.5 0.6F x x x x x = − + − − −    

Price 4 Multi ( ) ( )23 3 2 2
43 1 2 2 1 2 2(2 ) 6F x x x x x x x= − + − +   

Rastrigin Multi ( ) ( )2
44

1
10 10cos cos 2

d

i i
i

F x d x xπ
=

 = + −     
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Table 1. (continued) 
Name Type Equation 

Salomon Multi 
( ) 2 2

45
1 1

1 cos 2 0.1
d d

i i
i i

F x x xπ
= =

 
= − +  

 
     

Schaffel N.1 Multi 
( ) ( )

( )( )

22 2 2
1 2

46 22 2
1 2

sin 0.5
0.5

1 0.001

x x
F x

x x

+ −
= +

+ +
  

Six Hump Camel Multi 
( ) ( )

4
2 2 2 2

47 1 1 1 2 2 24 2.1 4 4
3
ix

F x x x x x x x
 

= − + + + − 
 

  

Three Hump Camel Multi 
( )

6
2 4 21

48 1 1 1 2 22 1.05
6
xF x x x x x x= − + + +   

Weierstrass Multi 0.5 3 20a b kmax= = =  

( ) ( )( ) ( )49
1 0 0

cos 2 0.5 cos
d kmax kmax

k k k k
i

i k k

F x a b x d a bπ π
= = =

 = + − 
 

     
Wolfe Multi ( ) ( )0.752 2

50 1 2 1 2 3
4
3

F x x x x x x= + − +   
 
MVO (Mirjalili et al., 2016) and six algorithms commonly mentioned in the literature to assess the success of the IMVOSA 
algorithm: Cuckoo Search (CS) (Yang & Deb, 2009), Differential Evolution (DE) (Storn & Price, 1997), Harris Hawks 
Optimization (HHO) (Heidari et al., 2019), Moth Flame Algorithm (MFO) (Mirjalili, 2015), Particle Swarm Optimization 
(PSO) (Kennedy & Eberhart, 1995) and Gravity Search Algorithm (GSA) (Rashedi et al., 2009) were used. The results of the 
algorithms used to solve the 50 selected benchmark functions were compared using various statistical measurements and 
methods. 
 

Table 2 
Bounds, dimensions and minimum fitness  𝑭𝒙 Range D Fmin 𝑭𝒙 Range D Fmin 𝐹ଵ [-32, 32] 2 -200 𝐹ଶ଺ [-100, 100] 2 0 𝐹ଶ [-10, 10] 2 0 𝐹ଶ଻ [-100, 100] 2 0 𝐹ଷ [-20, 0] 2 0 𝐹ଶ଼ [-10, 10] 2 −2.06261218 𝐹ସ [-1, 4] 20 0 𝐹ଶଽ [-1, 1] 20 0 𝐹ହ [-10, 10] 20 0 𝐹ଷ଴ [-10, 10] 4 0 𝐹଺ [-5.2, 5.2] 2 -1 𝐹ଷଵ [-20, 20] 2 −24777 𝐹଻ [0, 10] 2 0 𝐹ଷଶ [-600, 600] 20 0 𝐹  [-10, 10] 2 0 𝐹ଷଷ [-2, 2] 2 3 𝐹ଽ [-1, 1] 20 0 𝐹ଷସ [-10, 10] 3 0 𝐹ଵ଴ [-100, 100] 20 0 𝐹ଷହ [-6, 6] 2 0 𝐹ଵଵ [-100, 100] 20 0 𝐹ଷ଺ [-10, 10] 2 −19.2085 𝐹ଵଶ [-100, 100] 20 0 𝐹ଷ଻ [-10, 10] 2 −0.673668 𝐹ଵଷ [-100, 100 20 0 𝐹ଷ଼ [-5, 5] 4 0.0003075 𝐹ଵସ [-10, 10] 20 0 𝐹ଷଽ [-10, 10] 2 0 𝐹ଵହ [-100, 100] 20 0 𝐹ସ଴ [-100, 100] 20 0 𝐹ଵ଺ [-100, 100] 20 0 𝐹ସଵ [-10, 10] 2 0 𝐹ଵ଻ [-10, 10] 20 0 𝐹ସଶ [-500, 500] 2 0 𝐹ଵ଼ [-5, 5] 2 0 𝐹ସଷ [-500, 500] 2 0 𝐹ଵଽ [-5, 5] 2 0 𝐹ସସ [-5.12, 5.12] 20 0 𝐹ଶ଴ [-500, 500] 2 0 𝐹ସହ [-100, 100] 20 0 𝐹ଶଵ [-32, 32] 20 0 𝐹ସ଺ [-100, 100] 2 0 𝐹ଶଶ [-10, 10] 20 0 𝐹ସ଻ [-5, 5] 2 -1.0316 𝐹ଶଷ [-500, 500] 2 1 𝐹ସ଼ [-5, 5] 2 0 𝐹ଶସ [-4.5, 4.5] 2 0 𝐹ସଽ [-0.5, 0.5] 20 0 𝐹ଶହ [-100, 100] 2 0 𝐹ହ଴ [0, 2] 3 0 
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4.2.  Experimental setup 
 
Experiments were carried out using the EvoloPy framework. Evolopy is a framework consisting of classical and up-to-date 
metaheuristic algorithms written in Python language with an easy-to-use interface. Studies have been conducted on 
optimization, clustering, feature selection and artificial neural network training using Evolopy (Mirjalili et al., 2017; Khurma 
et al., 2020; Qaddoura et al., 2021). The suggested algorithm and the others are coded in Python 3.8 language and have been 
tested on a personal computer with Intel (R) Core (TM) i7-10875H CPU 2.30 GHz, 64 Bit Windows 10 operating system and 
16 GB (RAM). The parameter settings for the algorithms used in the comparison are shown in Table 3. For all algorithms and 
benchmark functions used the number of search agents is set to 30, the number of iterations is set to 100. Each algorithm has 
been run independently 30 times to achieve balanced performance consequences. Values are normalized in the range [0,1] for 
better analysis of consequences (Mirjalili et al., 2017). At the stage of evaluating the performance of algorithms, the average 
value (Ave) and standard deviation (Std) of the values obtained as a result of each experiment were calculated for each 
function. In addition, non-parametric Wilcoxon rank-sum test was implemented to the results to investigate the relationship 
among algorithms; p value was considered less than 0.05 (5E-02) in order to evaluate whether there was a statistically 
distinctive difference. Table 5 contains the results from the Wilcoxon rank-sum test. 
 
Table 3  
Parameters and values of IMVOSA and other algorithms (continued overleaf) 

Algorithm Parameter Description Value 

IMVOSA 

WEP_Max Maximum WEP 1 
WEP_Min Minimum WEP 0.2 
p Exploitation accuracy 6 
T Initial temperature 1 
a Cooling rate 0.88 

MVO 
WEP_Max Maximum WEP 1 
WEP_Min Minimum WEP 0.2 
p Exploitation accuracy 6 

CS 
𝑝௔ Discovery Rate 0.25 𝛽 Beta 1.5 

DE 
mutation_factor Mutation factor 0.5 
crossover_ratio Crossover Ratio 0.7 

PSO 

Vmax Maximum particle velocity 6 
c1 Acceleration coefficient1 2 
c2 Acceleration coefficient2 2 
wMax Maximum inertia weight coefficient 0.9 
wMin Minimum inertia weight coefficient 0.2 

HHO No custom parameters 
MFO b Logaritmik spiral 1 

GSA 
G0 Gravitational constant 20 
a User-specified constant 100 

 
4.3.  Experimental Results and Discussions 
 

In this part, the success of IMVOSA and other metaheuristic algorithms was analyzed and compared based on average and 
standard deviation values for 30 trials. In addition, the relationship among algorithms using the results obtained from 
algorithms was investigated by applying Wilcoxon statistical test. 
 

Table 4 
Statistical results for 50 benchmark functions (continued overleaves) 𝑭𝒙 IMVOSA MVO CS DE HHO MFO PSO GSA 𝐹ଵ Ave 0.00E+00 1.00E+00 8.93E-02 8.13E-09 2.31E-09 3.05E-12 5.87E-06 1.54E-07 

Std 0.00E+00 1.00E+00 1.17E-01 1.94E-08 1.75E-08 5.03E-12 1.58E-05 1.41E-07 𝐹ଶ Ave 7.32E-03 4.60E-04 2.09E-05 6.60E-15 1.39E-01 0.00E+00 1.45E-11 1.00E+00 
Std 2.82E-03 1.30E-04 1.07E-05 4.52E-15 1.31E-01 0.00E+00 1.24E-11 1.00E+00 𝐹ଷ Ave 5.80E-04 4.96E-04 3.96E-06 1.81E-20 1.00E+00 0.00E+00 1.56E-13 5.95E-17 
Std 2.63E-04 1.46E-04 3.29E-06 2.32E-20 1.00E+00 0.00E+00 1.82E-13 2.48E-17 𝐹ସ Ave 0.00E+00 8.80E-04 8.19E-01 7.41E-03 9.44E-23 8.21E-02 1.00E+00 5.16E-01 
Std 0.00E+00 5.06E-04 4.85E-01 4.44E-03 3.00E-22 8.34E-02 1.00E+00 6.68E-01 𝐹ହ Ave 3.17E-05 1.28E-03 2.49E-01 5.90E-03 0.00E+00 1.00E+00 5.79E-03 1.91E-02 
Std 0.00E+00 3.57E-04 4.73E-02 1.18E-03 2.96E-07 1.00E+00 2.83E-03 1.01E-02 𝐹଺ Ave 0.00E+00 2.16E-01 5.17E-01 7.59E-02 0.00E+00 4.27E-01 2.73E-01 1.00E+00 
Std 0.00E+00 7.67E-01 7.86E-01 4.07E-01 0.00E+00 1.00E+00 8.40E-01 8.69E-01 𝐹଻ Ave 8.99E-02 2.65E-01 0.00E+00 2.12E-01 5.94E-02 2.03E-01 1.00E+00 4.58E-01 
Std 1.94E-01 7.44E-01 0.00E+00 5.20E-01 2.62E-01 3.75E-01 1.00E+00 4.39E-01 𝐹  Ave 0.00E+00 3.25E-05 7.69E-07 1.85E-14 2.56E-23 2.20E-14 2.12E-10 1.00E+00 
Std 0.00E+00 2.60E-05 9.40E-07 2.83E-14 9.66E-23 8.82E-14 6.19E-10 1.00E+00 
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Table 4. (continued) 𝑭𝒙  IMVOSA MVO CS DE HHO MFO PSO GSA 𝐹ଽ Ave 0.00E+00 1.42E-02 2.07E-01 3.24E-03 2.51E-12 1.77E-02 1.56E-02 1.00E+00 
Std 0.00E+00 2.44E-03 3.71E-02 7.88E-04 2.92E-12 7.22E-03 4.33E-03 1.00E+00 𝐹ଵ଴ Ave 0.00E+00 4.94E-02 4.61E-01 1.00E+00 3.62E-14 7.35E-01 8.80E-03 1.50E-01 
Std 0.00E+00 7.58E-02 3.61E-01 7.64E-01 6.17E-13 1.00E+00 1.46E-02 2.04E-01 𝐹ଵଵ Ave 0.00E+00 7.31E-02 1.00E+00 1.77E-01 1.38E-11 3.32E-01 1.18E-02 7.94E-01 
Std 0.00E+00 1.16E-01 7.28E-01 2.13E-01 2.19E-10 1.00E+00 1.93E-02 9.64E-01 𝐹ଵଶ Ave 0.00E+00 9.12E-02 8.03E-01 7.34E-01 3.25E-12 1.00E+00 4.09E-02 3.72E-01 
Std 0.00E+00 2.62E-01 5.15E-01 7.58E-01 3.83E-11 1.00E+00 5.61E-02 3.19E-01 𝐹ଵଷ Ave 0.00E+00 1.00E+00 2.81E-01 8.10E-15 1.48E-25 2.56E-14 3.23E-15 1.49E-08 
Std 0.00E+00 1.00E+00 4.04E-01 1.07E-15 9.64E-26 4.98E-15 1.28E-15 2.73E-08 𝐹ଵସ Ave 0.00E+00 3.67E-11 5.99E-01 1.20E-03 1.51E-90 1.00E+00 1.46E-05 2.83E-02 
Std 0.00E+00 4.29E-11 3.95E-01 7.10E-04 4.42E-90 1.00E+00 1.80E-05 4.37E-02 𝐹ଵହ Ave 0.00E+00 7.97E-02 1.00E+00 1.80E-01 5.06E-11 2.97E-01 1.09E-02 8.25E-01 
Std 0.00E+00 1.74E-01 1.00E+00 2.82E-01 9.27E-10 9.65E-01 2.85E-02 9.26E-01 𝐹ଵ଺ Ave 1.19E-03 2.88E-03 1.00E+00 4.54E-02 0.00E+00 1.84E-01 1.92E-04 5.92E-01 
Std 4.10E-04 4.81E-03 1.00E+00 7.21E-02 0.00E+00 3.63E-01 4.75E-04 6.26E-01 𝐹ଵ଻ Ave 0.00E+00 1.34E-02 1.00E+00 3.97E-02 2.90E-22 4.63E-01 7.66E-02 1.18E-01 
Std 0.00E+00 1.05E-02 3.19E-01 2.03E-02 1.38E-21 1.00E+00 2.23E-01 1.02E-01 𝐹ଵ଼ Ave 9.49E-14 2.70E-04 1.50E-05 3.53E-13 4.60E-06 0.00E+00 2.33E-12 1.00E+00 
Std 0.00E+00 5.16E-05 4.09E-06 2.36E-13 3.39E-06 2.35E-14 1.48E-12 1.00E+00 𝐹ଵଽ Ave 8.47E-03 1.52E-04 7.77E-04 1.26E-08 4.05E-02 8.58E-07 0.00E+00 1.00E+00 
Std 7.51E-03 1.00E-04 6.85E-04 3.30E-08 2.60E-02 1.89E-06 0.00E+00 1.00E+00 𝐹ଶ଴ Ave 1.40E-08 4.65E-09 8.79E-11 0.00E+00 7.63E-12 4.05E-15 1.22E-13 1.00E+00 
Std 7.17E-09 2.05E-09 3.51E-11 0.00E+00 7.05E-12 4.20E-15 1.70E-13 1.00E+00 𝐹ଶଵ Ave 0.00E+00 1.73E-01 1.00E+00 4.28E-01 4.04E-11 8.73E-01 1.22E-01 3.62E-01 
Std 0.00E+00 9.03E-02 2.28E-01 5.77E-01 2.97E-10 1.00E+00 1.10E-01 2.64E-01 𝐹ଶଶ Ave 0.00E+00 4.91E-01 1.00E+00 8.09E-01 6.95E-07 3.46E-01 1.46E-01 1.57E-01 
Std 0.00E+00 6.87E-01 4.24E-01 4.79E-01 1.45E-05 1.00E+00 4.39E-01 4.76E-01 𝐹ଶଷ Ave 0.00E+00 2.36E-04 8.63E-06 1.03E-14 4.24E-14 0.00E+00 3.15E-10 1.00E+00 
Std 0.00E+00 1.43E-04 5.55E-06 9.41E-15 1.26E-13 0.00E+00 4.13E-10 1.00E+00 𝐹ଶସ Ave 1.00E+00 6.25E-01 5.85E-04 0.00E+00 1.56E-01 1.03E-11 2.36E-09 4.01E-01 
Std 1.00E+00 7.99E-01 6.04E-04 0.00E+00 4.22E-01 2.43E-11 4.09E-09 2.98E-01 𝐹ଶହ Ave 0.00E+00 5.34E-01 2.18E-02 0.00E+00 0.00E+00 0.00E+00 9.41E-12 1.00E+00 
Std 0.00E+00 1.92E-01 1.06E-02 0.00E+00 0.00E+00 0.00E+00 8.23E-12 1.00E+00 𝐹ଶ଺ Ave 0.00E+00 8.67E-02 2.56E-03 5.07E-16 1.91E-17 0.00E+00 8.10E-13 1.00E+00 
Std 0.00E+00 2.57E-02 1.11E-03 4.32E-16 2.06E-17 0.00E+00 5.08E-13 1.00E+00 𝐹ଶ଻ Ave 0.00E+00 5.60E-02 2.24E-03 3.38E-12 2.68E-14 6.87E-07 1.39E-09 1.00E+00 
Std 0.00E+00 1.67E-02 8.11E-04 3.30E-12 4.43E-14 1.18E-06 1.16E-09 1.00E+00 𝐹ଶ଼ Ave 1.00E+00 6.01E-01 2.03E-02 1.00E-05 6.72E-02 0.00E+00 9.49E-08 0.00E+00 
Std 1.00E+00 4.16E-01 1.87E-02 2.56E-05 1.02E-01 0.00E+00 2.69E-07 0.00E+00 𝐹ଶଽ Ave 2.28E-11 4.47E-09 2.59E-02 2.75E-04 0.00E+00 5.86E-03 3.25E-03 1.00E+00 
Std 1.61E-11 2.25E-09 5.60E-03 1.23E-04 0.00E+00 3.13E-03 1.56E-03 1.00E+00 𝐹ଷ଴ Ave 2.41E-02 1.89E-02 1.78E-02 2.84E-03 0.00E+00 1.54E-02 4.35E-03 1.00E+00 
Std 6.82E-03 6.10E-03 1.19E-03 2.96E-05 0.00E+00 6.26E-03 5.94E-04 1.00E+00 𝐹ଷଵ Ave 2.15E-06 4.55E-05 3.40E-06 1.05E-14 1.55E-01 0.00E+00 3.06E-15 1.00E+00 
Std 5.16E-06 7.69E-05 6.37E-06 4.15E-14 7.73E-01 0.00E+00 1.36E-14 1.00E+00 𝐹ଷଶ Ave 0.00E+00 5.20E-03 1.17E-01 1.03E-02 5.50E-20 2.43E-02 4.71E-02 1.00E+00 
Std 0.00E+00 8.01E-04 1.75E-01 1.50E-02 1.50E-18 6.49E-02 1.25E-01 1.00E+00 𝐹ଷଷ Ave 1.00E+00 3.33E-01 1.57E-05 0.00E+00 7.78E-01 8.22E-16 9.22E-14 1.57E-01 
Std 1.00E+00 5.98E-01 8.97E-06 3.24E-16 4.70E-01 0.00E+00 6.73E-14 2.19E-01 𝐹ଷସ Ave 1.31E-01 4.24E-03 1.19E-02 0.00E+00 6.15E-02 1.01E-01 1.45E-03 1.00E+00 
Std 4.11E-01 1.20E-02 1.62E-02 0.00E+00 9.94E-02 3.96E-01 4.89E-03 1.00E+00 𝐹ଷହ Ave 8.30E-04 6.11E-04 7.53E-05 6.12E-08 2.47E-03 0.00E+00 2.15E-12 1.00E+00 
Std 1.84E-04 1.34E-04 1.84E-05 7.18E-08 2.01E-03 0.00E+00 1.13E-12 1.00E+00 
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Table 4. (continued) 𝑭𝒙  IMVOSA MVO CS DE HHO MFO PSO GSA 𝐹ଷ଺ Ave 7.48E-06 5.93E-06 1.00E+00 8.64E-03 1.11E-02 0.00E+00 1.35E-02 3.64E-02 

Std 6.56E-09 4.27E-09 1.00E+00 1.48E-05 2.79E-05 0.00E+00 1.81E-05 1.85E-05 𝐹ଷ଻ Ave 4.20E-01 1.00E+00 1.54E-01 1.60E-02 3.63E-02 0.00E+00 9.83E-08 0.00E+00 
Std 1.00E+00 9.76E-01 2.72E-01 6.18E-02 7.34E-02 0.00E+00 3.02E-07 0.00E+00 𝐹ଷ଼ Ave 2.51E-01 4.63E-01 3.51E-02 1.33E-02 0.00E+00 3.20E-02 3.76E-01 1.00E+00 
Std 5.60E-01 1.00E+00 2.30E-03 7.37E-03 8.86E-03 0.00E+00 6.57E-01 8.69E-01 𝐹ଷଽ Ave 5.36E-01 1.58E-01 4.19E-02 3.09E-16 2.67E-02 0.00E+00 1.47E-10 1.00E+00 
Std 4.11E-01 6.55E-02 2.93E-02 3.29E-16 2.03E-02 0.00E+00 1.08E-10 1.00E+00 𝐹ସ଴ Ave 0.00E+00 9.95E-01 1.00E+00 4.15E-01 1.51E-04 4.00E-01 8.81E-01 5.45E-01 
Std 0.00E+00 5.12E-01 4.14E-01 9.05E-01 6.85E-03 7.78E-01 8.07E-01 1.00E+00 𝐹ସଵ Ave 1.03E-01 1.98E-01 9.24E-02 0.00E+00 7.67E-02 1.80E-01 1.47E-01 1.00E+00 
Std 4.96E-02 5.67E-03 3.80E-02 4.76E-02 5.24E-02 0.00E+00 3.17E-02 1.00E+00 𝐹ସଶ Ave 8.29E-09 4.79E-09 1.49E-10 8.57E-11 0.00E+00 5.98E-11 8.57E-11 1.00E+00 
Std 2.69E-09 1.48E-09 3.54E-11 2.13E-11 0.00E+00 1.86E-11 2.14E-11 1.00E+00 𝐹ସଷ Ave 0.00E+00 1.00E+00 9.99E-12 1.86E-20 9.35E-18 8.28E-16 4.55E-15 9.81E-02 
Std 0.00E+00 1.00E+00 3.48E-12 5.53E-21 6.01E-18 6.06E-16 1.93E-15 5.04E-02 𝐹ସସ Ave 0.00E+00 6.39E-01 9.38E-01 1.00E+00 0.00E+00 7.61E-01 7.70E-01 3.83E-01 
Std 0.00E+00 7.44E-01 4.08E-01 4.06E-01 0.00E+00 1.00E+00 8.59E-01 6.43E-01 𝐹ସହ Ave 4.49E-04 1.42E-01 1.00E+00 3.64E-01 0.00E+00 5.67E-01 7.73E-02 5.38E-01 
Std 1.24E-02 1.61E-01 6.61E-01 3.04E-01 0.00E+00 1.00E+00 7.50E-02 4.77E-01 𝐹ସ଺ Ave 0.00E+00 1.23E-05 1.54E-02 7.99E-06 0.00E+00 0.00E+00 7.16E-15 1.00E+00 
Std 0.00E+00 9.02E-06 3.86E-02 3.33E-05 0.00E+00 0.00E+00 3.09E-14 1.00E+00 𝐹ସ଻ Ave 7.94E-02 7.53E-02 3.44E-03 4.81E-07 4.98E-03 0.00E+00 8.08E-10 1.00E+00 
Std 2.48E-02 1.27E-02 8.83E-04 3.52E-07 1.96E-03 0.00E+00 6.44E-10 1.00E+00 𝐹ସ଼ Ave 0.00E+00 1.19E-05 8.38E-07 8.52E-20 3.19E-20 3.54E-28 2.27E-14 1.00E+00 
Std 0.00E+00 7.68E-06 8.03E-07 1.27E-19 5.12E-20 6.27E-28 2.15E-14 1.00E+00 𝐹ସଽ Ave 0.00E+00 5.87E-01 1.00E+00 3.53E-01 2.18E-08 4.19E-01 4.82E-01 3.51E-01 
Std 0.00E+00 1.00E+00 5.34E-01 3.46E-01 8.63E-07 7.03E-01 8.10E-01 9.18E-01 𝐹ହ଴ Ave 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Std 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 
Statistical results obtained from 50 comparison functions using IMVOSA, MVO, CS, DE, HHO, MFO, PSO and GSA 
algorithms are shown in Table 4. As seen in this table, IMVOSA performs better than other algorithms for most functions in 
unimodal and multimodal groups. 
 
In the unimodal function group, the best results were obtained in 12 functions from 20 functions including 𝐹ଵ, 𝐹ସ, 𝐹଺, 𝐹  – 𝐹ଵହ, 𝐹ଵ଻ with the IMVOSA algorithm. Other best results are MFO algorithm 3 functions, HHO algorithm 3 functions, CS 
Algorithm 1 function, DE Algorithm 1 function, PSO Algorithm 1 function respectively. With the GSA and MVO algorithms, 
the best results were not obtained in any of the 20 test functions in the unimodal function group.  
 
With the IMVOSA algorithm, the best results were obtained in 14 functions from 30 functions in the multimodal function 
group, including 𝐹ଶଵ – 𝐹ଶଷ, 𝐹ଶହ – 𝐹ଶ଻, 𝐹ଷଶ, 𝐹ସ଴, 𝐹ସଷ, 𝐹ସସ, 𝐹ସ଺, 𝐹ସ଼ - 𝐹ହ଴. Other best results are 10 functions with MFO algorithm, 
8 functions with HHO algorithm, 5 functions with DE algorithm, 3 functions with GSA Algorithm, 1 function with PSO 
Algorithm, 1 function with CEO algorithm, respectively. The best results were not obtained in any of the 30 test functions in 
the multimodal function group with the CS algorithm. Fig. 2 shows convergence curves for some functions from the unimodal 
and multimodal function group to observe the convergence attitude of the IMVOSA algorithm and to better compare the 
success of the IMVOSA algorithm and other algorithms. As shown in Fig. 2, the proposed IMVOSA algorithm has achieved 
successful consequences by outperforming other algorithms with regard to performance and stability. The nonparametric 
Wilcoxon rank sum statistical test was applied to understand the relationship among the MVO, CS, DE, HHO, MFO, PSO, 
and GSA algorithms used in comparison with the IMVOSA algorithm. This test is used to verify whether solutions are 
statistically different (Wilcoxon, 1992). The fact that the p value for this test is less than 0.05 (5E-02) identifies a statistically 
significant difference. Consequences for this test are given in Table 5. In the table, the algorithm with the best average value 
is compared with other algorithms and gets the N/A value. In cases where there are algorithms or algorithms with the same 
score as the IMVOSA algorithm for any function, the IMVOSA algorithm was chosen as the best algorithm. According to 
Table 5, the IMVOSA algorithm performs better than other algorithms. The IMVOSA algorithm has a p value smaller than 
0.05 for many benchmark functions and can be concluded to be statistically significant. From these results, it can be said that 
IMVOSA has a higher ability of exploration and exploitation than MVO and other algorithms. 
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Table 5 
Wilcoxon rank sum test 𝑝-values (N/A = not applicable) (continued overleaf) 𝑭𝒙 IMVOSA MVO CS DE HHO MFO PSO GSA 𝐹ଵ N/A 2.87E-11 2.87E-11 2.87E-11 1.27E-10 2.13E-09 2.87E-11 2.87E-11 𝐹ଶ 2.87E-11 2.87E-11 2.87E-11 4.73E-11 2.87E-11 N/A 2.87E-11 3.88E-11 𝐹ଷ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 𝐹ସ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ହ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 𝐹଺ N/A 2.87E-11 2.87E-11 2.87E-11 1.00E+00 7.60E-02 2.87E-11 1.27E-10 𝐹଻ 5.12E-04 4.16E-01 N/A 4.25E-01 1.28E-01 2.23E-06 8.50E-03 3.31E-10 𝐹  N/A 2.87E-11 2.87E-11 2.87E-11 1.02E-07 2.87E-11 2.87E-11 2.87E-11 𝐹ଽ N/A 4.24E-11 4.24E-11 4.24E-11 4.24E-11 4.24E-11 4.24E-11 4.24E-11 𝐹ଵ଴ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଵ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଶ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଷ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵସ N/A 2.87E-11 2.87E-11 2.87E-11 1.00E+00 2.87E-11 2.87E-11 2.87E-11 𝐹ଵହ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଺ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଻ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଼ 6.57E-01 2.87E-11 2.87E-11 1.72E-03 2.71E-08 N/A 7.73E-10 1.72E-03 𝐹ଵଽ 2.87E-11 2.87E-11 3.51E-11 1.33E-06 3.51E-11 3.21E-06 N/A 2.87E-11 𝐹ଶ଴ 2.87E-11 2.87E-11 2.87E-11 N/A 5.23E-11 4.25E-01 2.89E-07 2.87E-11 𝐹ଶଵ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଶ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଷ N/A 2.87E-11 2.87E-11 2.87E-11 1.47E-02 1.00E+00 2.87E-11 2.87E-11 𝐹ଶସ 2.87E-11 2.87E-11 2.87E-11 N/A 1.94E-09 5.12E-04 2.87E-11 2.87E-11 𝐹ଶହ N/A 2.87E-11 2.87E-11 1.00E+00 1.00E+00 1.00E+00 2.87E-11 1.83E-01 𝐹ଶ଺ N/A 2.87E-11 2.87E-11 4.59E-02 6.57E-01 1.00E+00 2.87E-11 9.19E-06 𝐹ଶ଻ N/A 2.87E-11 2.87E-11 1.27E-10 2.68E-01 2.66E-02 2.87E-11 2.87E-11 𝐹ଶ଼ 2.87E-11 2.87E-11 2.87E-11 1.47E-02 2.87E-11 N/A 7.60E-02 1.00E+00 𝐹ଶଽ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 𝐹ଷ଴ 4.01E-10 1.62E-09 4.84E-10 6.80E-08 N/A 1.93E-08 2.49E-08 3.88E-11 𝐹ଷଵ 2.87E-11 2.87E-11 2.87E-11 2.68E-01 2.87E-11 N/A 2.68E-01 2.87E-11 𝐹ଷଶ N/A 2.87E-11 2.87E-11 2.87E-11 6.57E-01 2.87E-11 2.87E-11 2.87E-11 𝐹ଷଷ 2.87E-11 2.87E-11 2.87E-11 N/A 3.02E-11 3.94E-03 4.29E-11 1.01E-08 𝐹ଷସ 1.62E-09 3.18E-11 2.87E-11 N/A 3.18E-11 2.05E-10 8.49E-10 2.87E-11 𝐹ଷହ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 𝐹ଷ଺ 2.87E-11 2.87E-11 2.87E-11 1.90E-03 2.87E-11 N/A 4.59E-02 2.13E-09 𝐹ଷ଻ 2.87E-11 2.87E-11 2.87E-11 2.95E-08 2.87E-11 N/A 1.02E-07 1.00E+00 𝐹ଷ଼ 4.00E-09 2.79E-09 1.63E-08 1.02E-07 N/A 2.71E-08 2.33E-09 3.18E-11 𝐹ଷଽ 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 𝐹ସ଴ N/A 2.87E-11 2.87E-11 2.87E-11 1.27E-10 2.87E-11 2.87E-11 2.87E-11 𝐹ସଵ 5.20E-03 3.01E-10 1.05E-02 N/A 1.93E-01 7.79E-03 5.65E-02 1.86E-10 𝐹ସଶ 3.88E-11 3.51E-11 4.84E-10 5.95E-01 N/A 1.27E-03 1.04E-01 2.87E-11 𝐹ସଷ N/A 2.87E-11 2.87E-11 2.87E-11 1.07E-06 2.87E-11 2.87E-11 2.87E-11 𝐹ସସ N/A 2.87E-11 2.87E-11 2.87E-11 1.00E+00 2.87E-11 2.87E-11 2.87E-11 𝐹ସହ 5.32E-10 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 𝐹ସ଺ N/A 2.87E-11 2.87E-11 2.87E-11 1.00E+00 1.00E+00 2.68E-01 2.87E-11 𝐹ସ଻ 2.87E-11 2.87E-11 2.87E-11 7.60E-02 2.87E-11 N/A 7.79E-03 8.24E-01 𝐹ସ଼ N/A 2.87E-11 2.87E-11 2.87E-11 1.27E-10 1.63E-04 2.87E-11 2.87E-11 𝐹ସଽ N/A 2.87E-11 2.87E-11 2.87E-11 5.32E-10 2.87E-11 2.87E-11 2.87E-11 𝐹ହ଴ N/A 1.00E+00 2.87E-11 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 
 
 
 



  

 

252

 

Fig. 2. Convergence curves of six benchmark functions (F1, F9, F17, F23, F27, F48) 

5. Conclusion remarks  
 
In metaheuristic algorithms, the aim is to reach the best result in current conditions. Algorithms must have advanced 
exploration and exploitation abilities to achieve the best results. The balance between exploration and exploitation is 
significantly influencing the performance of the algorithm. Algorithms can be combined to improve exploration and 
exploitation capabilities. Combining a metaheuristic algorithm with at least one algorithm using different and advantageous 
aspects is expressed as a hybrid metaheuristic algorithm. 

This article introduces a new hybrid algorithm using MVO and SA algorithms. This new algorithm has been developed using 
the strengths of MVO and SA. Our main purpose in this study is to combine MVO and SA algorithms with a new hybrid 
method to increase success for function optimization. The success of the IMVOSA algorithm was tested on 50 benchmark 
functions and the consequences were compared with the consequences of 7 other metaheuristic algorithms, including MVO 
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algorithm. Comparison consequences show that the IMVOSA algorithm importantly improves the success of MVO algorithm 
and performs better than other comparison algorithms.  In the future, we intend to apply the proposed IMVOSA algorithm for 
real engineering problems and training of artificial neural networks. 

References 
 
Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Alyasseri, Z. A. A., & Makhadmeh, S. N. (2020). A novel hybrid 

multi-verse optimizer with K-means for text documents clustering. Neural Comput. Appl., 32(23), 17703-17729. 
Abdel-Basset, M., Ding, W., & El-Shahat, D. (2021). A hybrid Harris Hawks optimization algorithm with simulated annealing for 

feature selection. Artificial Intelligence Review, 54(1), 593-637. 
Alizada, B. (2019). Hybridization of swarm-based ant lion and whale optimization algorithms with physics-based algorithms. 

(Master's thesis, Erciyes University). Erciyes University Research Information System. 
https://avesis.erciyes.edu.tr/file?id=8a77bd62-5fea-44cb-a5f3-d61118c8a9ab 

Alkhateeb, F., & Abed-Alguni, B. H. (2019). A hybrid cuckoo search and simulated annealing algorithm. Journal of Intelligent 
Systems, 28(4), 683-698. 

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM 
computing surveys (CSUR), 35(3), 268-308. 

Chen, L., Li, L., & Kuang, W. (2021). A hybrid multiverse optimisation algorithm based on differential evolution and adaptive 
mutation. Journal of Experimental & Theoretical Artificial Intelligence, 33(2), 239-261. 

Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial 
intelligence (pp. 854-858). Springer, Berlin, Heidelberg.  

Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December). Distributed optimization by ant colonies. In Proceedings of the first 
European conference on artificial life (Vol. 142, pp. 134-142). 

Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of 
populations. Molecular ecology, 11(12), 2571-2581. 

Eglese, R. W. (1990). Simulated annealing: a tool for operational research. European journal of operational research, 46(3), 
271-281. 

Faris, H., Aljarah, I., Mirjalili, S., Castillo, P. A., & Guervós, J. J. M. (2016, November). EvoloPy: An Open-source Nature-
inspired Optimization Framework in Python. In IJCCI (ECTA) (pp. 171-177). 

Hawking, S. W. (1988). The Illustrated A Brief History of Time: Updated and Expanded Edition. Bantam Dell Publishing Group. 
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and 

applications. Future generation computer systems, 97, 849-872. 
Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice of simulated annealing. In Handbook of 

metaheuristics (pp. 287-319). Springer, Boston, MA. 
Jangir, P., Parmar, S. A., Trivedi, I. N., & Bhesdadiya, R. H. (2017). A novel hybrid particle swarm optimizer with multi verse 

optimizer for global numerical optimization and optimal reactive power dispatch problem. Engineering Science and 
Technology, an International Journal, 20(2), 570-586. 

Jia, H., Peng, X., Song, W., Lang, C., Xing, Z., & Sun, K. (2019). Hybrid multiverse optimization algorithm with gravitational 
search algorithm for multithreshold color image segmentation. IEEE Access, 7, 44903-44927. 

Jovanovic, R., & Tuba, M. (2013). Ant colony optimization algorithm with pheromone correction strategy for the minimum 
connected dominating set problem. Computer Science and Information Systems, 10(1), 133-149. 

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, 
Erciyes university, engineering faculty, computer engineering department. 

Serkan, K. A. Y. A., & FIĞLALI, N. (2018). Çok amaçlı esnek atölye tipi çizelgeleme problemlerinin çözümünde meta sezgisel 
yöntemlerin kullanımı. Harran Üniversitesi Mühendislik Dergisi, 3(3), 222-233. 

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international 
conference on neural networks (Vol. 4, pp. 1942-1948). IEEE. 

Khurma, R. A., Aljarah, I., Sharieh, A., & Mirjalili, S. (2020). Evolopy-fs: An open-source nature-inspired optimization 
framework in python for feature selection. In Evolutionary Machine Learning Techniques (pp. 131-173). Springer, 
Singapore. 

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.  
Komossa, S. (2015). Tidal disruption of stars by supermassive black holes: Status of observations. Journal of High Energy 

Astrophysics, 7, 148-157. 
Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classical and modern heuristics for the vehicle routing 

problem. International transactions in operational research, 7(4‐5), 285-300. 
Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimization: an optimization algorithm inspired by animal migration 

behavior. Neural Computing and Applications, 24(7), 1867-1877. 
Luo, Q., Ma, M., & Zhou, Y. (2016). A novel animal migration algorithm for global numerical optimization. Computer Science 

and Information Systems, 13(1), 259-285. 
Mafarja, M. M., & Mirjalili, S. (2017). Hybrid whale optimization algorithm with simulated annealing for feature 

selection. Neurocomputing, 260, 302-312. 



  

 

254

Mirjalili, S., & Hashim, S. Z. M. (2010, December). A new hybrid PSOGSA algorithm for function optimization. In 2010 
international conference on computer and information application (pp. 374-377). IEEE. 

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based 
systems, 89, 228-249. 

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global 
optimization. Neural Computing and Applications, 27(2), 495-513. 

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-
inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. 

Murty, K. G. (2003). Optimization models for decision making: Volume. University of Michigan, Ann Arbor. 
Pan, X., Xue, L., Lu, Y., & Sun, N. (2019). Hybrid particle swarm optimization with simulated annealing. Multimedia Tools and 

Applications, 78(21), 29921-29936. 
Qaddoura, R., Faris, H., Aljarah, I., & Castillo, P. A. (2021). EvoCluster: An Open-Source Nature-Inspired Optimization 

Clustering Framework. SN Computer Science, 2(3), 1-12. 
Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information sciences, 179(13), 

2232-2248. 
Sayed, G. I., & Hassanien, A. E. (2018). A hybrid SA-MFO algorithm for function optimization and engineering design 

problems. Complex & Intelligent Systems, 4(3), 195-212. 
Sayed, G. I., Darwish, A., & Hassanien, A. E. (2019). Quantum multiverse optimization algorithm for optimization 

problems. Neural Computing and Applications, 31(7), 2763-2780. 
Song, R., Zeng, X., & Han, R. (2020). An Improved Multi-Verse Optimizer Algorithm For Multi-Source Allocation Problem. 

International Journal of Innovative Computing, Information and Control, 16(6), 1845–1862.  
Storn, R. (1996, June). On the usage of differential evolution for function optimization. In Proceedings of North American Fuzzy 

Information Processing (pp. 519-523). IEEE. 
Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous 

spaces. Journal of global optimization, 11(4), 341-359. 
Talbi, E. G. (2002). A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(5), 541-564. 
Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.   
Ting, T. O., Yang, X. S., Cheng, S., & Huang, K. (2015). Hybrid metaheuristic algorithms: past, present, and future. Recent 

advances in swarm intelligence and evolutionary computation, 71-83. 
Wang, C., Lin, M., Zhong, Y., & Zhang, H. (2016). Swarm simulated annealing algorithm with knowledge-based sampling for 

travelling salesman problem. International Journal of Intelligent Systems Technologies and Applications, 15(1), 74-94. 
Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics (pp. 196-202). Springer, New 

York, NY. 
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press. 
Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically 

inspired computing (NaBIC) (pp. 210-214). IEEE.  
  
 
 

  

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

  


