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 This article presents a novel algorithm based on the cluster first-route second method, which 
executes a solution through K-means and Optics clustering techniques and Nearest Neighbor and 
Local Search 2-opt heuristics, for the solution of a vehicle routing problem with time windows 
(VRPTW). The objective of the problem focuses on reducing distances, supported by the variables 
of demand, delivery points, capacities, time windows and type of fleet in synergy with the model's 
taxonomy, based on data referring to deliveries made by a logistics operator in Colombia. As a 
result, good solutions are generated in minimum time periods after fulfilling the agreed constraints, 
providing high performance in route generation and solutions for large customer instances. 
Similarly, the algorithm demonstrates efficiency and competitiveness compared to other methods 
detailed in the literature, after being benchmarked with the Solomon instance data set, exporting 
even better results.   
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1. Introduction 

The urban freight distribution is one of the most complex logistical challenges for the productive sector of any country, given 
the constant growth of cities and the high complexity in the distribution of supplies arising from the multiple variables of the 
environment; satisfy the needs of people and obtain an economic reward for such activities, must transform the logistics 
paradigm to avoid generating high costs in the supply chain (Anaya, 2015; Gutiérrez, Hincapié & León, 2019). This situation 
arises largely by the complex typology of cities, the high level of congestion and traffic, the high environmental impact of 
pollutant and greenhouse gas emissions caused by vehicle combustion, noise, accidents, deterioration of infrastructure, high 
logistics costs (in the United States and Europe logistic costs represent between 10% and 12% of gross domestic product 
(Bowersox & Calantone, 1998)), insecurity, lack of technological development, in addition to various regulatory restrictions 
by the government, among others factors; represents the externalities of urban freight distribution (Moen, 2016; Fernández, 
2008; Best Urban Freight Solutions, 2006). Given these particularities, an alternative that helps to mitigate some externalities 
is to solve the vehicle routing problem (VRP). The VRP is originated from Traveling Salesman Problem (TSP) which is 
attributed to Hamilton and Kirkman from the 1800s, with the premise that a seller visits a set of customers sequentially and 
returns to the point of origin in the most economical way possible (Applegate, Bixby, Chvátal, & Cook, 2011; Rahman, 2012). 
Based on the TSP models, the VRP models arise, proposed by Dantzig & Ramser (1959), involving not a single seller, but 
multiple sellers, in addition to a depot. In this way, the VRP is defined as “the problem of designing least-cost delivery routes 
from a depot to a set of geographically scattered customers, subject to side constraint” (Laporte, 2009, p.408). The VRP is 
classified based on the taxonomic characteristics of the problem to be treated and the constraints involved (Braekers, 
Ramaekers & Nieuwenhuyse, 2016); this article only contemplates capacity and time windows constraints, better known as 
VRPTW or CVRPTW. One of the representative characteristics of VRP is its high computational complexity, given its n 
possibilities of solution to a greater number of customers (Lüer, Benavente, Bustos & Venegas, 2009; Yepes, 2002). 
Generally, these are categorized as polynomial problems, require a means where can be solved and an algorithm or solution 
method (Guerequeta & Vallecillo, 2000; Ladner, 1975); under this premise, the VRP is cataloged as NP-hard (Cordeau, 
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Desaulniers, Desrosiers, Solomon & Soumis, 2000) and as solution algorithm are included techniques of exact methods, 
heuristic, metaheuristic, or hybrid (the combination of several methods) (Lüer et al., 2009; Toro, Escobar & Granada, 2016). 

The literature details various algorithms and solution techniques for a VRP, where the previously mentioned methods are 
applied (exact, heuristic or metaheuristic). This article presents an algorithm under the cluster first-route second method, 
which links clustering techniques and solution methods (Bodin, 1975). This method starts with clustering, the unsupervised 
classification of patterns, by which objects are grouped based on their characteristics, resulting in the grouping of similar 
items (Hair, Black, Babin & Anderson, 2014; Galba, Balkić & Martinovi, 2013). There are several clustering methods as a 
function of their algorithm such as: the connectivity, the centroid, the distribution, the density, the subspace, the group, and 
the graphics-based models (Galba et al., 2013). The algorithm for routing phase could be exact, provides a feasible solution 
to the problem; a heuristic, which obtains quality solutions without ensuring optimality, in shorter execution times (Lüer et 
al., 2009); or a metaheuristic, which tends to explore more complex algorithms that sometimes emulate the behavior of nature 
or population, generating computational efficiency and optimality (Gendreau, Potvin, Bräumlaysy, Hasle & Løkketangen, 
2008). Throughout the years, there have been several studies that apply the cluster first-route second methodology in VRP 
problems, including TSP; which integrate several types of clustering, followed by an exact, heuristic or metaheuristic method, 
as for example, the investigations of: Hiquebran, Alfa, Shapiro & Gittoes (1993); Kim, Kim & Sahoo (2006); Dondo & Cerdá 
(2007); Ghoseiri & Ghannadpour (2010); Shin & Han (2011); Qi, Lin, Li & Miao (2012); Kao & Chen (2013); Ayu, Septivani, 
Xu, Kwan & Ani (2015); López & de Jesús (2015); Cömert, Yazgan, Sertvuran & Şengül (2017); Abbatecola, Fanti, 
Pedroncelli & Ukovich (2018) and Fachini & Armentano (2020). From these documents, it is interesting to observe how the 
solutions are generated and the emphasis they put on ease of application, since the complexity of the problem is greatly 
reduced when any clustering method is performed and is integrated with a method solution of those previously mentioned 
(exact, heuristic or metaheuristic). Robust algorithms are designed that export good and efficient solutions which meet the 
objective function and the stipulated constraints. It should be clarified that these algorithms link mathematical formulation 
and are not limited to the application of only one method in either phase, whether in the clustering or routing phase. 

As a literature review, it is important to highlight the works taken as a reference for the algorithm design, starting with the 
study by Cömert et al. (2017), in which they develop a cluster first-route second solution method for VRPTW, where they 
assign the constraints with the unsupervised classification algorithms K-means, K-medoids and Dbscan, followed by a routing 
phase that constructs the routes for a commercial chain composed of a depot, 78 customers and a homogeneous fleet, using 
an exact solution method of mixed integer linear programming (MILP). The present research applies a similar development 
to Cömert et al. (2017), in terms of validation and constraints fulfillment through two clustering techniques; but in turn, it 
presents differences in the techniques, such as in the routing method used for the VRPTW solution and in a larger association 
of customers. This application demonstrates that the clustering phase is one of the most important in the cases of constraints 
fulfillment, allowing to obtain good results in conjunction with the routing method. 

Secondly, there is the algorithm designed by Solano, Montoya & Guerrero (2019), where a large-scale single depot 
(SD)VRPTW is solved as a Decision Support System for a Colombian public utility company. In their research, during the 
clustering phase Sweep Algorithm is used to assign a set of customers to each technician, subsequently, the assignment is 
improved with K-means; for the routing phase they apply Nearest Neighbor as initial route sequence generator and Or-opt 
heuristic as route optimizer. The authors demonstrate operational efficiency and compliance against the current routing carried 
out by the company, although there is no evidence of time window association for each customer and their solution involves 
a high computational cost. 

Last but not least, the research of Groër, Golden & Wasil (2010) and Bräysy & Gendreau (2005) are taken as a reference, for 
employing a heuristic solution method for the design of the routes of a VRP. Groër et al. (2010) and Bräysy & Gendreau 
(2005) apply the Local Search heuristic for route generation (Local Search is detailed in section 4.2 of this article). The 
practicality of application, its simple pseudocode, the results and/or near-optimal solutions that it exports, make it an 
interesting algorithm to explore as long as it is provided with good input data or a good initial solution, such as those generated 
by Clark and Wright, Sweep algorithm, Nearest Neighbor, among others. Based on the algorithms of Solano et al. (2019), 
Groër et al. (2010) and Bräysy & Gendreau (2005), the routing phase of this research was designed focusing on the specific 
parts of the methods that allowed highlighting the results obtained in these works. On the other hand, it is important to mention 
other heuristic and metaheuristic techniques for the generation of routes or solution of the problem, which in turn are not 
linked to the cluster first-route second or route first-cluster second method, such as the well-known works of: Gendreau, Hertz 
& Laporte (1994) and Barbarosoglu & Ozgur (1999), for applying the Tabu Search (TS) heuristic, which iteratively explores 
a set of possible solutions to the problem posed, performing moves of a solution over the neighborhood or group of nodes 
generated by another solution, until reaching the fulfillment of the objective function with a solution that qualifies as optimal 
or near-optimal (Glover, Taillard & de Werra, 1993). In these studies, after evaluating the behavior of TS in different customer 
scenarios, reaching a good solution in several hardware configurations, compromises in some cases considerable execution 
times for solution selection in the neighborhood based on constraints compliance. Other well-known techniques from the wide 
range of metaheuristics are the Large Neighborhood Search (LNS), Simulated Annealing (SA) and Genetic Algorithm (GA) 
solution methods, by take as example, which in studies such as Gendreau et al. (2008) and Tan, Lee, Zhu & Ou (2001) are 
highlighted for the quality of their results in a VRPTW. LNS proposed by Shaw (1998) is a method that “destructs part of the 
current solution while a repair method rebuilds the destroyed solution” (Pisinger & Ropke, 2010, p.406). LNS, together with 
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its extensions such as Adaptive/Variable LNS, in applied VRPTW scenarios such as those of Bent & Van Hentenryck (2004) 
and Bräysy (2003); return competitive results against the best-known solutions according to Solomon (1986) benchmark, 
while optimizing, linking, and solving problem variables independently. Particularly SA, is characterized by resulting in a 
global optimum (Gendreau et al., 2008) given that its solution is based on a random local search, which escapes from the bad 
optimality by accepting the solution that provides the most value with the lowest cost (Elshaer & Awad, 2020; Gendreau et 
al., 2008). Regarding GA, the best solution is obtained based on the process of natural selection, by creating a solution chain 
(bit or integer chain) on an initial or previous solution to the current one, through selection, crossover, and mutation (Gendreau 
et al., 2008). From the literature reviewed regarding metaheuristic algorithms, especially the methods that were previously 
detailed (LNS, SA and GA) and took place as a case study or application, such as those of: Berger, Salois & Begin (1998); 
Gupta, Singh & Pandey (2010); Moon, Lee & Seong (2012); Pemberthy (2012); Buhrkal, Larsen & Ropke (2012); Taner, 
Galić & Carić (2012); Wy, Kim & Kim (2013); Karagül & Gungor (2014); Khodabandeh et al. (2016); Chen & Yang (2017); 
Stehling & Souza (2017); Kang & Lee (2018); Son, Kim & Shin (2018); Prag, Woolway & Jacobs (2019) and Tirkolaee, 
Abbasian, Soltani & Ghaffarian (2019). It is remarkable to note the gradual level of difficulty as a function of its execution in 
complex real-life scenarios, and more so those that include stochastic components; despite generating optimal competitive 
solutions in most cases and/or better solutions compared to an exact or heuristic method; given its high computational 
algorithmic and application complexity, as well as hardware requirements, there are few algorithms that have solved the 
complexity of a VRP satisfactorily in its entirety, neither is it possible to validate that there is an infallible method that adapts 
and optimally solves all the particularities of a VRPTW, given that most algorithms are designed according to a specific need; 
likewise, it is important to validate the instances and scenarios given the sensitivity of the algorithms in their parameters, 
which could infer in the results. 

Similarly, the present article, by applying clustering techniques, intrinsically relates Machine Learning (ML). ML "consists 
of designing efficient and accurate prediction algorithms" (Mohri, Rostamizadeh & Talwalkar, 2018, p.1); for this reason, it 
is important to bring up a brief review on literature comprised of other ML techniques apart from clustering, on VRP models 
with ML or its extensions such as Reinforcement Learning (RL) that “involve learning what to do-how to map situations to 
actions-so as to maximize a numerical reward signal” (Sutton & Barto, 2018, p.2), Neural Network or Deep RL, among others. 

Based on the above, Tamagawa, Taniguchi & Yamada (2010) design an algorithm for VRPTW-F (Forecasted) with Q-
learning, an RL technique that focuses on states, actions and rewards, where they evaluate the impact of applying several 
logistic measures in a small network in the study city. On the other hand, Nazari, Oroojlooy, Takáč & Snyder (2018), detail 
better solutions and performance compared to other heuristics, by training a model using RL with a Neural Network for the 
solution of a VRP in small and medium scenarios, focused on the resulting calculation of the rewards and route feasibility, 
with the particularity of not incorporating a distance matrix. Bouhamed, Ghazzai, Besbes & Massoud (2019) apply Q-Learning 
in a randomized theoretical environment with Euclidean distance calculation, which considers the highest number of rewards 
for the agent according to the fulfillment of the time windows and the activity plan, without contemplating the amount of load 
to be transported/delivered. On the Kalakanti, Verma, Paul & Yoshida (2019) side, design and test an RL solver based on Q-
learning, which generates competitive results compared to the small and medium instances of Solomon (1986). In the case of 
Yu, Yu, & Gu (2019) through Deep RL, they propose a model based on a Neural Network for an Online Green VRP with 
heterogeneous electric vehicles, which provides outstanding results in a short time with the support of a hardware robust, on 
several random scenarios supplied with real data from the study city. Zhao, Mao, Zhao & Zou (2020), program an adaptive 
Deep RL hybrid model in charge of generating the initial route sequence, which feeds the Local Search heuristic for the final 
solution of the model. Finally, other notable models of similar techniques that link ML can be seen in: Poullet (2018); Lin, 
Ghaddar & Nathwani (2020) and Furian, O’Sullivan, Walker & Çela (2021). From the reviewed works, the successful 
application of several ML algorithms in controlled environments of a VRP with a small-medium size of nodes is evidenced; 
however, some models despite being structured and of great adaptability, do not perform the linkage of many variables of the 
environment and in some cases compromise a modest computational load. The potential of this type of techniques, as well as 
its ability to solve large dynamic scenarios of greater complexity, has not been fully demonstrated, in addition to the fact that 
there are few works that have been dedicated to solving a VRPTW. 

In research related to this branch of study (ML with VRP), the authors Bai et al. (2021) detail that the nature of the data and 
the taxonomic characteristics of the problem in some situations are not specified; it is difficult to access the information used; 
the mathematical programming and the constraints of the VRP problem according to its classification, are not fully explored 
or integrated with analytical methods; likewise, they highlight that more applications that contemplate the challenges of the 
real world are required. Similarly, few studies have been evidenced that contemplate the constraints of a VRPTW and generate 
near-optimal routes based on the cluster first-route second method, with high computational efficiency, without compromising 
high hardware requirements or memory usage for a real large-scale scenario. Therefore, this article contributes to the 
development of the technique with a novel solution to a mathematical model VRPTW guided by mixed integer programming 
for the variables, constraints, and objective function, where a database is used that gathers the deliveries made by a logistic 
operator in Colombia. The algorithm programmed in Python 3.7 for its solution links the K-means and Optics clustering 
techniques and the Nearest Neighbor and Local Search 2-opt heuristics, which obtain a set of solutions/routes, for each 
evaluated instance, with good results that determine high performance and efficiency, without compromising a high 
computational load. To confirm its performance, the algorithm is tested by means of a benchmark with the data of Solomon 
(1986), against various algorithms proposed in the literature. 
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To facilitate reading of this article, section 2 exposes the data used for the model, section 3 describes the mathematical 
formulation for the VRPTW, and sections 4 and 5 presents the proposed algorithm and its computational results. By last, 
section 6 presents the conclusion. 

2. Data  
 

The data used in the design of the algorithm were provided by a logistics operator in Colombia; the base includes the deliveries 
of products made during 65 weeks from 2016 and 2017 to more than 7,997 customers distributed in 196 cities. To determine 
the number of initial customers of the model, a statistical analysis was carried out, together with the extraction, transformation, 
and parametrization of data for the amount of cargo delivered, the number of orders, the time horizon, and the concentration 
of customers by city, as main variables. Of the 196 cities, Bogotá is established as the basis for the design of the algorithm, 
by integrating the largest number of customers, 35.6% of the total, that is, 2,766 customers and 23.2% to be highlighted, out 
of the total amount of 311,367 orders placed throughout the territory, with a daily maximum of 737 and an average of 211 
orders delivered (see Fig. 1). This represents 32,309,395 units of product and 1,171.1 tons of cargo transported. Fig. 2 
illustrates the delivered load distribution on the heat map. 

 

Fig. 1.  Number of deliveries per day in Bogotá for 65 weeks 

 

Fig. 2.  Heat map of the amount of cargo delivered in Bogotá. 
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Additionally, to locate the initial nodes as input data for the model, a density based spatial clustering of applications with 
noise (Dbscan) was carried out to reduce the total number of customers and identify the most representative ones, thus 
reducing the exponential complexity of possible solutions according to the number of customers involved in a VRP type 
problem. The Dbscan algorithm is developed by Ester, Kriegel, Sander & Xu (1996), with the premise of generating clusters 
with the estimation of the density distribution of the data set, while identifying outliers not representative of any group. The 
Dbscan parameters configured in support of the Sklearn library (Pedregosa et al., 2011) for Python were the number of 
samples or the number of points housed in a neighborhood, the neighborhood, the area that conglomerates the samples, where 
three types of points are distinguished: the nucleus (central point), the edge and noise points. Neighborhoods are determined 
by the epsilon, the maximum distance between two samples and the metric, the distance function used (Ester et al., 1996; 
Tran, Drab & Daszykowski, 2013). For this clustering, the haversine function is used as a metric (Sinnott, 1984) to calculate 
the distance between the locations of a sphere based on latitude and longitude: ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒ሺ𝑑 𝑅⁄ ሻ = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒ሺ𝜑ଵ − 𝜑ଶሻ +cos(𝜑ଵ) cos(𝜑ଶ)ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(Δ𝜆) where: 𝒅, is the distance between two points located on a circle; 𝑹, is the radius of the 
sphere, in this case the earth 6,731.01 km (Lide, 2003); 𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆, the formula 𝑠𝑖𝑛ଶ(𝜃 2⁄ ); 𝝋𝟏, is the latitude of point 1; 𝝋𝟐, is the latitude of point 2; and 𝜟𝝀, is the difference in longitudes. Dbscan generated 52 clusters that bring together the 205 
spatially most representative customers, after compressing by 92.6% the total of 2,766 customers (see Fig. 3); contrasting the 
heat map, are the ones customers to whom the greatest quantity of merchandise is delivered. This base of 205 customers is 
the input nodes for the algorithm. 

 

Fig. 3. Representative customers resulting from the Dbscan clustering 

3. Model based on a vehicle routing problem with time windows 
 

The model focuses its mathematical formulation on a VRPTW problem, in support of the taxonomy identified in Braekers et 
al. (2016) in order to identify the type of study, the scenario, physical characteristics, the information and data. To begin with, 
the type of study focuses the application of a method to a problem with the use of a mixed solution of two clustering methods 
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and two heuristics. As characteristics of the scenario, a deterministic number of stops is established on the route, being the 
location of the nodes; load partitioning within vehicles is allowed and the quantity demanded is that required for the 205 
customers resulting from the clustering for one business day without backhauls. In accordance with the waiting/service times 
on the site, deterministic values are established; likewise, the time windows are structured according to the regulatory 
restrictions regarding the movement of cargo vehicles within Bogotá for the year 2020, governed by decrees 840 of 2019 and 
047 of 2020 issued by the Bogotá Mayor’s Office (2019; 2020). At the physical level, the problem network is undirected, with 
the location of the customers in nodes (no deliveries are made during the arch route); only the delivery of merchandise is 
allowed; there is a single origin of the vehicles (the depot); presenting time window constraints on nodes and depot; with a 
limited number of homogeneous capacitated vehicles, to satisfy a distance-dependent objective. Finally, the information is 
static, centrally processed, of known quality and real provenance. 

3.1.  Mathematical formulation 
 

The problem is formulated based on existing mathematical models for VRPTW, taking as a guide Cordeau, Laporte, 
Savelsbergh & Vigo (2007). An undirected network is contemplated 𝑮 = (𝑰,𝑨), where 𝑰 is the set of nodes represented by 
the letters 𝒊 and 𝒋 (𝒊 = 𝒋), and 𝑨, is the set of arcs that join the nodes (𝒊 𝑜𝑟 𝒋). So that, 𝑰 =  𝑖௡ ∪ {𝑖଴, 𝑑𝑝} where: 𝒊𝒏, are the 
nodes to deliver the merchandise, (𝒊 = 1, … , 𝐼); 𝒊𝟎, the depot of origin and 𝒅𝒑, arrival depot; (𝒊𝟎 = 𝒅𝒑, refers to the same 
depot). Likewise, 𝑨 = {(𝑖, 𝑗) = (𝑗, 𝑖): 𝑖, 𝑗 ∈ 𝐼} represents the set of arcs of the network and 𝑲 the set of vehicles (𝒌 =1, … ,𝐾). Similarly, under these premises, the VRPTW can be formulated following a mixed integer programming model: 

Notation 𝐸௜: quantity of goods to be delivered in the node 𝒊; {𝑖 = 1, … , 𝐼} [𝑘𝑔]. 𝐸௜ ≥ 0: the quantity of goods to be delivered in the node 𝒊, it is not negative; {𝑖 = 1, … , 𝐼}. 𝑄௞: load capacity 𝑸 of vehicle 𝒌; (𝑘 ∈ 𝐾) [𝑘𝑔]. [𝑎௜ , 𝑏௜]: time window; visit node 𝒊 can only occur between time intervals of start 𝒂𝒊 and end 𝒃𝒊; (𝑖 ∈ 𝐼) [𝑚𝑖𝑛]. 𝑎௜: start of time window at node 𝒊; (𝑖 ∈ 𝐼) [𝑚𝑖𝑛]. 𝑏௜: end of time window at node 𝒊; (𝑖 ∈ 𝐼) [𝑚𝑖𝑛]. 𝑆௜: service time at node 𝒊 for unloading goods; (𝑖 ∈ 𝐼) [𝑚𝑖𝑛]. 𝐷௜௝: distance between the nodes of the arc (𝒊, 𝒋); {(𝑖, 𝑗) ∈ 𝐴} [𝑘𝑚]. 𝐷௜௝ ≥ 0: the distance between the nodes of the arc (𝒊, 𝒋), it is not negative; {(𝑖, 𝑗) ∈ 𝐴}. 𝑇𝑣௜௝: time to travel along the route of the arc (𝒊, 𝒋) from node 𝒊 to node 𝒋; {(𝑖, 𝑗) ∈ 𝐴} [𝑚𝑖𝑛]. 𝑇𝑣௜௝ ≥ 0: the time to travel along the route of the arc (𝒊, 𝒋) from node 𝒊 to node 𝒋, it is not negative; {(𝑖, 𝑗) ∈ 𝐴}. 𝑇௜: time in which the vehicle 𝒌 start service on node 𝒊; (𝑖 ∈ 𝐼) [𝑚𝑖𝑛]. 
Decision variable 𝑋௜௝௞: binary variable; takes value 𝟏 if vehicle 𝒌 travels from node 𝒊 to node 𝒋 through the arc (𝒊, 𝒋);  {(𝑖, 𝑗) ∈ 𝐴} & (𝑘 ∈ 𝐾) 
and 𝟎 otherwise. 

Objective function 

෍෍෍𝐷௜௝ ∗ 𝑋௜௝௞௄
௞ୀଵ

௃
௝ୀଵ

ூ
௜ୀଵ  (3.1) 

 

Subject to 

෍෍𝑋௜௝௞ = 1௄
௞ୀଵ

௃
௝ୀଵ    (𝑖 ∈ 𝐼) (3.2) 

෍෍𝑋௜௝௞ = 1௄
௞ୀଵ

ூ
௜ୀଵ    (𝑗 ∈ 𝐼) (3.3) 
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෍𝑋௜బ௝௞ = 1௃
௝ୀଵ    (𝑘 ∈ 𝐾) (3.4) 

෍𝑋௜,ௗ௣,௞ = 1ூ
௜ୀଵ    (𝑘 ∈ 𝐾) (3.5) 

෍𝑋௜௝௞ூ
௜ୀଵ −෍𝑋௝௜௞௃

௝ୀଵ = 0   (𝑖 ∈ 𝐼 & 𝑘 ∈ 𝐾) (3.6) 

෍𝐸௜ூ
௜ୀଵ ∗෍𝑋௜௝௞௃

௝ୀଵ ≤  𝑄௞   (𝑘 ∈ 𝐾) (3.7) 𝑇௜ ≥ 𝑎௜   (𝑖 ∈ 𝐼) (3.8) 𝑇௜ ≤ 𝑏௜   (𝑖 ∈ 𝐼) (3.9) (𝑇௜ + 𝑆௜ + 𝑇𝑣௜௝ − 𝑇௝) ≤ ቌ𝑊 ∗ ൭1 −  ෍𝑋௜௝௞௄
௞ୀଵ ൱ቍ    (𝑖 ∈ 𝐼) (3.10) 

𝑋௜௝௞ ∈ {0,1}   (𝑖 ∈ 𝐼 & 𝑘 ∈ 𝐾) (3.11) 𝐸௜ ≥ 0 (3.12) 𝐷௜௝ ≥ 0 (3.13) 𝑇𝑣௜௝ ≥ 0 (3.14) 
 

In the model, the objective function (3.1) minimizes the distances traveled in the distribution of goods. Constraints (3.2) and 
(3.3) indicates that each vehicle 𝒌 that reaches the node 𝒊 has a node 𝒊 where it should arrive, except the arrival depot 𝒅𝒑; and 
each vehicle 𝒌 that leaves the node 𝒊 has a node 𝒊 from which it arrives, except the departure depot 𝒊𝟎. In constraints (3.4) and 
(3.5) each vehicle 𝒌 must start the route at departure depot 𝒊𝟎 and finish the route at the arrival depot 𝒅𝒑. Constraint (3.6) 
preserves network flow, that is, each vehicle 𝒌 that reaches the node 𝒊 must be the same as that leaves the node 𝒊. In constraint 
(3.7) the quantity 𝑸 of merchandise to be delivered to node 𝒊 must not exceed the capacity of the vehicle 𝒌. Constraints (3.8) 
and (3.9) indicate time windows; that is, the vehicle 𝒌 must arrive at the same time or after the time window 𝒂𝒊 starts in the 
node 𝒊, and leaves at the same time or before the time window 𝒃𝒊 ends in the node 𝒊.  
Constraint (3.10) is adapted from the model of Miller, Tucker & Zemlin (1960) to remove the subtours, where the sum of the 
operation times (the time of arrival, service, travel, and departure) of the node 𝒊, must be less than a very large number 𝑾 
which takes value if the path of the arch (𝒊, 𝒋) has not yet been used to reach the node 𝒊. In other words, if the node 𝒊 has 
already been visited by the route of the arch (𝒊, 𝒋), the value of the binary variable is 1, then the very large number 𝑾 is 0, 
expressing that the node has already been visited 𝒊;  for the opposite case, if the arch route (𝒊, 𝒋) has not yet been used to reach 
the node 𝒊, the value of the binary variable will be 0 and the very large number 𝑾 will take value, indicating that the node has 
not yet been visited 𝒊. 
Finally, the constraint (3.11) is presented which expresses the binary variable and constraints (3.12), (3.13) and (3.14) the 
non-negative variables. 

4. The proposed algorithm 
 

The proposed algorithm is performed in Python version 3.7, in Jupyter Notebook environment using the clustering modules 
of the library Scikit Learn (Pedregosa et al., 2011); the management of vectors and matrices is done with the library NumPy 
(Oliphant, 2006); the analysis and management of databases with Pandas (McKinney, 2010); finally Matplotlib library 
(Hunter, 2007) is used for the generation of graphs; together with the time and math modules predefined by Python (Van 
Rossum, 1993) for time and mathematical functions, respectively. Model programming follows a solution flow (see Fig. 4) 
which generates routes after carrying out two clustering methods (K-means and Optics) and two heuristic algorithms, Nearest 
Neighbor to generate initial routes and Local Search 2-opt to optimize them, following the cluster first-route second method 
as a reference. Similarly, the steps of the algorithm and pseudocode are exposed in Table 1 and 2, respectively. 
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Fig. 4. Solution flow 

Table 1  
Proposed algorithm 

Step Activities 
1 Load the databases. 

2 Identify the number of vehicles required for the model according to its capacity and the total amount of cargo to 
be transported. 

3 Apply K-means clustering. 

4 Generate Optics clustering for each cluster resulting from K-means after normalizing variables to follow a 
Gaussian distribution. 

5 If the amount of cargo to be transported per cluster exceeds the capacity of the vehicles and the time windows 
are not fulfilled, go to step 6. Otherwise, go to step 7. 

6 Modify Optics clustering parameters for constraints compliance. 

7 Generate the distance matrix with the haversine function and get your distance scalar for the heuristics, if 
applicable. 

8 Generate the initial route with the Nearest Neighbor heuristic for each resulting Optics cluster. 
9 Implement the Local Search 2-opt heuristic for each route generated by Nearest Neighbor. 
10 Repeat the Nearest Neighbor and Local Search 2-opt heuristics for each resulting Optics cluster. 
11 If all routes for all clusters have been generated, continue to step 12. Otherwise, return to step 10. 
12 Plot all routes. 
13 If subtours or crossovers per route are generated, return to Step 9. Otherwise, continue to Step 14. 
14 Evaluate compliance with loading constraints and time windows per route. 
15 If all constraints are not met, go back to step 6. 

 
Table 2 
Pseudocode 
Algorithm for VRPTW (K-means, Optics, Nearest Neighbor and Local Search 2-opt) 
01: Start procedure  
02: Load databases 
03: Read {𝑖, 𝐿𝑎𝑡,  𝐿𝑜𝑛,  𝐸௜ ,  𝑆௜ ,𝑎௜ , 𝑏௜ ,𝐾,𝑄௞} 
04: 𝐾′ clusters 𝑐𝑒𝑖𝑙 ቂቀ∑ಶ೔ೂೖ ቁ 2⁄ ቃ 
05: Assign axes K-means {𝐿𝑎𝑡, 𝐿𝑜𝑛} 
06: Initialize 𝐾ᇱ cluster with their centroids 𝜃 
07: while not converge: 
08:   for 𝑖 in range (𝐼): // 𝐼 = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← {𝐿𝑎𝑡, 𝐿𝑜𝑛} 
09:     𝐶௞ᇱ ≔ 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑥௜ −  𝜃௞ᇱ‖ଶ 
10:  end for 
11:   for 𝑗 in range (𝐾′): 
12:     𝜃௝ ≔ ଵே∑ 𝑋௜ே௜ୀଵ   
13:  end for 
14: end while 
15: Assign 𝑖 to its respective 𝑘′ cluster 
16: for 𝑘ᇱ cluster in range (𝐾ᇱ): 
17:   Scaling variables to bring to a comparable level 
18:   𝛽 = 𝐸௜ .  𝑆௜ .𝑎௜ . 𝑏௜ 
19:   Standard Scaler (𝛽) 
20:   Normalizing (𝛽) to approximately follows a Gaussian distribution 
21:   // Apply Optics clustering (𝑂′) to 𝛽 normalized 
22:   Optics (𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, ε, 𝑥𝑖, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒) parameters 
23:   // See pseudocode of Optics clustering in Ankerst, Breunig, Kriegel & Sander (1999) 
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24:   for 𝑜′ cluster in range (𝑂′): 
25:     if ∑ 𝐸௜௢ᇱ ≤ 𝑄௞ூ௜ୀଵ : 
26:       and 𝑎௜଴ + 𝑆௜଴ + [𝑟𝑎𝑛𝑑𝑜𝑚 (𝑎௜௢ᇱభ) − 𝑎௜଴] + ∑ 𝑆௜௢ᇱ < 𝑏௜ௗ௣ூ௜ୀଵ  
27:         Assign 𝑖 to its respective 𝑂′ cluster 
28:       else 
29:         Modify 𝑂′ parameters 
30:   end if 
31:  end for  
32: end for 
33: 𝑖 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠(𝑖[0]).  𝑟𝑎𝑑𝑖𝑎𝑛𝑠(𝑖[1])) 
34: 𝑗 = (𝑟𝑎𝑑𝑖𝑎𝑛𝑠(𝑗[0]).  𝑟𝑎𝑑𝑖𝑎𝑛𝑠(𝑗[1])) 
35: 𝑑𝑖𝑠𝑡 = (acos(sin(𝑖[0]) ∗ sin(𝑗[0]) + cos(𝑖[0]) ∗ cos(𝑗[0]) ∗ cos(𝑖[1] − 𝑗[1]))) ∗ 𝑅   
36: for 𝑛𝑜𝑑𝑒1,𝑣 in 𝐷. 𝑖𝑡𝑒𝑚𝑠(): 
37:   for 𝑛𝑜𝑑𝑒2,𝑑 in v. 𝑖𝑡𝑒𝑚𝑠(): 
38:     (𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2,𝑑) 
39:     (𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2,𝑑) 
40:  end for 
41: end for 
42: for 𝑜′ cluster in range (𝑘ᇱ): 
43:   nodes = [𝑖 for 𝑖 in range (𝐼௢ᇱ)]  
44:   arcs = [(𝑖, 𝑗) for 𝑖 in range (𝐼௢ᇱ) for 𝑗 in range (𝐼௢ᇱ) if 𝑖 ! = 𝑗] 
45:   Select starting node 𝑖଴ 
46:   Visited nodes = 𝐼′ 
47:   while 𝑖଴ + 𝐼′ < nodes:  
48:     Last node visited (𝑤) = 𝐼ᇱ[−1]  
49:     Calculate dist (𝜎௪) = {(𝑤, 𝑗):  𝑑𝑖𝑠𝑡[(𝑤, 𝑗)] for 𝑗 in range 𝐼௢ᇱ if 𝑤 ! = 𝑗 and 𝑗 not in 𝐼′} 
50:     Locate the min (𝜎) 
51:     Add 𝑤 in 𝐼ᇱ 
52:  end while 
53:   Add 𝑖଴ 
54:   Select 𝐼′௢ᇱ 
55:   min 𝑐ℎ𝑎𝑛𝑔𝑒 = 0 
56:   while (min 𝑐ℎ𝑎𝑛𝑔𝑒 < 0): 
57:     for 𝑖 in range 𝐼′௢ᇱ until 𝑖 =  𝑖଴ − 2: 
58:       for 𝑗 in range 𝑗 + 2 until nodes: 
59:         𝑐ℎ𝑎𝑛𝑔𝑒 = ൫𝑑𝑖𝑠𝑡(𝑖. 𝑗) + 𝑑𝑖𝑠𝑡(𝑖 + 1. 𝑗 + 1)൯ − (𝑑𝑖𝑠𝑡(𝑖. 𝑖 + 1) − 𝑑𝑖𝑠𝑡(𝑗. 𝑗 + 1) 
60:         if (min 𝑐ℎ𝑎𝑛𝑔𝑒) > 𝑐ℎ𝑎𝑛𝑔𝑒: 
61:           (min 𝑐ℎ𝑎𝑛𝑔𝑒) = 𝑐ℎ𝑎𝑛𝑔𝑒 
62:           𝑟𝑜𝑢𝑡𝑒[𝑖: 𝑗] = 𝑟𝑜𝑢𝑡𝑒[(𝑗 − 1): (𝑖 − 1):−1] 
63:     end if 
64:    end for 
65:   end for 
66:  end while 
67: end for 
68: if s𝑢𝑏𝑡𝑜𝑢𝑟 or 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 ≥ 1: 
69:   Review 2-opt implementation 
70: end if 
71: if all constraints are not met: 
72:   Modify 𝑂′ parameters 
73: end if 
74: End procedure. 

 

4.1. K-means and Optics clustering 

Based on Table 1 and 2, the proposed algorithm begins with the loading of the databases that contain information regarding 
the clients or nodes, their respective location in terms of latitude and longitude, the amount of cargo to be delivered, the 
vehicles available and their capacity, the service time, the start and end of the time windows per node (in the algorithm the 
minute “0” is 00:00 hours and the minute “1,439” is 23:59 hours). From the databases, the algorithm applies K-means 
clustering, a centroid-based method developed by MacQueen (1967), under the premise of partitioning a data set into subsets 
(clusters) with the sum of Euclidean distances of the data and the centroid or center of the cluster (Likas, Vlassis & Verbeek, 
2003); as a required parameter of K-means, the number of clusters is defined by the division of the total amount of cargo and 
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the capacity of the vehicles, its result is divided by two and is approximate to the highest integer. In this step (three), it does 
not infer the Euclidian distance calculation since this is not required to carry out any route; on the contrary, it is carried out to 
generate conglomerates by proximity. The K-means clustering indicates the cluster to which the client is assigned; then, to 
each cluster resulting from K-means a second clustering is applied, in this case the Optics (ordering points to identify the 
clustering structure) clustering developed by Ankerst et al. (1999) which finds clusters based on their density, with the premise 
of “creates an ordering of a database, additionally storing the core-distance and a suitable reachability-distance for each object” 
(Ankerst et al., 1999, p.52). Optics clustering generates groups depending on the ordering of the points, the accessibility values 
and the cores; while constructing an accessibility graph that assigns a range distance to each point and together with its 
parameters determines the point's membership of the cluster (Ankerst et al., 1999). Likewise, one of the peculiarities of Optics 
is that it does not require the desired number of clusters to be indicated, since it identifies the ideal amount for the data series. 

For the algorithm, the variables referring to constraints are normalized to bring them to a comparable level following a 
Gaussian distribution, with the objective that they are the input data of the Optics clustering and are mathematically evaluated 
in terms of compliance. In the Optics design, the values in some of its parameters were modified (number of samples, epsilon, 
xi value and cluster size), because, if a value is indicated in all its 12 parameters, only the execution time is reduced, which 
reduces optimality in the generation of results, in addition to causing non-compliance with constraints of the routing model. 
In step five of the algorithm, it is necessary to validate whether the amount of load to be transported assigned to each Optics 
cluster according to the nodes that comprise it, does not exceed the capacity of the vehicle, as well as the fulfillment of the 
time variables. Once the validations have been carried out, it is understood that each cluster resulting from Optics is composed 
of a select group of nodes, which are the input data for the initialization of the routing phase. Before carrying out routing with 
the Nearest Neighbor and Local search 2-opt heuristics, each georeferenced node is converted into radians to generate the 
distance matrix with the haversine function, to contemplate the real distance between all the points of the network; it should 
be noted that this algorithm does not include the road network or the topography of the city. Generally, heuristics are flexible 
according to the distance function used; therefore, if a function other than haversine is used, a scalar must be generated to 
obtain distances close to the real ones.  

The Nearest Neighbor is applied as a heuristic to generate an initial route and Local Search 2-opt to optimize it, together they 
are made to each cluster that generated Optics (the detail of the heuristics is presented in section 4.2). Finally, if subtours, 
crossovers are generated or not all the model constraints are satisfied, it is necessary to review the heuristics and/or modify 
the Optics clustering parameters to reassign nodes in other clusters. 

4.2. Nearest Neighbor and Local Search 2-opt 

The heuristic Nearest Neighbor “is a constructive method for generating initial feasible solutions for CVRP with the simple 
idea of inserting the nearest neighbor of the last inserted customer in the route” (Caric & Gold, 2008, p.18). The first customer 
selected for all the clusters is the depot, from this point onwards customers begin to be inserted according to their criteria of 
proximity. The steps used were the following, taking as reference Kizilateş & Nuriyeva (2013): 1, selection of depot. 2, find 
an unvisited customer near and go there. 3, Are there any customers left without visiting? If correct, repeat step 2. Otherwise, 
4, return to the depot. 

After the Nearest Neighbor algorithm is executed, an initial feasible route is obtained, which in most cases presents crossings, 
therefore Local Search 2-opt is used. Local Search is a heuristic generally used to solve difficult optimization problems, which 
is assigned a set of possible solutions with a cost function, which assigns numerical values to each solution (Aarts & Lenstra, 
2003) in order to “iteratively move from a solution to a neighboring solution by applying local perturbations until an optimum 
has been reached” (Smet & Thomas, 2016, p.15). The so-called perturbations are small movements that consist in changing a 
small part of the current solution to obtain an alternative solution similar to the previous one; all these solutions with 
perturbations are stored in a set of solutions called 'neighborhood', from which the best solution is obtained after exploring all 
the possible stored solutions after applying the intensification that selects the next improvement movement to reach a local 
optimum (Smet & Thomas, 2016). Generally, an initial solution generated by another algorithm is used as a neighborhood, 
because, in neighborhoods with a considerable size of nodes, it will take longer to explore and therefore to solve (Aarts & 
Lenstra, 2003; Smet & Thomas, 2016). 2-opt algorithm belongs to the Local Search family, proposed by Croes (1958) with 
the objective of relating 2 arcs and 4 nodes to eliminate the present crossing, reordering these two arcs to each other and 
calculating a new distance (Englert, Röglin & Vöcking, 2006). That is, 2-opt consists of finding pairs (𝒊,𝒊 + 𝟏) and ( 𝒋 + 𝟏, 𝒋) 
which when changed by (𝒊, 𝒋) and (𝒊 + 𝟏, 𝒋 + 𝟏) minimizes the distance. During 2-opt two functions are calculated that 
evaluate which pair is going to be changed: 1, 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝒄𝒐𝒔𝒕 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒊, 𝒊 + 𝟏) + 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒋, 𝒋 + 𝟏) and 2, 𝑵𝒆𝒘 𝒄𝒐𝒔𝒕 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒊, 𝒋) + 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒊 + 𝟏, 𝒋 + 𝟏). If the change: 𝑪𝒉𝒂𝒏𝒈𝒆 = 𝑵𝒆𝒘 𝒄𝒐𝒔𝒕 − 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 𝒄𝒐𝒔𝒕 result is 
negative, that is, the new distance is less than the current one, such change will be applied, usually “called a 2-exchange” 
(Verhoeven, Aarts & Swinkels, 1995, p.177); the steps used are the following taking by reference to Croes (1958). 

1, starts with an initial solution generated by another algorithm. 2, two paths are executed in all network nodes; the first path 
starts at the 𝒊𝟎 and ends in a node before the end 𝒊ି𝟐 and the second, starts on a next node 𝒋ା𝟐 to the start node 𝒋 (𝒊=𝒋). 3, the 
distances are calculated. And 4, the criteria of the change are evaluated; if it meets the criteria, it reverses the sequence of the 
pairs, otherwise it returns to the step 2. 
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In addition, the advantage of the second heuristic is that it finds near optimal, and in some cases, optimal solutions in relatively 
short spaces of time, with low memory consumption, because it only stores the small movements, instead of several complete 
solutions of the whole network (Smet & Thomas, 2016; Aarts & Lenstra, 2003; Croes, 1958). The proposed algorithm for 
route generation starts with the solution generated by Nearest Neighbor, its sequence and distance obtained for each route. It 
then applies Local Search 2-opt and exports the generated optimized sequence, the distance, the solution time, and the total 
number of iterations. 

5. Results 
 

To begin with, the K-means clustering generated three clusters (see Fig. 5), to which, for each resulting cluster, Optics 
clustering was applied, resulting in nine clusters, which translates into nine routes (see Fig. 6-7). In this way, each node was 
assigned to the cluster that was deferred by -1, 0 and 1. The load assigned to transport does not exceed the vehicle capacity of 
5 tons in any of the cases, providing attention to 100% of the nodes, delivering the entire amount of cargo demanded without 
subtours or crossings on the route. In terms of distance, Nearest Neighbor returns a total of 221.09 km; However, with the 
Local Search 2-opt optimization this is reduced by 5.06%, resulting in a total distance of 209.91 km for the nine routes, for 
which 88.9% were optimized by eliminating the intersections present. According to the solution/execution time to generate 
the nine routes, the algorithm took 0.019016 seconds, with a total of 41 iterations. Table 3 presents in detail the results by 
route. 

 

Fig. 5. K-means clusters 

 

Fig. 6. Routes generated for 205 customers 
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Fig. 7. Routes details 

Table 3  
Results per route for 205 nodes (customers) 

Clustering 

Route Number 
of nodes 

Cargo to 
transport 

[Kg] 

Distance travelled 
Execution 
time [Seg] 

Number of 
iterations K-means Optics NN* 

[km] 
LS*  
2-opt 
[km] 

Diff. 
 

0 
-1 0 9 1,311.30 16.80 16.28 -3.10% 0.001 2  
0 1 27 3,846.36 19.49 17.98 -7.75% 0.004 10  
1 2 30 1,325.13 19.44 18.34 -5.66% 0.002 4  

1 
-1 3 19 4,863.40 23.17 22.93 -1.04% 0.001 4  
0 4 16**  263.85 22.59 22.33 -1.15% 0.001 3  
1 5 14 151.27 20.71 20.71 0.00% 0.000 1  

2 
-1 6 33 3,156.78 34.44 30.72 -10.80% 0.003 5  
0 7 23 4,722.57 33.61 30.28 -9.91% 0.002 5  
1 8 35 2,756.80 30.84 30.34 -1.62% 0.005 7  

Total 9 9 206 22,397.46 221.09 209.91 -5.06% 0.019 41  
*NN (Nearest Neighbor), LS (Local Search). **Includes depot. 
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The service time constraints and time windows are fulfilled in 100% of the routes for all nodes from which a delivery time is 
obtained for the nine routes of: {617.23; 792.91; 828.64; 916.80; 1,000.24; 878.37; 894.38; 776.34; 846.61 [min] (includes 
the 360 minutes that have elapsed since 00:00 hours)} respectively, complying with the time window of the depot that starts 
from minute 360 to 1,140 of the day, in accordance with the mobility restrictions and depot constraints. In short, the clustering 
algorithms carried out made it possible to reduce the total number of possible solutions, while assigning the constraints based 
on their compliance; Nearest Neighbor is defined as not generating optimal solutions; however, the calculated routes are of 
good quality unless they have crossings, which is why Local Search 2-opt was indexed as a solution optimization, from which 
routes without crossings and very close to the optimal ones diverge. Thus, the solution flow allows the integration of new 
techniques to solve the complexity of the problem, complying with all the proposed constraints. 

5.1.  Performance 
 

This section evaluates the algorithm in terms of execution, compliance with constraints and distance for a larger number of 
nodes in the network; for this a Dbscan clustering with 2 samples and an epsilon of 0.00345 was designed from the original 
database, resulting in 274 clusters, that is, 758 nodes. This number of nodes translates to 2.85% more customers than the 
logistics operator has served in one day in Bogotá. From K-means, five clusters are generated, to which the Optics clustering 
is subsequently applied with its respective modification in the value of parameters, resulting in 19 clusters, indicating 19 
routes for the attention of all nodes, as can be seen in Fig. 8. To all routes, the distance and the execution time was 545.54 km 
for Local Search 2-opt, in contrast to Nearest Neighbor of 619.76 km in total, for the 19 routes, generating a reduction 11.98% 
of the distance traveled; through 176 iterations in 0.720317 seconds (see Table 4). The attention of all customers is fully met, 
without subtours or crossings; all cargo is delivered, and each vehicle transports the quantity demanded, without exceeding 
its 7.5 tons capacity selected for this scenario within the time windows. 

 

Fig. 8. Routes generated for 758 customers. 
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Table 4 
Results per route for 758 nodes (customers) 

Clustering 

Route Number 
of nodes 

Cargo to 
transport 

[Kg] 

Distance travelled 
Execution 
time [Seg] 

Number of 
iterations K-means Optics NN* 

[km] 
LS*  

2-opt 
[km] 

Diff. 
 

0 
-1 0 12** 383.59 23.34 20.41 -12.55% 0.000 4  
0 1 43 4,077.68 26.15 22.89 -12.47% 0.010 7  
1 2 44 3,805.12 39.35 30.71 -21.96% 0.017 11  

1 
-1 3 20 6,142.88 42.22 38.56 -8.67% 0.000 5  
0 4 60 8371.2 53.05 49.29 -7.09% 0.050 16  
1 5 37 4284.51 64.63 57.43 -11.14% 0.010 7  

2 
-1 6 24 6,347.98 38.51 33.30 -13.53% 0.000 7  
0 7 31 267.65 25.60 22.69 -11.37% 0.007 7  
1 8 38 6,535.28 44.15 34.93 -20.88% 0.008 10  

3 

-1 9 177 5,838.93 44.03 40.94 -7.02% 0.558 26  
0 10 40 1,858.46 29.96 28.11 -6.17% 0.010 7  
1 11 24 1,429.53 26.57 23.41 -11.89% 0.000 7  
2 12 22 920.27 26.07 23.03 -11.66% 0.006 6  
3 13 22 140.00 23.54 21.54 -8.50% 0.005 13  
4 14 22 988.92 25.69 22.49 -12.46% 0.000 7  
5 15 45 376.91 25.27 24.86 -1.62% 0.010 6  

4 
-1 16 10 2,650.01 16.70 15.03 -10.00% 0.000 2  
0 17 50 3,977.76 21.49 18.00 -16.24% 0.015 12  
1 18 38 3,622.82 23.41 17.93 -23.41% 0.017 16  

Total 19 19 759 62,019. 5 619.7 545.55 -11.97% 0.720 176  
*NN (Nearest Neighbor). LS (Local Search). **Includes depot. 

To contemplate a solution for more customers, considering the performance of the algorithm, it is necessary to modify the 
parameters of the clusters, since that is where the compliance with the constraints lies. In a 2,000 nodes scenario, a solution 
is generated in 2.71 seconds by performing 497 iterations. This demonstrates efficiency of performance by the algorithm 
developed in terms of execution and memory use. It should be noted that the experiments carried out were run on a 1.80 GHz 
Intel Core i5 8th Gen processor with 8.00 GB of memory and a 64-bit operating system. 

5.2.  Computational studies 
 

In this section, computational studies are carried out to compare the performance of the designed algorithm against models 
from the existing literature, taking the instances of Solomon (1986) as a reference in which six types of problems that affect 
the behavior of the algorithms for VRPTW are raised. These are categorized into Random (R), Clustered (C) and Random & 
Clustered (RC) which in turn are classified into two types; type 1, short scheduling horizon (R1, C1, RC1); and, type 2, long 
scheduling horizon (R2, C2, RC2). The data integrates the variables of number of customers, geographic location, amount of 
demand, time window (ready and due time) and service time, which are taken from Solomon (2005). In this benchmark, the 
designed algorithm is compared against the best-known solutions identified by heuristics before March 24, 2005. To measure 
its performance, the formula %𝐺𝐴𝑃௕௘௦௧ = [(𝑃𝐴 −  𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)/𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛] ∗ 100% posed by 
(Küçükoğlu & Öztürk, 2015) is adapted. Where PA (Proposed Algorithm), indicates the solution of the algorithm proposed 
in this article. Thus, 12 problems with Euclidean distance are considered for 100 customers: R101, R102, C101, C102, RC101 
and RC102, with 200 capacity in the vehicle; R201, R202, RC201 and RC202 with 1,000 capacity in the vehicle; and finally, 
C201 and C202 with 700 capacity in the vehicle. It should be noted that the algorithm is adjusted to a Euclidean distance to 
obtain comparable distances. The results are shown in Table 5. 

Based on Table 5, of the 12 problems considered, 66.7% generated better results than those identified as the best solution in 
the literature. A decrease of 10.87% in the total number of vehicles (NV) used is noteworthy, as well as a decrease in the total 
distance of 2.09% (14,140.8) compared to 14,442.67, despite the failure to comply with the four type C problems evaluated. 
In fact, those problems for which no better results were obtained are close to the solutions identified in the literature, without 
exceeding 3.67%, 3.00% and 1.49% of the best solution for the four cases, respectively.  

In this benchmark, the number of iterations executed by each case and the generation of solutions in minimum execution times 
(does not exceed 0.05 seconds for all problems) stands out; as an example, the minimum average times of 11.90 seconds, of 
the best runs of RC problems for 100 customers executed by Taillard et al. (1997) was exceeded by 99.94%. However, the 
value of CPU is not comparable given the difference in hardware used to solve the problems. 
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Table 5 
Benchmark results 

Problem 
type 

Best known solution     PA  
%GAP NV Distance Author(s)  NV Distance CPU 

[seg] Iterations 

R101 19 1,645.79 Homberger (2000)  16 1,567.59 0.0194 41 -4.75 

R102 17 1,486.12 Rochat & Taillard 
(1995) 

 15 1,404.98 0.0111 36 -5.46 

C101 10 828.94 Rochat & Taillard 
(1995) 

 10 859.34 0.0075 24 3.67 

C102 10 828.94 Rochat & Taillard 
(1995) 

 10 859.34 0.0075 24 3.67 

RC101 14 1,696.94 
Taillard, Badeau, 

Gendreau, Geurtin & 
Potvin (1997) 

 12 1,623.72 0.0066 26 -4.31 

RC102 12 1,554.75 
Taillard, Badeau, 

Gendreau, Geurtin & 
Potvin (1997) 

 11 1,505.87 0.0030 30 -3.14 

R201 4 1,252.37 Homberger & Gehring 
(1999) 

 3 1,248.71 0.0309 34 -0.29 

R202 3 1,191.70 Rousseau, Gendreau 
& Pesant (2002) 

 2 1,130.84 0.0170 16 -5.11 

C201 3 591.56 Rochat & Taillard 
(1995) 

 3 609.33 0.0499 23 3.00 

C202 3 591.56 Rochat & Taillard 
(1995) 

 3 600.38 0.0294 24 1.49 

RC201 4 1,406.91 Mester (2002)  4 1,395.30 0.0218 25 -0.83 

RC202 3 1,367.09 Czech & Czarnas 
(2002) 

 3 1,335.35 0.0325 20 -2.32 

Total 102 14,442.67     92 14,140.8 0.2367 323 -2.09 
 

6. Conclusion 
 

This study considered a vehicle routing problem with time windows, usually known as VRPTW. Given the complexity of the 
problem, based on its constraints and objective function, a robust solution algorithm programmed in Python 3.7 is proposed, 
which takes as a reference the database of deliveries made by a logistics operator in Colombia. By integrating the K-means 
and Optics clustering techniques, as well as the Nearest Neighbor heuristics for the generation of routes and Local Search 2-
opt for their optimization, good solutions for the proposed scenarios are generated. To evaluate the designed algorithm, several 
scenarios were made varying the number of nodes and vehicles, the associated load, service times and time windows. Starting 
from an initial base of 205 customers, a solution is found in 0.019 seconds by executing 41 iterations; then, a scenario of 758 
customers is solved in 0.720 seconds by means of 176 iterations. Finally, a scenario of 2,000 customers is tested, giving results 
in 2.71 seconds after 497 iterations. This demonstrates high performance and efficiency for large instances in terms of 
execution, compliance with constraints and memory usage. Additionally, a benchmark is made based on the instances of 
Solomon (1986) against the results obtained from 12 problems looked at by several authors of the existing literature. Of this 
section, the short execution times, the reduction of 2.09% in the total distance and 10.87% in the number of vehicles required 
stand out, as well as the obtaining of better solutions in 66.7% of the problems evaluated. From this comparison, the 
performance of the algorithm and its adaptability to any type of problem is confirmed. Finally, the evaluation and the 
benchmark allow scaling the capacity of the designed algorithm, where it shows high performance in terms of route generation 
and solution while at the same time providing routes close to the optimal ones for large customer instances, demonstrating 
competitiveness against other solution methods. 
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