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 The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization 
problems and is known for its diverse applications. The QAP is an NP-hard optimization problem 
which attracts the use of heuristic or metaheuristic algorithms that can find quality solutions in an 
acceptable computation time. On the other hand, there is quite a broad spectrum of mathematical 
programming techniques that were developed for finding the lower bounds for the QAP. This paper 
presents a fusion of the two approaches whereby the solutions from the computations of the lower 
bounds are used as the starting points for a metaheuristic, called HC12, which is implemented on a 
GPU CUDA platform. We perform extensive computational experiments that demonstrate that the 
use of these lower bounding techniques for the construction of the starting points has a significant 
impact on the quality of the resulting solutions. 
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1. Introduction 

The NP-hard quadratic assignment problem (QAP) in its Koopmans and Beckmann form (Koopmans & Beckmann, 1957), 
which is notoriously difficult in practice, can be described as follows (Cela, 2013): The problem is structured on a complete 
directed graph 𝐺 =  (𝑉,𝐴) with 𝑛 nodes and 𝑛ଶ arcs, together with a set of 𝑛 facilities that have to be assigned to the nodes. 
The indices 𝑖, 𝑗 ∈  𝑉 correspond to the nodes, the indices 𝑓,𝑔 ∈  𝑁 =  {1, . . . ,𝑛} correspond to the facilities, 𝑏௜,௝ ≥ 0 is a 
given (directed) distance from node 𝑖 to node 𝑗, 𝑎௙,௚ ≥ 0 is a given flow from facility 𝑓 to facility 𝑔. By using binary 
variables 𝑥௜,௙ = 1 if facility 𝑓 is assigned to node 𝑖, and 0 otherwise, the QAP can be stated as the following quadratic 0-1 
optimization problem: 

min ෍෍෍෍𝑎௙,௚𝑏௜,௝𝑥௜ ௙𝑥௝,௚௚∈ே௝∈௏௙∈ே௜∈௏  (1) 

  s.t.         ෍𝑥௜,௙௜∈௏ = 1  ∀𝑓 ∈ 𝑁  (2) 

 ෍𝑥௜,௙௙∈ே = 1  ∀𝑖 ∈ 𝑉  (3) 

 𝑥௜ ௙ ∈ {0 , 1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁, (4) 
It is quite well known that the constraint matrix, defined by (2)-(3) is totally unimodular, implying that the optimization of 
any linear objective function over the QAP feasible set is just a relatively easy linear programming problem, known as the 
linear assignment problem (LAP) (Burkard et al., 2012).  
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Despite its rather simple definition, QAP is among the most difficult optimization problems that arise in practice – campus 
planning problem (Dickey & Hopkins, 1972), backboard wiring problem (Steinberg, 1961), hospital layout problem (Helber 
et al., 2016), airport gate assignment (Haghani & Chen, 1998), turbine runner in electricity generation (Laporte & Mercure, 
1988), statistical analysis (Hubert & Schultz, 1976), and optimal placing of letters on touchscreen devices (Dell’Amico et 
al., 2009) have all been modeled as a QAP. There are several other well-known combinatorial optimization problems which 
can be formulated as QAPs with specific coefficient matrices (Cela, 2013) – e.g., the travelling salesman problem, graph 
partitioning and maximum clique, the linear arrangement problem, and packing problems in graphs, to name a few. An 
intriguing feature of the QAP is that even for some problems of size 𝑛 ≤  50, such as sko42 or tai30a from the QAPLIB 
problem library (Burkard et al., 1997), the optimal solution is still not confirmed. Even finding an ε-optimal solution is a 
difficult problem. There are, however, several QAP instances/structures for which the optimal solution is attainable in 
polynomial time (Cela et al., 2018) or which were generated in such a way that the optimal solution is known (Li & Pardalos, 
1992). Furthermore, several directions for enriching the QAP formulation have been proposed – among the most notable of 
these are the multi-objective formulation (Samanta et al., 2018; Sanhueza et al., 2017) and stochastic programming 
formulation (Popela et al., 2016; Matousek et al., 2017). For these reasons, the study of the QAP attracted quite a large 
amount of research from both mathematical programming and heuristics communities. 

In this paper, we show that the approaches from these two communities can be successfully combined. We will utilize the 
lower-bounding techniques for the construction of advantageous starting points for a hill climbing metaheuristic and show 
on extensive computational experiments that starting the heuristic at these points yields significant improvements over the 
usual random starting points. 

The remained of the article is structured as follows: In Section 2, the state-of-the-art in both mathematical programming and 
heuristics approaches to the QAP is reviewed. In Section 3 a suitable metaheuristic algorithm HC12 is described. Section 4 
provides computational comparison of the mathematical programming approaches, and the results obtain from HC12. 
Conclusions and future research direction are summarized in Section 5. 

2. Methods for approaching QAP 

2.1. (Meta)Heuristics 

Because of the computational difficulty of the QAP, myriads of heuristics were proposed to tackle this combinatorial 
problem. Among the first ones were simulated annealing (Burkard & Rendl, 1984), robust tabu search (Taillard, 1991) and 
genetic hybrids (Fleurent & Ferland, 1994) – although these are no longer the most efficient methods, they were able to find 
the best known solutions for some of the QAPLIB instances, that are yet to be beaten or proven optimal. The comparison 
between tabu search and simulated annealing based on a size of the QAP was conducted in (Hussin & Stützle, 2014). A 
local search heuristic called breakout local search enhanced by a Levenshtein Distance metric for checking solutions for 
similarity was described in (Aksan et al., 2017). The state-of-the-art in metaheuristics for the QAP includes population based 
memetic algorithms (Benlic & Hao, 2015), genetic algorithms (Ahmed, 2015), differential evolution (Hameed et al., 2020) 
and particle swarm algorithms (Hafiz & Abdennour, 2016). Hybrid algorithms, combining several heuristics and 
metaheuristics are also very prevalent. A hybrid teaching-learning based algorithm integrating tabu search within a swarm 
intelligence metaheuristic was described in (Dokeroglu, 2015). A memetic algorithm that uses a ternary tree structure for 
its population and the tabu search algorithm, which runs simultaneously, for its local search mechanism was proposed in 
(Harris et al., 2015). A parallel hybrid algorithm with three phases was proposed by (Tosun, 2015) – this algorithm initially 
benefits from a genetic algorithm to obtain a high-quality initial seed on which a diversification mechanism is run. Finally, 
this modified solution is used for a robust tabu search to find a near-optimal result. In (Abdel-Basset et al., 2018) the authors 
describe an algorithm integrating the whale optimization algorithm with a tabu search. A multistart hyper-heuristic algorithm 
on the grid is proposed in (Dokeroglu & Cosar, 2016) – it makes use of different metaheuristics (simulated annealing, robust 
tabu search, ant colony optimization, and breakout local search) and reports computations on a high-performance cluster 
with 368 cores and 736 GB of RAM. 

Since it offers speed-up opportunity that can outperform current multicore processors, (Tsutsui & Fujimoto, 2009) applied 
Graphics Processing Unit (GPU) computation with compute unified device architecture (CUDA) to solve the QAP. In 
(Czapiński, 2013) is proposed a Parallel Multistart Tabu Search (PMTS) algorithm. It is implemented on a highly powerful 
GPU hardware intended for high-performance computing with the CUDA platform. Therefore, PMTS is shown to perform 
competitively with a single-core or a parallel CPU implementation on a high-end six-core CPU. Another GPU based 
algorithm is described in (Mohammadi et al., 2015) – a parallel genetic algorithm, that (as the authors report) can run up to 
30 times faster than its serial counterpart. Finally, the bees algorithm implemented on the CUDA platform is proposed in 
(Chmiel & Szwed, 2016). 

2.2. MIP Reformulations 

One common mathematical programming approach for solving the QAP is to “linearize” it, that is, reformulate it as a pure 
or mixed integer linear programming problem. This was first done in (Gilmore, 1962) by replacing the terms 𝑥௜,௙𝑥௝,௚ in the 
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objective function by 𝑛ସ variables 𝑦௜,௙,௝,௚ = 𝑥௜,௙𝑥௝,௚. This reformulation was further improved upon in (Adams & Johnson, 
1994), calling it the level-1 reformulation-linearization technique (RLT-1). The reformulated problem than has the following 
form: 

min ෍෍෍෍𝑎௙,௚𝑏௜,௝𝑦௜,௙,௝,௚௚∈ே௝∈௏௙∈ே௜∈௏  (5) 

  s.t.         ෍𝑦௜,௙,௝,௚௜∈௏ = 𝑥௝,௚  ∀𝑗 ∈ 𝑉 ∀𝑓,𝑔 ∈ 𝑁  (6) 

 ෍𝑦௜,௙,௝,௚௙∈ே = 𝑥௝ ௚  ∀𝑖 𝑗 ∈ 𝑉 ∀𝑔 ∈ 𝑁  (7) 

 𝑦௜,௙,௝,௚ = 𝑦௝ ௚ ௜ ௙ ≥ 0  ∀𝑖 𝑗 ∈ 𝑉 ∀𝑓 𝑔 ∈ 𝑁  (8) 

 ෍𝑥௜,௙௜∈௏ = 1  ∀𝑓 ∈ 𝑁  (9) 

 ෍𝑥௜,௙௙∈ே = 1  ∀𝑖 ∈ 𝑉  (10) 

 𝑥௜ ௙ ∈ {0,1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁, (11) 
By relaxing the binary constraint (11) (using a LP relaxation), the above formulation can be used to obtain a valid lower 
bound on the QAP (1)-(4). The RLT-1 reformulation was further strengthened by introducing additional 𝑛଺ variables, called 
RLT-2 in (Adams et al., 2007), and even further with additional n8 variables, called RLT-3 in (Hahn et al., 2012), which for 
the time being is still too large even for modern day computers – for problems of size 𝑛 =  25, the computations needed to 
be done on a server with 384 GB of RAM. A different mixed integer linearization scheme, called the Kaufman-Broeckx 
formulation, was proposed in (Kaufman & Broeckx, 1978) with 𝑂(𝑛ଶ) additional variables. Although this is the smallest 
QAP linearization, its LP relaxation is known to be usually weak. This relaxation was tightened in (Xia & Yuan, 2006) 
using the Gilmore-Lawler bound (GLB) (Gilmore, 1962; Lawler, 1963) and further enhanced in (Zhang et al., 2013). A 
formulation based in the Kaufman-Broeckx family was used in (Fischetti et al., 2012) to solve (prove optimality) all the esc 
instances (Eschermann & Wunderlich, 1990) (including the one of size 𝑛 =  128). 

2.3. Lower Bounding Techniques 

Exact solution of a QAP typically requires the use of a branch-and-bound framework (Anstreicher, 2003). In practice, the 
lack of efficiently computable, tight lower bounds for the QAP has been the key factor in the problem’s difficulty, as the 
tighter the bound is, the more difficult it generally is to compute. There are various approaches for obtaining lower bounds. 
One of the oldest methods, the Gilmore-Lawler bound (GLB), is still widely used. A comparison of older bounds based on 
linearization of the QAP can be found in (Karisch et al., 1999). A great success in solving previously unsolved QAP 
instances was achieved using the convex quadratic programming bound introduced in (Anstreicher & Brixius, 2001). 

A seminal breaking point in combinatorial optimization was the emergence of semidefinite programming (SDP). The SDP 
bounds for the QAP were first studied in (Zhao et al., 1998). The problem with this relaxation was that it involved a matrix 
variable of order 𝑛ଶ, and can therefore only be solved efficiently by interior point methods for, say, 𝑛 ≤  20. This limitation 
has encouraged research into exploiting group symmetry of the QAP data matrices to obtain smaller and more tractable SDP 
problems (de Klerk & Sotirov, 2012). It has also prompted recent research into SDP relaxations of QAP where the matrix 
variables are of order 𝑛; see (Peng et al., 2010) and (Peng et al., 2015). In both these lines of research the authors were able 
to compute the best-known lower bounds for some QAPLIB instances. As we will use the lower bounding techniques for 
the construction of starting points for our metaheuristic, we will describe these techniques in greater detail. The computation 
of the GLB can be done in the following way: Denote the row vectors of matrices 𝐴 and 𝐵 by 𝑎௜ and 𝑏௜ , 𝑖 = 1,2, … ,𝑛,. Let 𝑎ො௜  be the vector consisting of the (𝑛 −  1) components of 𝑎௜, without 𝑎௜,௜, and let 𝑏෠௜  be the vector consisting of the (𝑛 − 1) 
components of 𝑏௜, without 𝑏௜,௜. Define a matrix 𝐿 = ൫𝑙௜,௝൯ as follows: 𝑙௜௝ = ൻ𝑎ො௜ ,𝑏෠௝ൿି,  𝑖, 𝑗 = 1,2, … ,𝑛, 
where ⟨𝑎, 𝑏⟩ି is the minimal scalar product, which can be computed by ordering the vector 𝑎 nondecreasingly and 𝑏 
nonincreasingly. The GLB is given by the optimal value of the n-dimensional LAP with cost matrix 𝑙௜,௝ + 𝑎௜,௜𝑏௝,௝ : 

min ෍෍൫𝑙௜ ,௝ + 𝑎௜, ௜𝑏௝, ௝൯𝑥௜ ௝௡
௝ୀଵ

௡
௜ୀଵ  (12) 

  s.t.         ෍𝑥௜, ௙௜∈௏ = 1  ∀𝑓 ∈ 𝑁  (13) 



  

 

154

 ෍𝑥௜, ௙௙∈ே = 1  ∀𝑖 ∈ 𝑉  (14) 

 𝑥௜ ௙ ∈ {0,  1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁  (15) 

which requires only 𝑂(𝑛ଷ) computational time. 

The second type of the QAP lower bounds are the eigenvalue bounds. These use the fact that the set of permutation matrices Π௡ can be characterized as: Π௡ = 𝒬𝓃 ∩ ℰ𝓃 ∩𝒩𝓃, 
where 𝒬𝓃  is the set of orthogonal matrices, ℰ𝓃  is the set of doubly stochastic matrices and 𝒩𝓃  is the set of matrices with 
positive elements of size 𝑛 × 𝑛. 
The QAP can then be equivalently formulated as: min௑∈ஈ೙ 𝑡𝑟 (𝐴𝑋𝐵𝑋்), 

where tr(·) is the trace of a matrix. The first eigenvalue bound that uses this QAP formulation was introduced in (Hoffman 
& Wielandt, 2003) and is based on the relaxation of the feasible region: min௑∈𝒬𝓃 tr (𝐴𝑋𝐵𝑋்) = ⟨λ(𝐴), λ(𝐵)⟩ି, 

where 𝜆(·) denotes the vector of eigenvalues of the matrix. This bound can be computed with very little effort but tends to 
be extremely weak. The improvement of this bound was done in (Hadley et al., 1992) and is called the Hadley-Rendl-
Wolkowitz (HRW): Let 𝑢௡ be a vector of all ones and let 𝑉 be an 𝑛 × (𝑛 − 1) matrix with 𝑉்𝑢௡ = 0 and rank(𝑉)  =  𝑛 − 1. Then 

{𝑋 ∈ ℛ𝓃×𝓃:𝑋𝑢௡ = 𝑋்𝑢௡ = 𝑢௡} = {1𝑛 𝑢௡𝑢௡் + 𝑉𝑀𝑉்:𝑀 ∈ ℛ(𝓃ିଵ)×(𝓃ିଵ)} 

which can be used to reparametrize the trace formulation as: tr(𝐴𝑋𝐵𝑋்) = 𝑡𝑟 ቀ(𝑉்𝐴𝑉)𝑋෠(𝑉்𝐵𝑉)𝑋෠்ቁ + 2𝑛 tr(𝐴𝐽௡𝐵)𝑋் − const 
where 𝐽௡ = 𝑢௡𝑢௡் is a matrix of all ones, and use the eigenvalue bound to obtain the improved HRW bound: ⟨𝜆(𝑉்𝐴𝑉) 𝜆(𝑉்𝐵𝑉)⟩ି + LAP ൬2𝑛 𝐴𝐽௡𝐵൰ − const (16) 

The third type of the QAP lower bounds are based on a convex quadratic programming relaxation of the trace 
reparameterization shown above. (Anstreicher & Brixius, 2001) used the above-mentioned parametrization and showed that 
the following convex quadratic optimization problem gives a lower bound on the QAP: 

min vec(𝑋)்𝑄vec(𝑋) + ⟨λ(𝑉்𝐴𝑉) λ(𝑉்𝐵𝑉)⟩ି (17) 
  s.t.         𝑋𝑢௡ = 𝑋்𝑢௡ = 𝑢௡  𝑋 ≥ 0, (18) 

where 𝑄 = (𝐵⊗𝐴) − ൫𝐼 ⊗ 𝑉𝑆መ𝑉்൯ − ൫𝑉𝑇෠𝑉் ⊗ 𝐼൯ 
and 𝑆መ and 𝑇෠  can be obtained from the spectral decomposition of 𝑉்𝐴𝑉 and 𝑉்𝐵𝑉. The last type of the QAP lower bounds 
we consider are based on a SDP relaxation developed by (Peng et al., 2015): Let (𝐵ଵ,𝐵ଶ) be a minimal trace matrix splitting 
of the matrix 𝐵 and compute a decomposition 𝐵௜ = 𝐵෠௜் 𝐵෠௜. Let 𝐵௦ = 𝐵ଵ + 𝐵ଶ the SDP relaxation model of QAP based on 
minimal trace matrix splitting is the following: 

min tr(AY) (19) 
  s.t.         𝑌 = 𝑌ଵ − 𝑌ଶ  𝑌௦ = 𝑌ଵ + 𝑌ଶ  (20) 

 ቆ 𝐼 𝐵෠ଵ𝑋்𝑋𝐵෠ଵ 𝑌ଵ ቇ ⪰ 0 ቆ 𝐼 𝐵෠ଶ𝑋்𝑋𝐵෠ଶ 𝑌ଶ ቇ ⪰ 0  (21) 

 diag(𝑌ଵ) = 𝑋diag(𝐵ଵ)  𝑌ଵ𝑒 = 𝑋𝐵ଵ𝑒  (22) 
 diag(𝑌ଶ) = 𝑋diag(𝐵ଶ)  𝑌ଶ𝑒 = 𝑋𝐵ଶ𝑒  (23) 

 ൫𝑋min൫ሾ𝐵ଵሿ௢௙௙൯൯௜ ≤ ሾ𝑌ଵሿ௜ ௝   ∀𝑖 ≠ 𝑗 (24) 

 ሾ𝑌ଵሿ௜ ௝ ≤ ൫𝑋max൫ሾ𝐵ଵሿ௢௙௙൯൯௜  ∀𝑖 ≠ 𝑗 (25) 

 ൫𝑋min൫ሾ𝐵ଶሿ௢௙௙൯൯௜ ≤ ሾ𝑌ଶሿ௜ ௝  ∀𝑖 ≠ 𝑗 (26) 
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 ሾ𝑌ଶሿ௜ ௝ ≤ ൫𝑋max൫ሾ𝐵ଶሿ௢௙௙൯൯௜  ∀𝑖 ≠ 𝑗 (27) 

 ൫𝑋min൫ሾ𝐵ሿ௢௙௙൯൯௜ ≤ ሾ𝑌ሿ௜ ௝  ∀𝑖 ≠ 𝑗 (28) 

 ሾ𝑌ሿ௜ ௝ ≤ ൫𝑋max൫ሾ𝐵ሿ௢௙௙൯൯௜  ∀𝑖 ≠ 𝑗 (29) 

 ൫𝑋min൫ሾ𝐵௦ሿ௢௙௙൯൯௜ ≤ ሾ𝑌௦ሿ௜ ௝   ∀𝑖 ≠ 𝑗 (30) 

 ሾ𝑌௦ሿ௜ ௝ ≤ ൫𝑋max൫ሾ𝐵௦ሿ௢௙௙൯൯௜  ∀𝑖 ≠ 𝑗 (31) 

 ‖ሾ𝑌ଵሿ௜ :‖ଶ  ≤ 𝑋 ‖ሾ𝐵ଵሿ௜ :‖ଶ  ∀𝑖 (32) 
 ‖ሾ𝑌ଶሿ௜ :‖ଶ  ≤ 𝑋 ‖ሾ𝐵ଶሿ௜ :‖ଶ  ∀𝑖 (33) 
 ‖ሾ𝑌ሿ௜ :‖ଶ  ≤ 𝑋 ‖ሾ𝐵ሿ௜ :‖ଶ  ∀𝑖 (34) 
 ‖ሾ𝑌௦ሿ௜ :‖ଶ  ≤ 𝑋 ‖ሾ𝐵௦ሿ௜ :‖ଶ  ∀𝑖 (35) 
 𝑋 ≥ 0 𝑋𝑒 = 𝑋்𝑒 = 𝑒 (36) 𝐵௢௙௙  denotes the matrix consisting of all the off-diagonal elements of 𝐵, i.e., 𝐵௢௙௙ = 𝐵 −diag(𝑏ଵଵ, 𝑏ଶଶ, … , 𝑏௡௡), max(𝐵) (or min(𝐵))denotes the vector whose 𝑖-th component is the maximal element (or minimal 

element) in the 𝑖-th row (denoted by 𝐵௜,:) of 𝐵. 

In order to obtain a starting point (in our case, a starting permutation) for the upcoming heuristic, we use a projection of the 
matrix obtained from the lower bounding schemes to the space of permutation matrices: Let 𝑋෠ be a matrix obtained from 
the computation of the lower bounds. The “closest” permutation matrix 𝑋 to 𝑋෠ can be computed by solving the following 
problem: 

min ෍෍൫𝑋௜,௝ − 𝑋෠௜,௝൯ଶ௡
௝ୀଵ

௡
௜ୀଵ  (37) 

  s.t.         ෍𝑋௜, ௝௡
௝ୀଵ = 1 ෍𝑋௜, ௝௡

௜ୀଵ = 1  ∀𝑖 ∀𝑗  (38) 

 𝑋௜ ௝ ∈ {0 ,1}  ∀𝑖 ∀𝑗, (39) 
The problem above can be reformulated into an equivalent problem using the fact that 𝑋௜,௝  is binary: 

min ෍෍൫1 − 2𝑋෠௜, ௝൯𝑋௜, ௝௡
௝ୀଵ

௡
௜ୀଵ  (40) 

  s.t.         ෍𝑋௜, ௝௡
௝ୀଵ = 1 ෍𝑋௜,௝௡

௜ୀଵ = 1  ∀𝑖 ∀𝑗  (41) 

 𝑋௜ ௝ ∈ {0,1}  ∀𝑖 ∀𝑗, (42) 
which is a simple LAP. 

2.4 HC12 algorithm  

The binary HC12 algorithm, described in detail in (Matousek & Zampachova, 2011), is a stochastic heuristic searching 
algorithm which belongs to the class of pseudo global search methods. The basic step of the algorithm is a generation of a 
neighborhood of the current solution, which serves as a base for the construction of a new (improved) population. The 
method of generating the neighborhood is the pivotal characteristic of HC12. The paradigm of the algorithm is the search 
of the optimal solution in the binary (Hamming) space, that encodes the solution. In this context, it is a parallel approach to 
genetic algorithms, where the solution is encoded as a binary vector. The best individual of the 𝑖th generation (or iteration) 
is chosen as the base for the following (𝑖 +  1) generation. The approach is depicted in Fig. 1. The binary vector of the 
current solution is called a kernel a is denoted with an index “ker” (e.g., 𝑎௞௘௥). The newly generated neighborhood creates 
a set of 𝑐 new binary vectors 𝑎௜  with the same length as the vector 𝑎௞௘௥. These new vectors can be viewed as a population 
and represented by a matrix 𝐴଴ = (𝑎ଵ, … , 𝑎௖)். The degree of locality/globality of the optimization depends on the particular 
way the new population 𝐴଴is generated. The goal of the search is to find optimal parameters 𝑥௢௣௧(43) with respect to the 
define objective function 𝑓(𝑥) on a parametric space 𝐷 ∈ 𝑁. Because of the binary representation, the parametric space is 
defined by a mapping Γ:  {0,1}  → 𝐷. An important implementation detail of the mapping Γ is the translation of the binary 
vector from the Gray code into direct binary; afterwards, there is a problem-based decoding of the binary vector (0-1 
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problem, integer problem, or mixed integer problem). The following relationship is used 𝑥 = Γ(𝑎) to denote the optimal 
solution as follows: 𝑥௢௣௧ = argmin௫∈஽f(𝑥)  (43) 𝑎௢௣௧ = argmin௔∈{଴ ଵ}೙𝑓൫Γ(𝑎)൯ (44) 
 

Over this binary representation is defined the neighborhood relation, that describes the neighborhood s for each feasible 𝑎௞௘௥  as points 𝑎 ∈ 𝑠(𝑎௞௘௥). The choice of the neighborhood function s determines the behavior and character of the HC 
algorithm (Fig. 1). 

 

Fig. 1. An schematic example of the progress of the binary HC algorithm 

The HC12 algorithm is very effectively parallelizable. Using the neighborhood function 𝑠 (45) on a binary vector 𝑎௞௘௥, the 
population 𝐴଴ is generated. The set of possible neighborhood functions is denoted by 𝐻 (46). 𝑠: 𝑎௞௘௥ → 𝐴଴   i, e,  𝑠: {0 1}௡ → ({0 1}௡)௖ (45) 𝐻 = {𝑠଴ 𝑠ଵ …  𝑠௡} (46) 
 

The number 𝑐 of newly generated vectors in the population A0 depends on the chosen neighborhood function 𝑠௞  and on the 
length 𝑛 of the binary vector 𝑎௞௘௥  – it is computed as 𝑐 = ൫௡௞൯. For the realization of the transformations from the set 𝐻 a 
system of matrices 𝑀 is defined. The matrix 𝑀 corresponding to the function 𝑠௞  will be called a matrix of the 𝑘-th order and 
denoted by 𝑀௞. Matrix of the 𝑘-th order (𝑀௞) is a matrix whose rows represent all points of the Hamming metric space that 
are distance k from the origin (zero vector of length 𝑛): 𝑀଴ = (0ଵ,ଵ 0ଵ,ଶ ⋯ 0ଵ,௡) 

𝑀ଵ = ⎝⎛
1ଵ,ଵ 0ଵ,ଶ 0ଵ,ଷ ⋯ 0ଵ,௡0ଶ,ଵ 1ଶ,ଶ 0ଶ,ଷ ⋯ 0ଶ,௡⋮   ⋱  0௖భ,ଵ 0௖భ,ଶ 0௖భ,ଷ ⋯ 1௖భ,௡⎠⎞ 

𝑀ଶ = ⎝⎛
1ଵ,ଵ 1ଵ,ଶ 0ଵ,ଷ ⋯ 0ଵ,௡1ଶ,ଵ 0ଶ,ଶ 1ଶ,ଷ ⋯ 0ଶ,௡⋮   ⋱  0௖మ,ଵ 0௖మ,ଶ ⋯ 1௖మ,௡ିଵ 1௖మ,௡⎠⎞ 

⋮ 𝑀௡ = (1ଵ,ଵ 1ଵ,ଶ ⋯ 1ଵ,௡) 
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Using the 𝑘-th order matrices, the function 𝑠௞  can be effectively computed 

as: 𝑠௞:𝐴଴ = 𝑎௞௘௥ ⊕𝑀௞ 

 

Fig. 2. An example of neighbourhood generation for 4-bit binary string using transformations H = {s0,s1,s2} and matrixes 
M0,M1,M2, i.e. utilization in algorithms HC1, HC2 and their union HC12 

From the practical point of view (because of the combinatorial expansion), only the transformations 𝑀଴,𝑀ଵ, and 𝑀ଶ are 
used. The algorithm HC12 encodes in the last digit of its name the utilized transformations (upto order 2). The general 
paradigm of the HC12 algorithm is implemented using several input parameters: fun (indicator of the objective function 𝑓), 
nRun (the number of runs/restarts of the algorithm). The value nRun depends on the difficulty of the problem. The section 
of rows 6 to 10 are the HC12 algorithm itself. This part is very well (row 8) and well (row 9) parallelizable. The computations 
in row 8 contain the conversion from the Gray code into direct binary, implicitly. The main focus of this paper is on row 5 
of the algorithm. How does one select a good starting solution? One possibility is to start at a random solution with the hope 
that after a sufficiently large number of tries, one does get a “good enough” solution. The other possibility is to start from a 
solution that is obtained by some heuristic. In this case, the heuristic in question entails the computation of the lower bound 
for the QAP (by one of the methods described earlier) and the projection of the obtained lower bound solution on the space 
of permutation matrices, by solving (40)-(42). The implementation of the HC12 algorithm for the QAP was described in 
(Matousek et al., 2019). As noted earlier, the optimization problem in (1)-(4) can be interpreted as a search over the space 
of permutation matrices 𝑋 ∈ Π௡. From the problem structure of the QAP it is clear that swapping arbitrary columns of a 
(feasible) matrix 𝑋 always results in a different feasible matrix (and swapping the rows of the matrix has the same effect). 

 

 

 

Algorithm 1 The HC12 algorithm (Pseudo code of the general paradigm). 
1:   fun,nRun ← inputs 
2: 𝑀 ← (𝑀0,𝑀1,𝑀2)𝑇  
3: 𝑓𝑏𝑒𝑠𝑡 ← ∞ 
4:  for i = [1 : nRun] do 
5:        𝑎𝑜𝑝𝑡  ← random / heuristic 
6:        repeat 
7:               𝑎𝑘𝑒𝑟 ← 𝑎𝑜𝑝𝑡  
8:               𝐴 ← 𝑎𝑘𝑒𝑟 ⊕𝑀 
9:               𝑎𝑜𝑝𝑡 ← argmin𝑎∈{0,1}𝑛 𝑓൫Γ(𝑎)൯ 

10:        until 𝑎𝑜𝑝𝑡 = 𝑎𝑘𝑒𝑟  
11:        𝑓𝑏𝑒𝑠𝑡 (𝑖) ← 𝑓 ቀΓ൫𝑎𝑜𝑝𝑡 ൯ቁ 
12:        𝐴𝑏𝑒𝑠𝑡 (𝑖, : ) ← 𝑎𝑜𝑝𝑡  
13: endfor 
14: ሾ𝑖, 𝑓𝑚𝑖𝑛 ሿ ← min𝑖 𝑓𝑏𝑒𝑠𝑡 (𝑖) 
15: 𝑎𝑚𝑖𝑛 ← 𝐴𝑏𝑒𝑠𝑡 (𝑖, : ) 
16: 𝑥𝑚𝑖𝑛 ← Γ(𝑎𝑚𝑖𝑛 ) 
17: return {𝑓𝑚𝑖𝑛 ,𝑎𝑚𝑖𝑛 , 𝑥𝑚𝑖𝑛 } 
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4. Results and discussion  

The computational experiments were carried out on 53 symmetrical QAP instances from the QAPLIB. For these instances 
the GLB (12)-(15), HRW (16), convex quadratic (17)-(18), and semidefinite (19)-(36) bounds, and their projections (40)-
(42) were computed. For the computation of the convex quadratic (AB) and semidefinite (PE) bounds, and for the 
computation of the LAP for the projection, the corresponding optimization problems were implemented in JuMP 
environment in JULIA language and the MOSEK solver was used to obtain the solutions. The results from these 
computations are summarized in Table 1. For one of the instances (tho150), the AB and PE formulations were too big to 
handle. These computations were carried out on Intel Xeon E5530 2.40GHz CPU with 16GB of RAM. The HC12 algorithm 
was implemented for HPC computations on GPU CUDA 7.x (i.e., NVIDIA RTX 2080, 8GB), where not more than 6GB 
were used for any of the QAP instances. From Table 1 we can see that, at least in general, the more complicated formulations 
(convex quadratic and semidefinite) produce better (higher) lower bounds, but not necessarily better (lower) starting point 
values, when judged solely on the resulting projection. The trade-off is that these more complicated formulations need quite 
a lot more computational resources (judged by the computational time) and are only feasible for instances up to n = 100. 
Also, every method produced the best lower bound and best projected value for at least one problem instance. It should be 
noted that the lower bounds are not only useful for constructing possible starting solutions for heuristics, but also help to 
judge the closeness of the solution obtained by the heuristic to the true optimum. This is especially important in situation, 
where the is otherwise no information about what the optimal value of the QAP instance might be. Next, we used the 
projected values from the lower bounding techniques as the starting points for the HC12 metaheuristic and run it 1,000 times 
for each problem instance. The best results of these simulations (the solution with the lowest objective value out of the 
1,000) are reported in Table 2. We also include the results from simulations that used random permutations as the starting 
point (again 1,000). Similarly, to the results of the lower bounds, there is not a clear winner, as for each of the methods 
(even for the random start) there are instances where it produced solutions that were better than the ones from the other 
methods. However, we can compare each of the bounding methods with the random start to see if there is significant 
difference. This comparison is summarized in Table 3 – we can see that even the “worst” performing lower bounding 
technique (HWB) was significantly better that random start, beating it in 30 of the 53 instances. The “best” performing 
lower bounding technique was the most complicated semidefinite formulation (PE), which was better than random start in 
41 of the 52 instances. We can also see that the GLB method performed a bit better than the much more complicated convex 
quadratic (AB) one. Similar pattern can be observed for the median results reported in Table 4. The main difference is that 
the random start was never the best scoring method, while each of the lower bounding methods were the best in at least 6 
instances. The comparison of the lower bounding method with random start for median results summarized in Table 5 shows 
even bigger difference than the one for best (minimum) results – the “worst” lower bounding technique (HWB, again) was 
better than random start in 41 of the 53 instances, and the “best” one (PE, again) was better in every one of the 52 instances. 
The GLB and AB methods perform similarly well. From these results, it is clear that starting a heuristic from a carefully 
chosen points leads to an increase in quality of the resulting solutions. The choice of the technique for constructing these 
starting points mainly depends on the computational resources at our disposal. While for the QAP the semidefinite (PE) 
formulation produced the best behaving starting points, it was also the most computationally demanding method, requiring 
the use of advanced convex optimization algorithms or the use of powerful solvers. In contrast to this, the GLB method 
produce starting points that are almost as good as the PE one, but the computational requirements for GLB are negligible. 

 

5. Conclusion  
In this paper we have studied the effects of using the lower bounding techniques for the QAP as for the generation of starting 
points for the HC12 heuristic, that subsequently tried to find the optimal solution for the QAP. We have shown through 
extensive numerical computations that this utilization of the lower bounding techniques significantly improves the values 
of the resulting solutions. Out of the four compared lower bounding techniques, the best overall results were obtained by 
using the semidefinite relaxation method, which was also the most computationally demanding one. When the computational 
resources, or the access to high quality semidefinite optimization solvers are limited, the GLB bound can serve as an 
excellent surrogate – although the resulting solutions are not as good, the computational requirements are negligible. 

Future research will focus on extending the multicriteria and stochastic QAP instances. Also, the evaluation of various other 
heuristics that can use the starting points could be interesting, as different methods could benefit more (or less) from starting 
from an already decent point. Lastly, we expect to work on the evaluation of the starting solutions for other NP-hard 
optimization problems. 
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Table 1  
Lower bounds (LB), values of the projections (PV), and computational time (T) of the four considered QAP lower bounding 
techniques for selected QAPLIB problems (BKW – best known value).  Best results (highest for LB and lowest for PV) are 
emphasized in bold. 
  GLB  

(Gilmore, 1962) 
HRW  
(Hadley et al., 1992) 

AB  
(Anstreicher & Brixius, 
2001) 

PE  
(Peng et al., 2015) 

Instance BKW LB PV T [s] LB PV T [s] LB PV T [s] LB PV T [s] 
chr12a 9552 724 44232 0.001 0 25638 0.001 0 23246 0.095 8499 25752 1.136 
chr12b 9742 7146 25580 0.001 0 26712 0.001 0 27088 0.107 7340 41170 1.317 
chr12c 11156 7976 18784 0.001 0 31608 0.001 0 30876 0.089 9832 40438 1.052 
chr15a 9896 5625 50174 0.001 0 25958 0.001 0 25880 0.253 7441 46976 2.515 
chr15b 7990 4653 54254 0.001 0 38470 0.001 0 19008 0.256 5166 30798 2.870 
chr15c 9504 6165 44602 0.001 0 26144 0.001 0 35936 0.260 8808 43370 2.207 
chr18a 11098 6779 89486 0.001 0 38778 0.001 0 51800 0.331 9077 78282 4.383 
chr18b 1534 1534 4640 0.001 0 2372 0.001 0 3922 0.338 1534 4156 2.580 
chr20a 2192 2150 9778 0.001 0 7742 0.001 0 6904 0.489 2156 10302 5.814 
chr20b 2298 2196 10430 0.001 0 6418 0.001 0 7386 0.497 2237 10320 7.654 
chr20c 14142 8601 79430 0.013 0 63268 0.001 0 63350 0.511 8825 69124 7.588 
chr22a 6156 5924 17622 0.003 0 10178 0.001 0 10588 0.815 5964 10316 8.907 
chr22b 6194 5936 13486 0.002 0 9530 0.001 0 11744 0.995 6015 10264 7.664 
chr25a 3796 2765 18964 0.002 0 14186 0.001 0 13062 1.444 3244 11708 17.67 
had20 6922 6166 7550 0.001 6625 7460 0.001 6671 7184 0.519 6778 7486 4.486 
kra30a 88900 68360 120000 0.004 63717 117490 0.001 68467 111970 10.52 73983 118920 34.27 
kra30b 91420 69065 118720 0.005 120990 140040 0.001 68876 122440 3.782 68737 127900 20.88 
kra32 88700 67390 121620 0.007 59735 119450 0.002 64591 117010 4.780 72297 119540 29.96 
nug18 1930 1554 2402 0.002 1663 2250 0.001 1703 2320 0.303 1753 2278 2.937 
nug20 2570 2057 3080 0.002 2196 2940 0.001 2253 2884 0.481 2338 2972 4.191 
nug21 2438 1833 3198 0.002 1979 2914 0.001 2051 3030 0.627 2215 3266 5.777 
nug22 3596 2483 4598 0.002 2966 4448 0.001 3074 4346 0.816 3284 4312 9.638 
nug24 3488 2676 4222 0.035 2960 4170 0.001 3024 4272 1.378 3178 4066 7.517 
nug25 3744 2869 4728 0.003 3190 4634 0.001 3267 4534 1.521 3404 4496 8.902 
nug27 5234 3701 6246 0.003 4493 6586 0.001 4604 6378 2.495 4820 6548 18.64 
nug28 5166 3786 6470 0.003 4433 6310 0.001 4538 6208 2.705 4732 6274 15.07 
nug30 6124 4539 7706 0.003 5266 7342 0.001 5360 7270 3.702 5608 7664 25.51 
scr15 51140 44737 70154 0.002 10355 75950 0.001 12478 77786 0.299 46015 83280 1.339 
scr20 110030 86766 203736 0.001 16113 172306 0.001 22714 193250 0.474 92426 193396 5.518 
sko42 15812 11311 19522 0.008 13830 19088 0.002 14029 18748 18.23 14612 18492 121.7 
sko64 48498 32522 57316 0.030 43890 56376 0.003 44513 56214 126.2 45467 56766 623.7 
sko72 66256 44280 75860 0.048 60402 75772 0.004 61069 75632 222.4 61497 76082 1209 
sko81 90998 60283 105932 0.061 82277 104844 0.005 83433 103642 466.3 85795 103954 2757 
sko90 115534 75531 132996 0.083 105983 131398 0.006 107171 131794 1448 109260 131646 4585 
sko100a 152002 98953 171886 0.091 139365 170880 0.009 140946 172554 2847 144091 171294 9946 
sko100b 153890 99028 174226 0.100 141251 173878 0.007 143138 174290 3055 145783 174950 10745 
sko100c 147862 95979 169888 0.101 135011 167142 0.007 136773 170340 3306 140146 169792 8920 
sko100d 149576 95921 172024 0.091 136979 167642 0.007 138736 169774 2928 140072 171152 10162 
sko100e 149150 95551 171360 0.093 136996 168732 0.007 138711 168640 3090 139277 169914 9688 
sko100f 149036 96016 169768 0.093 136860 170008 0.007 138661 169090 3634 140885 169564 10627 
ste36a 9526 7124 14866 0.006 0 16112 0.001 0 17454 9.257 7731 20690 60.95 
ste36b 15852 8653 47768 0.007 0 42034 0.001 0 37398 8.375 12930 51936 60.06 
ste36c 8.239e6 6.393e6 2.191e7 0.006 0 2.119e7 0.001 0 1.952e7 8.193 6.546e6 1.775e7 101.4 
tai25a 1.167e6 962417 1.457e6 0.002 956657 1.310e6 0.001 967207 1.366e6 1.758 958027 1.411e6 12.89 
tai50a 4.9386e 3.854e6 5.838e6 0.017 3.840e6 5.680e6 0.002 3.870e6 5.613e6 67.49 3.842e6 5.667e6 253.0 
tai60a 7.205e6 5.55e6 8.481e6 0.27 5.537e6 8.398e6 0.004 5.575e6 8.464e6 82.67 5.544e6 8.216e6 841.2 
tai80a 1.349e7 1.032e7 1.570e7 0.065 1.030e7 1.568e7 0.005 1.035e7 1.573e7 413.5 1.031e7 1.556e7 3213 
tai100a 2.105e7 1.582e7 2.403e7 0.101 1.579e7 2.348e7 0.007 1.585e7 2.347e7 1667 1.552e7 2.347e7 6460 
tho30 149936 90578 195698 0.003 119255 193756 0.001 124217 200194 4.067 131588 198154 27.20 
tho40 240516 143804 298906 0.007 191042 303704 0.002 197661 319004 13.45 210210 313114 109.9 
tho150 8.133e6 4.123e6 9.703e6 0.226 7.350e6 9.756e6 0.013 – – – – – – 
wil50 48816 38069 53942 0.014 45731 53420 0.003 46194 52938 40.64 46901 53754 281.4 
wil100 273038 210949 293908 0.095 260827 293206 0.007 262584 291630 2591 264724 294948 11078 
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Table 2  
Best (minimum) results from the simulations.  If the BKW is confirmed optimal, it is highlighted in bold.  Also, in bold is 
the method that produced the best solution for the given instance. 

Instance BKW Rand GLB HRW AB PE 
chr12a 9552 9552 9552 9552 9552 9552 
chr12b 9742 9742 9742 9742 9742 9742 
chr12c 11156 11186 11156 11156 11156 11156 
chr15a 9896 10094 10010 9980 10106 9978 
chr15b 7990 8626 8210 9096 8458 8452 
chr15c 9504 10118 9504 10426 9940 10002 
chr18a 11098 11682 11682 12396 12004 12424 
chr18b 1534 1538 1534 1534 1538 1534 
chr20a 2192 2480 2532 2592 2398 2402 
chr20b 2298 2612 2608 2598 2674 2618 
chr20c 14142 14610 14988 15636 17274 14876 
chr22a 6156 6408 6342 6354 6456 6336 
chr22b 6194 6522 6526 6534 6410 6352 
chr25a 3796 5062 4678 5056 4970 4230 
had20 6922 6924 6928 6922 6956 6922 
kra30a 88900 93460 92480 93850 93460 92300 
kra30b 91420 95020 94570 94690 93620 92380 
kra32 88700 91660 92420 92270 92650 92320 
nug18 1930 1958 1936 1950 1938 1938 
nug20 2570 2598 2614 2590 2602 2598 
nug21 2438 2458 2452 2472 2450 2452 
nug22 3596 3628 3610 3628 3628 3610 
nug24 3488 3552 3554 3582 3546 3528 
nug25 3744 3806 3788 3800 3760 3762 
nug27 5234 5298 5298 5328 5294 5304 
nug28 5166 5314 5284 5288 5272 5260 
nug30 6124 6272 6260 6316 6254 6220 
scr15 51140 51140 52340 51140 51140 51140 
scr20 110030 111078 111938 110802 112660 110772 
sko42 15812 16304 16282 16290 16106 16172 
sko64 48498 50090 49904 49932 49970 49942 
sko72 66256 68298 68182 68264 67902 68140 
sko81 90998 93684 93492 93968 93840 93148 
sko90 115534 119630 119064 119078 119092 118446 
sko100a 152002 157426 157034 156934 156116 156820 
sko100b 153890 159060 158002 158456 158220 158184 
sko100c 147862 152742 152592 153186 152476 152374 
sko100d 149576 154708 154340 153896 153978 154144 
sko100e 149150 153880 154522 153930 154010 154536 
sko100f 149036 154284 153994 153788 153766 153558 
ste36a 9526 10234 10126 10052 9790 10266 
ste36b 15852 17786 17140 17112 16724 17770 
ste36c 8239110 8701576 8678652 8738822 8695554 8578694 
tai25a 1167256 1194194 1177180 1188890 1188248 1187984 
tai50a 4938796 5148702 5119448 5131652 5130768 5132594 
tai60a 7205962 7486562 7506384 7499212 7434242 7427410 
tai80a 13499184 14034018 14027470 13966388 14050896 13993668 
tai100a 21052466 21951138 21932812 21957694 21893240 21932070 
tho30 149936 154134 156170 153558 154874 152020 
tho40 240516 251428 249370 248116 247260 251034 
tho150 8133398 8511942 8461186 8454432 – – 
wil50 48816 49504 49472 49652 49434 49470 
wil100 273038 278428 277210 277730 277230 277458 

 
Table 3 
Comparison of the lower bounding methods with Rand – best (minimum) results. 

 GLB HWB AB PE 
Rand better 12 19 13 7 
Rand worst 37 30 33 41 
Rand equal 4 4 6 4 
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Table 4 
Median results from the simulations.  If the BKW is confirmed optimal, it is highlighted in bold. Also, in bold is the method 
that produced the lowest median value for the given instance. 

Instance BKW Rand GLB HRW AB PE 
chr12a 9552 12531 11866 11550 12798 12130 
chr12b 9742 13170 10570 11628 11548 11886 
chr12c 11156 14221 13060 14139 13518 13355 
chr15a 9896 14691 13886 13850 13625 14264 
chr15b 7990 13505 12334 13637 12490 12142 
chr15c 9504 15445 14303 15812 14518 14675 
chr18a 11098 19074 18159 18664 17565 17237 
chr18b 1534 1779 1730 1760 1776 1734 
chr20a 2192 3480 3374 3406 3280 3359 
chr20b 2298 3455 3384 3468 3453 3272 
chr20c 14142 25957 23068 24678 27073 23338 
chr22a 6156 7168 7007 7016 7144 6962 
chr22b 6194 7218 7086 7227 7078 7059 
chr25a 3796 6819 6068 6677 6520 5687 
had20 6922 7008 7002 7018 6982 7000 
kra30a 88900 99285 98410 100070 97930 97340 
kra30b 91420 100360 100945 100275 100695 100145 
kra32 88700 98365 98360 98435 98340 98260 
nug18 1930 2038 2022 2010 2018 2012 
nug20 2570 2728 2708 2708 2704 2714 
nug21 2438 2596 2562 2570 2548 2560 
nug22 3596 3789 3738 3878 3740 3734 
nug24 3488 3754 3731 3744 3689 3670 
nug25 3744 4002 3950 3930 3920 3940 
nug27 5234 5588 5544 5532 5497 5486 
nug28 5166 5546 5492 5492 5462 5460 
nug30 6124 6562 6490 6524 6518 6474 
scr15 51140 57428 56850 56240 56604 56613 
scr20 110030 125945 124260 122999 121845 122096 
sko42 15812 16854 16728 16830 16661 16663 
sko64 48498 51228 50996 51092 50894 50853 
sko72 66256 69782 69362 69625 69278 69267 
sko81 90998 95591 95186 95379 95093 94751 
sko90 115534 121745 121200 120730 121122 120980 
sko100a 152002 159834 159447 159059 158770 159425 
sko100b 153890 161739 160704 160686 160100 160450 
sko100c 147862 156070 155364 155557 154906 155008 
sko100d 149576 157353 156497 156886 156012 156377 
sko100e 149150 157467 156798 156325 156646 156178 
sko100f 149036 156510 155907 155665 155841 155841 
ste36a 9526 11375 11134 11126 11062 11192 
ste36b 15852 21794 20978 20601 20783 20899 
ste36c 8239110 9523806 9564108 9602558 9566412 9411506 
tai25a 1167256 1227125 1223279 1226160 1223803 1226389 
tai50a 4938796 5266951 5249145 5255063 5235616 5234108 
tai60a 7205962 7629342 7632746 7622290 7617218 7592056 
tai80a 13499184 14235086 14239312 14251040 14249678 14214487 
tai100a 21052466 22265769 22209784 22277072 22202771 22230955 
tho30 149936 162522 163144 162024 161934 159821 
tho40 240516 262386 259343 259822 258655 262188 
tho150 8133398 8647360 8609647 8594449 – – 
wil50 48816 50434 50269 50544 50092 50126 
wil100 273038 280670 280037 279836 279480 279705 

 
Table 5 
Comparison of the lower bounding methods with Rand – median results 

 GLB HWB AB PE 
Rand better 5 12 5 0 
Rand worst 47 41 47 52 
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