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 Guided by a real case, this paper efficiently proposes a new metaheuristic algorithm based on 
Simulated Annealing to solve the Heterogeneous Vehicle Routing Problem with Time Windows to 
deliver fresh meat in urban environments. Our proposal generates an initial feasible solution using 
a hybrid heuristic based on the well-known Travelling Salesman Problem (TSP) solution and, 
subsequently, refining it through a Simulated Annealing (SA). We have tested the efficiency of the 
proposed approach in a company case study related to the planning of the transportation of a 
regional distribution center meat company to customers within the urban and rural perimeter of 
Bogotá, Colombia. The main goal is to reach a service level of 97% while reducing operational 
costs and several routes (used vehicles). The results show that the proposed approach finds better 
routes than the current ones regarding costs and service level within short computing times. The 
proposed scheme promises to solve the refrigerated vehicle routing problem. 
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1. Introduction 

While Food Security is one of the significant issues of the modern world, the Fresh Food Supply Chains (FFSC) represent a 
crucial role in serving urban and rural consumption centers fairly and under adequate organoleptic conservation criteria. Meat 
is consumed massively worldwide and is considered one of the primary protein sources. Besides, extensive livestock farming 
is one of the direct generators of environmental issues, such as deforestation and CO2 generation, without considering the 
transportation process. For instance, beef's average footprint is around 104m2 per 100 grams of protein (Ritchie & Roser, 
2020). The meat distribution to local and regional markets could be performed via road transportation and generate a high 
fossil fuel consumption (Diesel). Thus, it causes a significant impact on the environment due to CO2 emissions. For example, 
according to Schroeder et al. (2012), in Brazil and the UK, the CO2 emissions factor per liter of diesel consumed in road 
transport is 2.7425(CO2e-100/lt). This value could be increased by at least a third if it is a refrigerated vehicle (Aguiar, 2020). 
Traffic levels could significantly increase GHG emissions in the most congested cities in Latin America, such as Bogota 
(Bocarejo, 2020). 
 
Consequently, sustainability is the primary motivation for developing our research since efficient route planning for delivering 
fresh products provides economic benefits and environmental concerns. Our study addressed the vehicle routing problem 
(VRP) for delivering fresh-meat products in urban environments. Specifically, the actual conditions arising from the case 
study, such as the vehicles' different capacities and the time constraints to receive the product at the retail points, suggest using 
a variant of VRP called the VRP with Heterogeneous Fleet and Time Windows (HFVRPTW). 
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The challenge of solving (HFVRPTW), given its NP-hard nature, translates into the need to design an efficient algorithm that 
can find a set of routes contemplating different capacities of vehicles and customers receiving within specific time windows 
(Bernal et al., 2017). Thus, each vehicle must visit each customer only once on each route to deliver the exact demand without 
violating its carrying capacity. Since the delivery time is finite, the routes must be performed within the maximum allowed 
time. Inspired by a real case, this paper presents the development of a new metaheuristic algorithm to solve the Vehicle 
Routing Problem with Heterogeneous Fleet and Time Windows - HFVRPTW. In addition, this paper contributes to the 
practitioner community by addressing real-world conditions of fresh-meat delivery in cities and proposing a novel design of 
a solution algorithm. 
 
The subsequent sections of this paper are organized as follows. Section 2 presents the attributes of the meat delivery problem 
in urban environments. These characteristics of the problem are reflected in the formulation of the HFVRPTW model. Section 
3 proposes the solution approach for the HFVRPTW using an algorithm based on Simulating Annealing by considering 
probabilistic neighborhood selection. The initial solutions, the neighborhood structures, and the operations are presented in 
section 3. Then, Section 4 shows the numerical results and motivates the case study discussion and the general instances. 
Finally, concluding remarks and key findings are presented, stating the benefits and limitations of this study to project future 
research suggestions. 
 
2. Review of Literature 
 
The well-known Vehicle Routing Problem (VRP) is the name given to the different types of problems arising when 
determining routes for a fleet of vehicles to deliver or collect goods to specific customers. The customers are geographically 
dispersed and consider several constraints, such as time windows (Bernal et al., 2018; Barros et al., 2020; Escobar-Falcón et 
al., 2021; Bolanos et al., 2018). Some of the best-known variants of the VRP are the Heterogeneous Fleet Vehicle Routing 
Problem (HVRP) (Escobar et al., 2017; Puenayán et al., 2014) and the Vehicle Routing Problem with Time Windows 
(VRPTW) (Sepúlveda et al., 2014). According to Taillard et al. (1996) and Cordeau et al. (1997), in the HVRP, customers are 
served by a set of vehicles with different characteristics. 
 
The VRPTW considers time intervals stipulated by customers for the delivery of products. Sometimes, these time windows 
could be considered soft or hard. Hashimoto et al. (2006) and Taniguchi et al. (2001) describe three penalty functions of the 
time windows for metaheuristic algorithms. If the penalty is maximum, the consequences could be the product's return, and 
the customer could be lost or reprocess the product if it can be recovered. The penalty could be intermediate, given the 
possibility of delivering the product at a time interval. It is possible to reach negotiations and agreements if certain products 
cannot be carried out daily. If the penalty is low, the customer does not establish a fixed schedule for delivery, probably 
because it has enough safety inventory. The penalty is low and allows considering high slack for distribution schedule; 
sometimes, this feature could be a problem. As there is so much flexibility, the customers require them for payments and 
could be vulnerable to receiving competitive offers. 
 
The Heterogeneous Vehicle Routing Problem with Time Windows (HVRPTW) is studied by Nagle & Panneerselvam (2018). 
A genetic algorithm is proposed to solve the HVRPTW. The genetic operators, such as selection, crossover, and mutations, 
determine its usefulness. Susilawati et al. (2018) consider a version of the VRPTW in which the vehicle fleet is heterogeneous 
due to different customer demand sizes. The authors use an integer programming model and a feasible neighborhood approach 
to solve the problem. Yu et al. (2019) suggest an improved branch-and-price (B&P) algorithm to solve the Heterogeneous 
Fleet Green Vehicle Routing Problem with Time Windows (HFGVRPTW). The authors create a multi-vehicle approximate 
dynamic programming (MVADP) approach based on the labeling algorithm. 
 
Molina et al. (2020a) present a strategy for solving the HVRPTW based on an Ant Colony System (ACS). A hybridized ACS 
combined with a local search algorithm is proposed to increase the efficiency of the HVRPTW. A Variable Neighborhood 
Tabu Search algorithm generates the performed local search. Molina et al. (2020b) present the HVRPTW and a small number 
of resources (HVRPTW-LR), which describes a functional evolution of the HVRPTW for which the routes must share similar 
resources. The HVRPTW-LR  considers a small number of services, such as trucks, drivers, and instruments, to be available 
but inadequate to satisfy all the customers on route planning. A statistical linear programming model is implemented to 
explicitly define and explain all the constraints. A semi-parallel injection heuristic is used to obtain an initial solution. A 
hybrid vector neighborhood descent metaheuristic built on a Tabu Search (Chávez et al., 2018) algorithm for neighborhood 
discovery and a holding list improves the initial solutions. 
 
Ghannadpour & Zarrabi (2019) propose a new model and approach for the Multi-Objective Heterogeneous Vehicle Routing 
and Scheduling Problem by considering energy minimization as an objective. A new mathematical formulation for the Vehicle 
Routing Problem with Time Windows (VRPTW) is also introduced. An evolutionary algorithm-based is compared with a 
Non-Dominated Sorting Genetic Algorithm II (NSGA II) on the entirely random instances. Multiple Vehicle Routing 
Problems with a Soft Time Window and Heterogeneous Vehicles (HMVRPTW) are investigated by Kang and Lee (2018). 
The problem is solved using mixed-integer programming (MIP) and a genetic algorithm (GA). The MIP model seeks to 
minimize the total transportation cost, including the assignment cost, the traveling cost, and the tardiness cost, for the 
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manufacturer. The GA solves the problem of finding a near-optimal solution when the problem is too complex to solve using 
the MIP. A food manufacturing company is used to examine the proposed MIP model's practicality and the GA approach. 
Chowmali & Sukto (2020) study the Multi-Compartment Vehicle Routing Problem (MCVRP) with a heterogeneous fleet of 
vehicles. The authors propose the fuel delivery problem where the main objective is to minimize the total driving distance by 
using a minimum number of vehicles. A novel two-phase heuristic based on the Fisher and Jaikumar Algorithm (FJA) is 
proposed to solve a case study of twenty petrol stations in Northeastern Thailand. The study first formulates an MCVRP 
model, and then a mixed-integer linear programming (MILP) model is introduced for selecting the numbers and types of the 
vehicles. 
 
A systematic analysis of the Vehicle Routing Problems for Perishable Goods (VRPPG) is presented by Utama et al. (2020). 
The results show that the proposed metaheuristic algorithm for the VRPPG is a standard optimization tool for solving single 
and multi-objective problems. Tirkolaee et al. (2020) propose a novel robust mixed-integer linear programming model for a 
green vehicle routing problem with intermediate depots considering various urban traffic conditions, fuel usage, service time 
windows, and perishable product demand uncertainty. A case study tests the proposed model's applicability and assesses the 
optimal managerial insights and the policies on real-world conditions using sensitivity tests. 
 
Rezaei et al. (2019) consider the Green Vehicle Routing Problem (GVRP) with a heterogeneous fleet of vehicles and filling 
stations with time window constraints. The study's essential contribution is to consider these aspects, making the problem 
more realistic. A genetic algorithm and population-based simulated annealing are created to find high-quality solutions for 
large-scale instances. Liu et al. (2020) introduce the Joint Distribution-Green Vehicle Routing Problem (JD-GVRP), for which 
cold chain logistics companies cooperate to supply goods while considering a carbon tax policy. A simulated annealing (SA) 
algorithm is used to solve the considered problem. The results show that joint distribution efficiently minimizes the overall 
costs and the carbon emissions instead of a single distribution. The overall cost is positively associated with the carbon price, 
while the carbon emissions differ depending on the carbon price. 
 
Flamini et al. (2011) address quantitative methods for estimating the value of information from ITS on urban freight 
distribution. A real-life application to the retail distribution of perishable goods is considered. The problem is formulated as 
a vehicle routing problem with soft time windows and time-dependent travel times. The problem is solved using information 
affected by different degrees of detail. Osvald & Stirn (2008) devised a delivery algorithm for fresh vegetables in which 
perishability is a crucial element. The problem has been described as a vehicle routing problem with time windows and time-
dependent travel times (VRPTWTD). In the VRPTWTD, distance and time of day affect the travel times between two places. 
The model considers perishability as part of the total delivery costs, and the problem is solved using a heuristic approach 
based on tabu search. 
 
Ma et al. (2017) address a real-world distribution for deliveries of perishable products. Failure to deliver results in losses for 
suppliers, such as product degradation or failure to meet customers' deadlines, particularly when delivery orders exceed the 
suppliers' delivery ability. The authors propose a model combining order selection and time-dependent vehicle routing 
problems with time windows to evaluate the delivery order, the service level, and the timing to begin a delivery task with 
benefit maximization. Amorim et al. (2014) consider a complex vehicle routing problem regularly encountered by a 
Portuguese food delivery firm. This problem could be defined as a Multi-Time Window Heterogeneous Fleet site-based 
vehicle routing problem. The authors use an adaptative broad neighborhood search system to solve several vehicle routing 
problems. Finally, Wu et al. (2020) propose a new routing scheme to solve the HFVRPTW rapidly to mitigate distribution 
disruptions. A disruption recovery model for inter-path redress is built based on an initial time-dependent vehicle routing 
model with time windows, synthesizing the perishable existence of the delivered goods and the complex travel route choices 
on urban road networks. 
 
Qin et al. (2019) implemented a trading scheme to measure carbon emissions costs. Real-world data is combined with a cycle 
evolutionary genetic algorithm to carry out the computational experiments in the proposed model. A numerical comparison 
experiment was used to validate the algorithm and model's effectiveness. The model's optimization results show that a modest 
increase in the overall cost can dramatically boost the average customer satisfaction, resulting in a highly cost-effective 
solution. Second, the effect of the carbon pricing on overall costs, the carbon emissions, and the average consumer satisfaction 
have been quantified. Wang & Wen (2020) investigate a low-carbon vehicle routing problem (LC-VRP) derived from an 
entire cold chain logistics network with various realistic constraints, including customer satisfaction. This paper considers a 
low-carbon two-echelon heterogeneous-fleet vehicle routing problem (LC-2EHVRP). In the LC-2EHVRP, third-party 
logistics servers (3PL) with mixed time windows and a carbon trading policy to reduce prices, carbon emissions, and overall 
customer satisfaction is considered. A numerical benchmark test has validated the use of an adaptive genetic algorithm (AGA). 
 
Amorim & Almada-Lobo (2014) propose a novel multi-objective model that minimizes the delivery costs and maximizes the 
product's freshness. The main goal of the work is to investigate the connection between the distribution scenarios and the 
trade-off of cost-freshness. An epsilon-constraint approach is used to solve small-size instances. A multi-objective 
evolutionary algorithm is used to solve large-size instances. Ganji et al. (2020) consider the interconnected supply chain 
scheduling challenge, including the due date assignment, the batch distribution, the vehicle assignment based on availability, 
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and the customer order delivery within the time windows. The aim is to reduce the distribution prices, the fixed and the 
variable fuel costs, the vehicle carbon emissions, the delivery lateness, and the customer dissatisfaction. A mixed-integer non-
linear programming model is implemented for this problem. Three multi-objective metaheuristic algorithms are used to solve 
it: Multi-Objective Particle Swarm Optimization, Non-dominated Sorting Genetic Algorithm II, and Multi-Objective Ant 
Colony Optimization. Song et al. (2020) studied a canonical vehicle routing problem (VRP) in a cold chain logistic structure 
with three constraints: dispatching time windows for each customer, different vehicle types, and different energy consumption 
capacities. The aim is to reduce the network costs as much as possible, including the fixed costs and the electricity usage. An 
enhanced artificial fish swarm (IAFS) algorithm is suggested, with a particular encoding method that considers various vehicle 
problem functions. 
 
Hsu et al. (2007) generalized the vehicle routing with time windows (VRPTW) by taking into account the randomness of the 
perishable food delivery process and designing an SVRPTW model to find the best delivery routes, loads, fleet dispatching, 
and the departure times for transporting perishable food from a depot. The authors explored how to adjust the objective 
functions and models' constraints to account for time-dependent travel and temperature variations during the day. Chen et al. 
(2009) propose a nonlinear mathematical model considering perishable food commodity production scheduling and vehicle 
routing with time windows in the same context. Demands at retailers are stochastic, and the perishable products degrade after 
output. As a result, the supplier's revenue is unpredictable and is dependent on the value and transaction volume of perishable 
goods brought to retailers. The goal of this model is to optimize the supplier's estimated total profit. 
 
Belo-Filho et al. (2015) propose an Adaptive Large Neighborhood Search (ALNS) framework to tackle the perishable 
products' integrated production and distribution problem. The proposed approach relies on mixed-integer linear programming 
models and tools. The ALNS outperforms traditional literature procedures, namely, exact methods and fix-and-optimize, 
regarding the quality of the algorithms' solution and computing time. Song & Ko (2016) explore a vehicle routing problem 
for multi-commodity perishable food product distribution involving a fleet of refrigerated and general-purpose vehicles. 
Furthermore, the power, the overall delivery time, and the number of refrigerated and non-refrigerated vehicles are 
predetermined. The authors propose a nonlinear mathematical model and a heuristic algorithm to produce effective vehicle 
routes to increase the overall consumer satisfaction based on the freshness of the distributed goods. Nosrati & Khamseh (2020) 
consider a bi-objective hybrid vehicle routing problem with alternative paths, various lengths, and reliability. The first 
objective function minimizes the overall system costs, fuel consumption, and greenhouse gas emissions. In contrast, the 
second objective function maximizes the entire system's reliability with alternative paths and several reliabilities. The 
proposed model is formulated as mixed-integer nonlinear programming, and the bi-objective simulated annealing (MOSA) 
algorithm and the e-constraint method are used as a solution strategy. 
 
Esmaili & Sahraeian (2017) consider a Two-Echelon Capacitated Vehicle Routing Problem (2-ECVRP), for which the 
customer satisfaction and the environmental problems are taken into account for perishable goods distribution. The paper 
introduces a novel bi-objective model that decreases the total customer waiting time and the travel cost. An environmental 
issue is limiting the maximum permissible carbon dioxide (CO2) emissions from transportation. The proposed model is solved 
using the SAW method (Simple Additive Weighting). Sahraeian & Esmaeili (2018) solve a general tri-objective Two-Echelon 
Capacitated Vehicle Routing Problem (2E-CVRP) for transporting perishable goods, reducing travel expenses, consumer 
waiting times, and carbon dioxide emissions. A mixed-integer non-linear programming model (MINLP) is proposed. The 
mathematical model is solved using a non-dominated sorting genetic (NSGA-II) algorithm. The obtained performance shows 
the NSGA-II algorithm's efficiency. 
 
Hanum et al. (2019) study the vehicle routing problem by considering the rice-for-the-poor distribution and present a generic 
mathematical formulation to solve the considered problem. The proposed generic model is formulated to encompass three 
distinct features, namely multiple depots (MD) establishment, multiple trips (MT) transportation, and split delivery (SD) 
mechanisms. This model is implemented for a real-world problem of rice-for-the-poor distribution in the Ponorogo district of 
Indonesia. It is involved in deliveries among three depots—8, 17, and 23 villages depending on the distribution period—using 
a fleet of 5 vehicles of homogeneous capacity. 
 
Finally, for the vehicle routing and scheduling problem with cross-docking for perishable goods, Rahbari et al. (2019) present 
a bi-objective MILP model. Two robust models are developed when the outbound vehicles' travel time and the freshness-life 
of the goods are unknown. Due to their short shelf lives, certain perishable goods, such as snacks and medications, need 
careful handling during shipping. All perishable products must be shipped as soon as practicable before spoiling (Zulvia et 
al., 2020). Zulvia et al. (2020) introduce a green vehicle routing problem (VRP) for perishable goods minimizing the 
operational costs, the degradation costs, the carbon emissions, and the customer satisfaction. A many-objective gradient 
evolution (MOGE) algorithm is used to solve the problem. The gradient evolution (GE) algorithm is a metaheuristic developed 
to solve continuous problems with a single objective. This analysis strengthens the original GE algorithm with discretization, 
non-dominated sorting, and crowding distance approaches. Jafari & Behnamian (2020) consider the integration of scheduling 
and vehicle routing problems for perishable products. This study tries to minimize the costs and maximize the customers' 
purchase probability. A flexible flow shop scheduling problem considering production quality is studied for the scheduling 
stage. After completing the last job, the distribution stage begins, and each product must be delivered in its time window. 
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2.1. Problem description 
 
The HFVRPTW for the meat delivery could be modeled by a weighted graph 𝐺 = ሺ𝑉,𝐸,𝑇ሻ.  Set 𝑉 represents the nodes 
(customers and depot) and set 𝐸 contains the arcs connecting nodes. Node 0 denotes the depot, and nodes 1, … ,𝑛  the 
customers. The arc ሺ𝑖, 𝑗ሻ ∈ 𝐸 denotes the best arc to travel from node 𝑖 to 𝑗, with an associated cost 𝑑௜௝ and travel time 𝑡௜௝. 
The set 𝑇 corresponds to the available vehicles that supply customers, where 𝐶௞ is the capacity of each vehicle 𝑘. Each 
customer must be visited only once, and each of them could have time windows. 
 
Each customer  𝑖 = 1, . . ,𝑛, has a positive specific demand 𝑞௜, a service time 𝑠௜, and a time window ሾ𝑒௜ , 𝑙௜ሿ. The variable 𝑠௜ 
corresponds to the loading and the unloading times, 𝑒௜ shows the moment when the products can be delivered, and 𝑙௜ when 
the customer's time window ends. Note that the vehicle must wait until 𝑒௜ if it reaches the customer before the time window. 
Also, the proposed problem could be detailed by using a mathematical formulation as follows: 
 
 
2.1.1. Parameters 
 𝑞௜ = Demand of the customer 𝑖 𝜖 𝑉.  𝑠௜ = Service time for the customer 𝑖 𝜖 𝑉, within a range ሾ𝑒௜ , 𝑙௜ሿ 𝑑௜௝௞ = Distance from the customer 𝑖 𝜖 𝑉 to 𝑗 𝜖 𝑉 by using the vehicle 𝑘 𝜖 𝑇 𝑡௜௝௞ = Travel time from the customer 𝑖 𝜖 𝑉 to 𝑗 𝜖 𝑉  by using the vehicle 𝑘 𝜖 𝑇 𝑐௜௝௞ = Associated costs from 𝑖 𝜖 𝑉 to 𝑗 𝜖 𝑉 by using the vehicle 𝑘 𝜖 𝑇 𝑓௞ = Fixed cost of the vehicle 𝑘 𝜖 𝑇  𝐶௞ = Capacity of the vehicle 𝑘 𝜖 𝑇 𝑒௜  = Starting time of the time window of the customer 𝑖 𝜖 𝑉  𝑙௜  = Ending time of the time window of the customer 𝑖 𝜖 𝑉  𝐾  = Number of vehicles 𝑁  = Number of customers 
 
2.1.2. Decision Variables 
 𝑥௜௝௞ = ൝ 10  

If the vehicle 𝑘 𝜖 𝑇 travels from the customer 𝑖 𝜖 𝑉 to the customer 𝑗 𝜖 𝑉  
Otherwise 

 𝑍௞ = ൝ 10  
If the vehicle 𝑘 𝜖 𝑇 is used  
Otherwise 

 𝑎௜ = Arrival time of the customer 𝑖 𝜖 𝑉 , where 𝑎ଵ = 0 (Depot).  𝑝௜ = Departure time of the customer 𝑖 𝜖 𝑉  𝑄௞ = Load of the vehicle 𝑘 𝜖 𝑇 
 
2.1.3. Objective function 
 
The objective function minimizes the total costs, including the variable and the fixed costs associated with the performed 
routes. 
 ෍෍෍𝑐௜௝௞𝑥௜௝௞ +௡

௝ୀଵ
௡
௜ୀଵ

௄
௞ୀଵ ෍𝑓௞𝑍௞௄

௞ୀଵ  (1) 

 
2.1.4. Constraints 
 
Constraints (2) and (3) ensure the continuity of the flow for each route. In other words, they guarantee that a vehicle type 𝑘 
must visit a customer, delivers the order, and then continues serving other customers. 
 

෍෍𝑥௜௝௞௄
௞ୀଵ

௡
௜ୀଵ = 1.                                 ∀ 𝑗 = 2. 3. … .𝑛 (2) 
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෍෍𝑥௜௝௞௄
௞ୀଵ

௡
௝ୀଵ = 1.                                 ∀ 𝑖 = 2. 3. … .𝑛 (3) 

 
Constraints (4) ensure that the vehicle type 𝑘 serves all customers for the scheduled route. 
 𝑥௜௝௞ ≤  𝑍௞.                                            ∀ 𝑖 = 2. 3. … .𝑛 ;  𝑗 = 2. 3. … .𝑛;  𝑘 = 1. 2. … .𝐾 (4) 
 
Constraints (5) and (6) indicate that vehicle type 𝑘 must visit a customer, delivering the corresponding order, and then travels 
to another customer or returns to the depot. 
 

෍𝑥ଵ௝௞௡
௝ୀଶ ≤ 1.                                         ∀ 𝑘 = 1. 2. … .𝐾 (5) 

෍𝑥௜ଵ௞௡
௜ୀଶ ≤ 1.                                          ∀ 𝑘 = 1. 2. … .𝐾 (6) 

 
Constraints (7) ensure that each node has an entry and an exit arc. 
 ෍𝑥௜௨௞௡
௜ୀଵ −෍𝑥௨௝௞௡

௝ୀଵ = 0.                        ∀ 𝑘 = 1. 2. … .𝐾;  𝑢 = 1. 2. 3. … .𝑛  (7) 

 
Eq. (8) and Eq. (9) guarantee that for each pair of adjacent nodes 𝑖 and 𝑗 on a route assigned to vehicle 𝑘, the arrival time at 
customer 𝑗 must be equal to the departure time of customer 𝑖 plus the time to travel from 𝑖 to 𝑗. 𝑀 is a large number to 
determine the total number of routes. 
 𝑎௝ ≥ ൫𝑝௜ + 𝑡௜௝௞൯ − ൫1 − 𝑥௜௨௞ ൯𝑀.       ∀ 𝑖 = 2. 3. … .𝑛 ;  𝑗 = 2. 3. … .𝑛;  𝑘 = 1. 2. … .𝐾 (8) 𝑎௝ ≤ ൫𝑝௜ + 𝑡௜௝௞൯ − ൫1 − 𝑥௜௨௞ ൯𝑀.       ∀ 𝑖 = 2. 3. … .𝑛 ;  𝑗 = 2. 3. … .𝑛;  𝑘 = 1. 2. … .𝐾 (9) 

 
The relationship between arrival time, departure time, and service time between customers 𝑖 and 𝑗 are described by Eq. (10) 
and Eq. (11). 
 𝑎௜ ≤ ሺ𝑝௜ − 𝑠௜ሻ.                                      ∀ 𝑖 = 2. 3. … .𝑛 (10) 𝑒௜ ≤ ሺ𝑝௜ − 𝑠௜ሻ ≤ 𝑙௜ .                              ∀ 𝑖 = 2. 3. … .𝑛 (11) 
 
Constraints (12) express the calculation of the total load of a vehicle 𝑘, 𝑄௞. This value must be less than the capacity of the 
assigned vehicle. 
 

෍𝑞௜௡
௜ୀଵ ቌ෍𝑥௜௝௞௡

௝ୀଵ ቍ ≤ 𝐶௞.                        ∀ 𝑘 = 1. 2. … .𝐾  (12) 

 
Constraints (13) and (14) determine the nature and integrity of the variables 
 𝑥௜௝௞ ∈ ሼ0. 1ሽ.                                            ∀ 𝑖 = 2. 3. … .𝑛 ;  𝑗 = 2. 3. … .𝑛;  𝑘 = 1. 2. … .𝐾 (13) 𝑍௞ ∈ ሼ0. 1ሽ.                                            ∀ 𝑘 = 1. 2. … .𝐾  (14) 
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The proposed model can find the optimal solution for small instances (less than 20 customers). Therefore, the proposed 
approach can solve large instances as the case of the real routing problem. 
 
2.2. Proposed approach 
 
The former algorithm consists of two stages. An initial solution is created using a heuristic algorithm in the first stage. The 
initial solution is improved using a Simulated Annealing (SA) algorithm in the second stage. The proposed approach considers 
(I) the penalization of infeasible solutions, (II) the diversification scheme during the local search using the concept of 
granularity proposed by Toth & Vigo (2003) and Linfati et al. (2014b), (III) the intensification based on the criteria used to 
choose and accept a move, and (IV) a perturbation procedure to avoid getting a local minimum given several iterations. The 
proposed algorithm contemplates different vehicle capacities, a single depot, and a constant vehicle speed. 
 
2.2.1. Stage I – Initial Solution 
 
The initial solution is generated by using an extension of the method proposed in Helsgaun (2000) for the TSP. First, 
considering all customers, a giant TSP (Traveling Salesman Problem) is formulated. Indeed, the distance between consecutive 
nodes has been minimized. Second, customers are sorted based on the length of the time window. Therefore, a priority is 
proposed since customers with a shorter time window (hard time window) are more restrictive than those with a longer interval 
(soft time window). Finally, an iterative step is carried out until all customers have been considered: (I) the first available 
customer in the priority list is removed and added to a new route containing the depot twice (indicating exit and arrival); (II) 
following the recently inserted customer through the giant TSP, nodes are inserted when and where is possible considering 
the total demand, the route duration, and the time window constraints (for example, if the route is 0-1-2-3-0, and customer 
one has been added, the next to check is two then three and so on); (III) Once all the customers have been checked, the process 
returns from (I). If the heuristic requires building more routes than vehicles, a dummy vehicle with a capacity equal to zero is 
assigned to the additional route. 
 
2.2.2. Stage II – Improvement Algorithm 
 
The proposed algorithm penalizes infeasible solutions concerning the vehicle's capacity or the time windows. The penalty 
scheme has been adapted from published works on location routing problems (Escobar & Linfati, 2012; Escobar et al., 2013; 
Linfati et al., 2014a; Bernal et al., 2017, Escobar et al., 2015b). Given a solution, the value of the objective function within 
the SA procedure is the following: 
 𝐹ሺ𝑆ሻ = ෍෍෍𝑐௜௝௞ ∙ 𝑥௜௝௞௝∈௏௜ ∈௏ +  𝜌௤ ∙ 𝐹ሺ𝑆଴ሻ ∙ ෍ maxሺ𝑄௞ − 𝐶௞. 0ሻ௞ ∈௄ +  𝜌௧௪ ∙ 𝐹ሺ𝑆଴ሻ ∙෍maxሺ𝑎௜ − 𝑙௜ . 0ሻ௜ ∈௏  ௞ ∈்  (15) 

 
Note that terms two and three of the objective function are proportional to solution 𝑆 of the total vehicle overload and the 
arrival delay. In this particular case, 𝜌௤ and 𝜌௧௪ are parameters that are updated during the search. If 𝑆 is a feasible solution, 
these two penalty terms are zero. Depending on the type of solutions explored during the last 𝑁௙௔௖௧ iterations, the values of 𝜌௤ and 𝜌௧௪are increased or decreased. If a feasible solution has been found given 𝑁௙௔௖௧ iterations, both factors are decreased. 
Both values are increased if no feasible solution has been found during 𝑁௙௔௖௧ 𝑖𝑡erations. Similar strategies have proven to be 
useful experimentally in solving some location routing and multi-depot vehicle routing problems (Escobar et al., 2013; 
Escobar et al., 2014a; Escobar et al., 2014b; Escobar et al., 2015a). This strategy restricts the search space dynamically, 
allowing the algorithm to explore feasible regions easily. These parameters have upper and lower limits (𝜌௠௜௡ and 𝜌௠௔௫). 
These parameters 𝑁௙௔௖௧, 𝜌௠௜௡ , 𝜌௠௔௫, 𝜌௤ and 𝜌௧௪ are adjusted during the parameterization phase. 
 
2.2.2.1. Selection of the neighborhoods  
 
The proposed approach contemplates a local search procedure using inter-route and inter-route operators. Five traditional 
operators adapted from the well-known vehicle routing literature have been considered: Insertion, Swap, Double Insertion, 
Double Swap, and 2-opt. The proposed algorithm probabilistically selects the neighborhoods using a procedure based on a 
granular tabu search introduced by Bernal et al. (2018) for the DCVRP. Initially, all operators have the same probability of 
being selected. The algorithm starts by selecting one randomly. If the operator improves, the algorithm increases its probability 
of selection. On the other hand, if no improvements are found, the probability of being selected as a penalty is reduced. It is 
blocked until a different solution than the current one is found (incorporated into a 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡). 
 
The neighborhood selection algorithm is described as follows. First, 𝑆∗ = 𝑆̅ = 𝑆መ = 𝑆଴, where 𝑆̅ is the current best solution 
(feasible or not feasible) and 𝑆መ  is the current solution, 𝑆଴ is the initial solution, and 𝑆∗ is the best solution found so far. The 
SA is executed until a local minimum 𝑆′  is reached by using a single neighborhood structure 𝑁௞. Each neighborhood 𝑁௞ has 
a dynamically updated probability 𝑓(𝑁௞)  to be selected at a given time (Initially, all the neighborhoods have the same 
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probability 𝑓(𝑁௞) = ଵ|ேೖ| ). Depending on the viability of 𝑆ᇱ, the solution is considered or discarded: (I) if the found solution 𝑆 is better than the current best solution 𝑆̅ in terms of the objective function, update 𝑆̅ to the found solution 𝑆ᇱ; (II) if 𝑆ᇱ is 
feasible and also improves the best feasible solution found so far 𝑆መ, update 𝑆መ, to 𝑆ᇱ; and (III) the probability of selecting the 
neighborhood 𝑓(𝑁௞) leading to such a solution is decreased by a factor of 𝑓ௗ௢௪௡. If the opposite occurs, the probability of 
selecting the neighborhood 𝑓(𝑁௞) is increased by a factor 𝑓௨௣. Finally, the best feasible solution found so far, 𝑆∗ is kept. The 
pseudo-code of the operator selection is shown below. 
 
Procedure pN (𝑆଴, 𝐼𝑇௠௔௫) 
     𝑆መ ← 𝑆଴ 
    ′𝑆 ← 𝑆መ 
    𝑜𝑝𝑠 ← {2 − 𝑜𝑝𝑡, 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝, 𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑠𝑤𝑎𝑝} 
    𝑝𝑟𝑜𝑝𝑠 ← {0.2, 0.2, 0.2, 0.2, 0.2} 
    𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡 ← { } 
    𝑜𝑝 ← 𝑐ℎ𝑜𝑜𝑠𝑒(𝑝𝑟𝑜𝑝𝑠, 𝑜𝑝𝑠) 
    𝑖𝑡𝑒𝑟𝑎𝑡𝑒 ← 𝑡𝑟𝑢𝑒 
    While 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 do 
        𝑆ᇱ ← 𝑆𝐴(′𝑆, 𝑜𝑝, 𝐼𝑇௠௔௫) 
        𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒? ← 𝑓𝑎𝑙𝑠𝑒 
        If 𝑛𝑜𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑆ᇱ) 𝑎𝑛𝑑 𝐹ଶ(𝑆ᇱ) < 𝐹ଶ(′𝑆) then 
            ′𝑆 ← 𝑆ᇱ 
        If 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑆ᇱ) then 
            If 𝐹ଵ(𝑆ᇱ) < 𝐹ଵ൫𝑆መ൯ then 
                ′𝑆 ← 𝑆ᇱ 
                𝑆መ ←ᇱ 𝑆 
                𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒?← 𝑡𝑟𝑢𝑒 
            If 𝐹ଵ(𝑆ᇱ) < 𝐹ଵ(′𝑆) then 
                ′𝑆 ← 𝑆ᇱ 
                𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒?← 𝑡𝑟𝑢𝑒 
        If 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒? then 
            𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒൫𝑝𝑟𝑜𝑝𝑠ሾ𝑜𝑝ሿ, 𝑓௨௣൯ 
            𝑎𝑑𝑗𝑢𝑠𝑡(𝑝𝑟𝑜𝑝𝑠) 
            𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡 ← { ሽ 
        Else 
            𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒(𝑝𝑟𝑜𝑝𝑠ሾ𝑜𝑝ሿ,𝑓ௗ௢௪௡) 
            𝑎𝑑𝑗𝑢𝑠𝑡(𝑝𝑟𝑜𝑝𝑠) 
            𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡 ← 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡 ∪ {𝑜𝑝ሽ 
            𝑜𝑝 ← 𝑐ℎ𝑜𝑜𝑠𝑒(𝑝𝑟𝑜𝑝𝑠, 𝑜𝑝𝑠) 
        While 𝑜𝑝 ∈ 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡 do 
            𝑜𝑝 ← 𝑐ℎ𝑜𝑜𝑠𝑒(𝑝𝑟𝑜𝑝𝑠, 𝑜𝑝𝑠) 
            If 𝑠𝑖𝑧𝑒(𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡) == 𝑠𝑖𝑧𝑒(𝑜𝑝𝑠) then 
                𝑖𝑡𝑒𝑟𝑎𝑡𝑒 ← 𝑓𝑎𝑙𝑠𝑒 
    Return 𝑆መ 
 
2.2.2.2. Simulated Annealing Scheme 
 
After constructing the initial solution 𝑆଴, an algorithm based on Simulated Annealing is applied to improve that solution. The 
strategy is to explore different neighborhoods 𝑁௞(∙) during a certain number of iterations to find a better solution 𝑆∗ in the 
process. A neighborhood solution of the current best solution is generated for each iteration. Whether it improves or not, the 
current solution is accepted or discarded. The probability of selecting a neighborhood depends on the temperature 𝑇 at the 
time of evaluation. This parameter has its maximum value (𝑇଴) in the first iterations, and many solutions tend to be accepted. 
As the number of iterations increases, the process's temperature decreases, and, therefore, the search space is reduced to 
promising neighborhoods that improve the objective function. The temperature is updated at the end of each iteration by 
multiplying it by a cooling factor 𝛼. The pseudocode of the proposed algorithm is: 
 
Input: Initial solution 𝑆଴, initial temperature 𝑇଴, and max number of  iterations Iter_max 
Output: Final solution 𝑆∗ 
   𝑆 ← 𝑆∗ ← 𝑆଴ 
    𝑇 ← 𝑇଴ 
   iter ← 0 
      While iter < Iter_max do 
      𝑆ᇱ ← 𝑁௞ // Generate random solution from the neighborhood 
            If 𝐹ଶ(𝑆ᇱ) < 𝐹ଶ(𝑆) Then 
                  𝑆 ← 𝑆ᇱ  
                  If 𝐹ଶ(𝑆ᇱ) < 𝐹ଶ(𝑆∗) Then 𝑆∗ ← 𝑆ᇱ 
 Else 
        𝒓 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (0,1) // Generate a random number 
  If 𝑟 < 𝑒^( −(𝐹ଶ(𝑆ᇱ) − 𝐹ଶ(𝑆))/𝑇) Then 𝑆 ← 𝑆ᇱ       
  𝑇 ← 𝛼∗𝑇 // decrease the current temperature T. 
  iter ← iter + 1 
       Return 𝑆∗ 
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3. Computational results 
 

3.1. Case of study 
 

Carnes Los Sauces S.A. is dedicated to producing and distributing raw and processed meat products. The main products are 
beef, chicken, pork, roasts, veal, sausages, hamburgers, turkeys, and legs. The person responsible for scheduling and 
dispatching the vehicles does not have computer tools or clear procedures to carry out their company's function. The route 
schedule is performed by a simple heuristic procedure, which increases the transportation cost and affects the level of service. 
Therefore, we seek to minimize the transportation costs, ensuring deliveries according to customers' time windows. The 
company has 131 customers located in the city of Bogotá. The available fleet is made up of 11 heterogeneous vehicles. The 
characteristics of the fleet are shown in Table 1: 

 
Table 1  
Characteristics of the vehicles  

Vehicle Maximum Capacity of Load (kg) Volume (m3) 
SLJ–984 3.600 12 
CPR–878 5.400 16 
UFR–463 7.200 20 
UPS–489 9.000 24 
VED–379 5.000 17 
UPR–424 3.600 12 
WXN–711 740 8 
WXN–712 740 8 
SWL–776 575 5 
SQB–577 1.200 10 
SKI–843 4.835 20 

Source: Owner 
 

The customers have been grouped into 15 categories according to the available days and hours of attention (see Table 2). 
Currently, the company dispatches the first vehicles at 6:00. In the afternoon, the deliveries are performed from 2:00 p.m. 
until the end of the routes. 
 
Table 2  
Customers with corresponding time windows  

Type Customer Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Chain Restaurants 
7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00  

15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00  
Compensation Fund  7:00 – 8:00      

Owner Restaurant 14:00 – 17:00  14:00 – 17:00  14:00 – 17:00   
Catering    7:00 – 12:00    

Club 7:00 – 9:00       

Fast Food 
7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 

15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 

Education 
8:00 – 12:00 8:00 – 12:00 8:00 – 12:00 8:00 – 12:00 8:00 – 12:00   

13:00 – 22:00 13:00 – 22:00 13:00 – 22:00 13:00 – 22:00 13:00 – 22:00   
Food Companies   8:00 – 12:00     

Events      8:00 – 11:00  

Fama Supermarket 
7:00 – 12:00 7:00 – 12:00 7:00 – 12:00 7:00 – 12:00 7:00 – 12:00 7:00 – 12:00 7:00 – 12:00 

14:00 – 19:00 14:00 – 19:00 14:00 – 19:00 14:00 – 19:00 14:00 – 19:00 14:00 – 19:00 14:00 – 19:00 

Groceries 
7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 

15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 
ONG     8:00 – 11:00   

Hotels 7:00 – 9:00 7:00 – 9:00 7:00 – 9:00 7:00 – 9:00 7:00 – 9:00   

Restaurants  
7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 

15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 

Supermarkets 
7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 7:00 – 10:00 

15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 15:00 – 17:00 
Source: Owner 

 
The customers' geographical coordinates have been calculated using the Google Maps tool to identify X (latitude) and Y 
(longitude), finding the depot's position and customers. Google Maps found the distances between origin and destination. The 
availability of Carnes Los Sauces S.A.'s offer is from Sunday to Sunday, between 6:00 - 22:00 from Monday to Saturday, and 
on Sundays from 6:00 - 17:00. All customers must be visited once a week. 
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3.2. Algorithm parameterization 
 
Since the performance of the proposed approach depends on the value of the above-described parameters, a calibration process 
has been carefully performed. The initial values of these inputs were established, taking into account the methodologies 
proposed by Escobar et al. (2014a), Bernal et al. (2018), and Linfati et al. (2014a). The values of the obtained parameters are 
the following: 𝐼𝑇௠௔௫ = 100 𝑛 (where 𝑛 is the total number of customers), 𝑇଴ = 100, ∝ = 0.97, 𝑓௨௣ = 0.1, 𝑓ௗ௢௪௡ = 0.1, 
average vehicle speed 60km / h, 𝜌௠௜௡ = 1, 𝜌௠௔௫ = 100, 𝑁௙௔௖௧ = 0.1 𝑛. Likewise, seven instances each by a day of a week 
have been considered. We have defined independent parameters whose values must be determined by extensive computational 
experiments for the proposed approach. For each instance, five runs were carried out, considering the experiences of Escobar 
& Linfati (2012). These parameters are considered candidate settings for any given factor. This procedure is iteratively 
performed by considering every single factor (variable) and finding its "best value," giving the lower objective function. 

 ∝ = 0.90 ∝ = 0.95 

 ∝ = 0.97 ∝ = 0.99 

 

Source: Owner 
Fig. 1. Variation of the objective function of the complete algorithm with respect to the geometric cooling factor ∝ with 𝑇଴ = 100 

 
 𝑇଴ = 10 𝑇଴ = 50 

  𝑇଴ = 100 𝑇଴ = 1000 
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Fig. 2. Variation of the objective function of the complete algorithm with respect to the temperature with ∝∝ = 0.97 
 
Fig. 1 and Fig. 2 show that all the tests arrive at approximately the same endpoint. There is no significant deviation in the 
value of the parameters for the entire set of instances. The algorithm restricts the search to neighborhoods with a shallow 
temperature (𝑇଴ = 10). In contrast, a very high temperature (𝑇଴ = 1000) generates the acceptance of many neighborhoods 
during the search, which does not necessarily improve the objective function. Likewise, when the initial temperature increases, 
the number of iterations increases. Therefore, an initial temperature 𝑇଴ = 100 has been set, allowing a balance between 
neighborhood exploration and time to reach a good quality solution. A very high value of ∝ =  0.99 indicates a high number 
of iterations. At the same time, there is a greater probability that solutions are accepted, which do not necessarily improve the 
initial solution but allow exploring the search space. On the other hand, a very low ∝ =  0.90 indicates that there are few 
iterations and, at the same time, there is a lower probability of exploring the search space. 
 
4. Obtained Results 
 
The proposed approach has been implemented in C ++, with the Sublime Text platform code editor and the yEd graphics 
editor. The computational tests were performed on an Intel (R) Core (TM) i3-2350M CPU @ 2.30 GHz - 4GB of RAM with 
a Linux Ubuntu 64-bit operating system. The initial heuristic procedure could find acceptable solutions. However, the initial 
solution is less compliant with the constraints, particularly with the number of vehicles. Besides, the simulated annealing stage 
finds better solutions concerning the number of routes and the objective function's value, although the execution time is longer. 
The penalty for refined solutions is zero, independent of the initial routes. Indeed, time window constraints are fulfilled. 
Customer satisfaction is the main objective of the case study. Note that the proposed approach reduces the used vehicles 
during the initial solution stage. Table 3 compares the results of the initial and the refined solution. 
 
Table 3  
Results of Initial and Refined Solution per each day 

 Initial Solution (𝑆଴) Refined Solution (𝑆∗)  
Day 𝐹(𝑆) Penalty Time (s) 𝐹(𝑆) Penalty Time (s) 
Monday 670.90 0.00 0.0260 301.48 0 17.6547 
Tuesday 778.70 1219.95 0.0254 423.18 0 4.4599 
Wednesday 770.90 0 0.0225 312.23 0 2.9026 
Thursday 636.99 0 0.0363 304.99 0 3.0055 
Friday 677.60 0 0.0224 302.74 0 6.1503 
Saturday 510.37 0 0.0134 269.66 0 4.1107 
Sunday 543.57 0 0.0310 276.24 0 1.0486 

 
The proposed approach obtains good solutions within short computing times, with a maximum of 18 seconds for Monday. 
The average speed was 60 km / h, and the service time was 5 seconds per demand unit. Significant improvements are obtained 
for each route per day, comparing the initial and refined solutions (Table 4). 
 
Table 4  
Final Results  

 Demand (kg) Distance (𝑆଴) Distance (𝑆∗) Savings (km) K (𝑆଴) K (𝑆∗) Saving 
(Routes) 

Monday 3190 670.90 301.48 369.42 9 4 5 
Tuesday 3072 778.70 423.18 355.52 8 6 2 
Wednesday 2952 770.90 312.23 458.67 8 5 3 
Thursday 3309 636.99 304.99 332.00 8 5 3 
Friday 2669 677.60 302.74 374.86 9 4 5 
Saturday 2528 510.37 269.66 240.71 5 3 2 
Sunday 3040 543.57 276.24 267.33 5 3 2 
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Table 4 shows that the daily savings costs are considerable. Indeed, the daily cost of the entire fleet is worth 835.025 COP. 
The daily savings for Monday are an average of 379.557 COP, 151.822 COP on Tuesday, of 227.734 COP on Wednesday, 
227.734 COP on Thursday, 379.557 COP on Friday, 151.822 COP on Saturday, and 151.822 COP on Sunday. We have 
compared the proposed approach with the current solution obtained by the company (see Table 5). The column "Best Known 
Solution" indicates the best value obtained between the current solution and our final proposed solution. The "Current Real 
Solution" column shows the obtained values by a simple heuristic approach. The columns "Gap (%)" are the deviation of the 
algorithm's value concerning the "Best Known Solution." Note that our proposed approach outperforms all the results 
proposed by the current algorithm. The "Current Real Solution" is obtained by a heuristic approach based on the well-known 
saving method. The following pseudocode shows the description of this algorithm. 

Input: Distance Matrix, Speed, Time Windows, Demand 
Output: Final Routes  
    Calculate the angle of the customers and sort them by decreasing the angle and time windows 
    Sort the vehicles decreasing according to their capacity 
    Select the first vehicle 
      While demand is not fulfilled 
            If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑝 + 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑠𝑡 < 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑎𝑝  and the 𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 is not violated Then 
                 Assign customer to the vehicle 
      𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑝 ←  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑝 + 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑠𝑡  
                 Update 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑎𝑝 and 𝑇𝑖𝑚𝑒 𝑊𝑖𝑛𝑑𝑜𝑤  
 Else 
      Select the next vehicle 
       Return Final Routes 
 
Route sequencing has been performed using the nearest neighbor algorithm. The current algorithm considers each customer 
as "initial" to perform the sweep method. In other words, 𝑛 configurations are evaluated, where 𝑛 is the number of customers. 
The algorithm finds the best solution, considering that the number of routes cannot exceed the number of the available 
vehicles. 
 
Table 5  
Comparison of the proposed approach with the current solution 

Day Best Known 
Solution 

Current Real 
Solution Time (s) Gap (%) Final Solution Time (s) Gap (%) 

 
Monday 301.48 342.13 9.40 13.48 301.48 17.65 0.00  
Tuesday 423.18 484.18 3.20 14.41 423.18 4.46 0.00  
Wednesday 312.23 358.4 2.70 14.79 312.23 2.90 0.00  
Thursday 304.99 400.20 2.80 31.22 304.99 3.01 0.00  
Friday 302.74 360.10 6.02 18.95 302.74 6.15 0.00  
Saturday 269.66 310.10 4.18 15.00 269.66 4.11 0.00  
Sunday 276.24 334.44 2.03 21.07 276.24 1.05 0.00  

 
5. Concluding Remarks and Future Work 
 
This paper proposes a Simulated Annealing-based metaheuristic algorithm to solve a real-world vehicle routing problem with 
a heterogeneous fleet and time windows. The case study business's challenge is to deliver meat from a distribution center to 
customers—the algorithm generates an initial solution based on a heuristic procedure. The initial solution is refined using a 
Simulated Annealing approach with a probabilistic set of exchange operators. If the operator has proved better solutions, its 
likelihood of selection increases; otherwise, it reduces. 
 
Several examples demonstrated that the proposed approach could discover feasible, less expensive alternatives regarding the 
company's existing routing and satisfy the time window constraints. The latter benefit could lead to higher customer 
satisfaction. The company could benefit from the best routes. 
 
The future analysis must include stochastic variables to model the complexity of the problem (Escobar et al., 2012; Paz et al., 
2015; Rodado et al., 2017; Vélez et al., 2021). Our representation of the problem and the contrast become more rational than 
the current solution. Different vehicle speed (which varies due to potential traffic on the streets), arrival operation, and 
departure times are critical variables to incorporate into the proposed approach. Finally, a public dataset for the HFVRPTW 
should be available to compare some published algorithms under the same conditions. 
 
References 
 
Aguiar, L. K. (2020). The livestock sector 2020: consumer perspectives I. Universidade Federal do Rio Grande do Sul 

(UFRGS), 91, 222. 



H. B. Riaño Chiu et al. / International Journal of Industrial Engineering Computations 13 (2022) 673

Amorim, P., & Almada-Lobo, B. (2014). The impact of food perishability issues in the vehicle routing problem. Computers 
& Industrial Engineering, 67, 223-233. 

Amorim, P., Parragh, S. N., Sperandio, F., & Almada-Lobo, B. (2014). A rich vehicle routing problem dealing with perishable 
food: a case study. Top, 22(2), 489-508. 

Barros, L., Linfati, R., & Escobar, J. W. (2020). An exact approach for the consistent vehicle routing problem (ConVRP). 
Advances in Production Engineering & Management, 15(3), 255-266. 

Belo-Filho, M. A. F., Amorim, P., & Almada-Lobo, B. (2015). An adaptive large neighbourhood search for the operational 
integrated production and distribution problem of perishable products. International Journal of Production 
Research, 53(20), 6040-6058. 

Bernal, J., Escobar, J. W., & Linfati, R. (2017). A granular tabu search algorithm for a real case study of a vehicle routing 
problem with a heterogeneous fleet and time windows. Journal of Industrial Engineering and Management, 10(4), 646-
662. 

Bernal-Moyano, J. A., Escobar, J. W., Marín-Moreno, C., Linfati, R., & Gatica, G. (2017). A comparison of trajectory granular 
based algorithms for the location-routing problem with heterogeneous fleet (LRPH). Dyna, 84(200), 193-201. 

Bernal, J., Escobar, J. W., Paz, J. C., Linfati, R., & Gatica, G. (2018). A probabilistic granular tabu search for the distance 
constrained capacitated vehicle routing problem. International Journal of Industrial and Systems Engineering, 29(4), 453-
477. 

Bocarejo, J. P. (2020). Congestion in Latin American Cities: Innovative Approaches for a Critical Issue. 
Bolanos, R., Escobar, J., & Echeverri, M. (2018). A metaheuristic algorithm for the multi-depot vehicle routing problem with 

heterogeneous fleet. International Journal of Industrial Engineering Computations, 9(4), 461-478. 
Chávez, J., Escobar, J., Echeverri, M., & Meneses, C. (2018). A heuristic algorithm based on tabu search for vehicle routing 

problems with backhauls. Decision Science Letters, 7(2), 171-180. 
Chen, H. K., Hsueh, C. F., & Chang, M. S. (2009). Production scheduling and vehicle routing with time windows for 

perishable food products. Computers & operations research, 36(7), 2311-2319. 
Chowmali, W., & Sukto, S. (2020). A novel two-phase approach for solving the multi-compartment vehicle routing problem 

with a heterogeneous fleet of vehicles: a case study on fuel delivery. Decision Science Letters, 9(1), 77-90. 
Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi‐depot vehicle routing 

problems. Networks: An International Journal, 30(2), 105-119. 
Escobar, J. W., Bravo, J. J., & Vidal, C. J. (2012). Optimización de redes de distribución de productos de consumo masivo en 

condiciones de riesgo. In Proceedings of XXXIII Congreso Nacional de Estadística e Investigación Operativa (SEIO), 
Madrid, Spain. 

Escobar, J.W., & Linfati, R. (2012). Un algoritmo metaheurístico basado en recocido simulado con espacio de búsqueda 
granular para el problema de localización y ruteo con restricciones de capacidad. Revista Ingenierías Universidad de 
Medellín, 11(21), 139-150. 

Escobar, J.W., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing 
problem. Computers & Operations Research, 40(1), 70–79. 

Escobar, J.W., Linfati, R., Toth, P., & Baldoquin, M. G. (2014a). A hybrid granular tabu search algorithm for the multi-depot 
vehicle routing problem. Journal of heuristics, 20(5), 483–509. 

Escobar, J. W., Linfati, R., Baldoquin, M. G., & Toth, P. (2014b). A Granular Variable Tabu Neighborhood Search for the 
capacitated location-routing problem. Transportation Research Part B: Methodological, 67, 344–356. 

Escobar, J.W., Linfati, R., & Adarme-Jaimes, W. (2015a). A hybrid metaheuristic algorithm for the capacitated location 
routing problem. Dyna, 82(189), 243–251. 

Escobar, J. W., Linfati, R., & Adarme Jaimes, W. (2015b). Problema de localización y ruteo con restricciones de capacidad: 
Revisión de la Literatura. Revista Facultad de Ingeniería, 24(39), 85-98 

Escobar, J.W., Adarme-Jaimes, W., & Clavijo-Buriticá, N. (2017). Comparative analysis of granular neighborhoods in a Tabu 
Search for the vehicle routing problem with heterogeneous fleet and variable costs (HFVRP). Revista Facultad de 
Ingeniería, 26(46), 93-104. 

Escobar-Falcón, L., Alvarez-Martinez, D., Wilmer-Escobar, J., & Granada-Echeverri, M. (2021). A specialized genetic 
algorithm for the fuel consumption heterogeneous fleet vehicle routing problem with bidimensional packing constraints. 
International Journal of Industrial Engineering Computations, 12(2), 191-204. 

Esmaili, M., & Sahraeian, R. (2017). A new bi-objective model for a two-echelon capacitated vehicle routing problem for 
perishable products with the environmental factor. International Journal of Engineering, 30(4), 523-531. 

Flamini, M., Nigro, M., & Pacciarelli, D. (2011). Assessing the value of information for retail distribution of perishable 
goods. European Transport Research Review, 3(2), 103-112. 

Ganji, M., Kazemipoor, H., Molana, S. M. H., & Sajadi, S. M. (2020). A green multi-objective integrated scheduling of 
production and distribution with heterogeneous fleet vehicle routing and time windows. Journal of Cleaner Production, 
259, 120824. 

Ghannadpour, S. F., & Zarrabi, A. (2019). Multi-objective heterogeneous vehicle routing and scheduling problem with energy 
minimizing. Swarm and evolutionary computation, 44, 728-747. 

Hanum, F., Hadi, M., Aman, A., & Bakhtiar, T. (2019). Vehicle routing problems in rice-for-the-poor distribution. Decision 
Science Letters, 8(3), 323-338. 



  

 

674

Hashimoto, H., Ibaraki, T., Imahori, S., & Yagiura, M. (2006). The vehicle routing problem with flexible time windows and 
traveling times. Discrete Applied Mathematics, 154(16), 2271-2290. 

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of 
Operational Research, 126(1), 106–130. 

Hsu, C. I., Hung, S. F., & Li, H. C. (2007). Vehicle routing problem with time-windows for perishable food delivery. Journal 
of food engineering, 80(2), 465-475. 

Jafari Nozar, F., & Behnamian, J. (2020). Hyper-heuristic for integrated due-window scheduling and vehicle routing problem 
for perishable products considering production quality. Engineering Optimization, 1-20. 

Kang, H. Y., & Lee, A. H. (2018). An Enhanced Approach for the Multiple Vehicle Routing Problem with Heterogeneous 
Vehicles and a Soft Time Window. Symmetry, 10(11), 650. 

Linfati, R., Escobar, J. W., & Gatica, G. (2014a). Un algoritmo metaheurístico para el problema de localización y ruteo con 
flota heterogénea. Ingeniería y Ciencia, 10(19), 55-76. 

Linfati, R., Escobar, J. W., & Cuevas, B. (2014b). An algorithm based on granular tabu search for the problem of balancing 
public bikes by using multiple vehicles. Dyna, 81(186), 284-294. 

Liu, G., Hu, J., Yang, Y., Xia, S., & Lim, M. K. (2020). Vehicle routing problem in cold Chain logistics: A joint distribution 
model with carbon trading mechanisms. Resources, Conservation and Recycling, 156, 104715. 

Ma, Z. J., Wu, Y., & Dai, Y. (2017). A combined order selection and time-dependent vehicle routing problem with time 
widows for perishable product delivery. Computers & Industrial Engineering, 114, 101-113. 

Molina, J. C., Salmeron, J. L., & Eguia, I. (2020a). An ACS-based memetic algorithm for the heterogeneous vehicle routing 
problem with time windows. Expert Systems with Applications, 157, 113379. 

Molina, J. C., Salmeron, J. L., Eguia, I., & Racero, J. (2020b). The heterogeneous vehicle routing problem with time windows 
and a limited number of resources. Engineering Applications of Artificial Intelligence, 94, 103745. 

Nagle, S. K., & Panneerselvam, R. (2018). Study of Crossover operators of Genetic Algorithm& Development of New 
Crossover Operator to Solve Heterogeneous Vehicle Routing Problem with Time Windows. International Journal of 
Production Technology and Management (IJPTM), 9(2). 

Nosrati, M., & Khamseh, A. (2020). Bi objective hybrid vehicle routing problem with alternative paths and 
reliability. Decision Science Letters, 9(2), 145-162. 

Osvald, A., & Stirn, L. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable 
food. Journal of food engineering, 85(2), 285-295. 

Paz, J., Orozco, J., Salinas, J., Buriticá, N., & Escobar, J. (2015). Redesign of a supply network by considering stochastic 
demand. International Journal of Industrial Engineering Computations, 6(4), 521-528. 

Puenayán, D. E., Londoño, J. C., Escobar, J. W., & Linfati, R. (2014). Un algoritmo basado en búsqueda tabú granular para 
la solución de un problema de ruteo de vehículos considerando flota heterogénea. Revista Ingenierías Universidad de 
Medellín, 13(25), 81-98. 

Qin, G., Tao, F., & Li, L. (2019). A vehicle routing optimization problem for cold chain logistics considering customer 
satisfaction and carbon emissions. International journal of environmental research and public health, 16(4), 576. 

Rahbari, A., Nasiri, M. M., Werner, F., Musavi, M., & Jolai, F. (2019). The vehicle routing and scheduling problem with 
cross-docking for perishable products under uncertainty: Two robust bi-objective models. Applied Mathematical 
Modelling, 70, 605-625. 

Rezaei, N., Ebrahimnejad, S., Moosavi, A., & Nikfarjam, A. (2019). A green vehicle routing problem with time windows 
considering the heterogeneous fleet of vehicles: two metaheuristic algorithms. European Journal of Industrial 
Engineering, 13(4), 507-535. 

Ritchie, H., & Roser, M. (2020). Environmental impacts of food production. Our world in data. 
Rodado, D., Escobar, J., García-Cáceres, R., & Atencio, F. (2017). A mathematical model for the product mixing and lot-

sizing problem by considering stochastic demand. International Journal of Industrial Engineering Computations, 8(2), 
237-250. 

Sahraeian, R., & Esmaeili, M. (2018). A multi-objective two-echelon capacitated vehicle routing problem for perishable 
products. Journal of Industrial and Systems Engineering, 11(2), 62-84. 

Schroeder, H., Boykoff, M. T., & Spiers, L. (2012). Equity and state representations in climate negotiations. Nature Climate 
Change, 2(12), 834-836. 

Sepúlveda, J., Escobar, J. W., & Adarme-Jaimes, W. (2014). An algorithm for the routing problem with split deliveries and 
time windows (SDVRPTW) applied on retail SME distribution activities. Dyna, 81(187), 223-231. 

Song, B. D., & Ko, Y. D. (2016). A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food 
products delivery. Journal of food engineering, 169, 61-71. 

Song, M. X., Li, J. Q., Han, Y. Q., Han, Y. Y., Liu, L. L., & Sun, Q. (2020). Metaheuristics for solving the vehicle routing 
problem with the time windows and energy consumption in cold chain logistics. Applied Soft Computing, 95, 106561. 

Susilawati, E., Mawengkang, H., & Efendi, S. (2018). An integer programming model for solving heterogeneous vehicle 
routing problem with hard time window considering service choice. In IOP Conference Series: Materials Science and 
Engineering (Vol. 300, No. 1, p. 012023). IOP Publishing. 

Taillard, É. D., Laporte, G., & Gendreau, M. (1996). Vehicle routing with multiple use of vehicles. Journal of the Operational 
research society, 47(8), 1065-1070. 



H. B. Riaño Chiu et al. / International Journal of Industrial Engineering Computations 13 (2022) 675

Taniguchi, E., Thompson, E., Yamada, T., van Duin, J., & Logistics, C. (2001). Network Modelling and Intelligent Transport 
Systems, Pergamon, Oxford. 

Tirkolaee, E. B., Hadian, S., Weber, G. W., & Mahdavi, I. (2020). A robust green traffic‐based routing problem for perishable 
products distribution. Computational Intelligence, 36(1), 80-101. 

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing problem. Informs Journal on 
computing, 15(4), 333–346. 

Utama, D. M., Dewi, S. K., Wahid, A., & Santoso, I. (2020). The vehicle routing problem for perishable goods: A systematic 
review. Cogent Engineering, 7(1), 1816148. 

Vélez, Y. S., Varela, H. P., Londoño, J. C., & Escobar, J. W. (2021). Redesign of supply chains for agricultural companies 
considering multiple scenarios by the methodology of sample average approximation. International Journal of Business 
Performance and Supply Chain Modelling, 12(1), 44-68. 

Wang, Z., & Wen, P. (2020). Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain 
logistics under mixed time window. Sustainability, 12(5), 1967. 

Wu, Y., Zheng, B., & Zhou, X. (2020). A Disruption Recovery Model for Time-Dependent Vehicle Routing Problem With 
Time Windows in Delivering Perishable Goods. IEEE Access, 8, 189614-189631. 

Yu, Y., Wang, S., Wang, J., & Huang, M. (2019). A branch-and-price algorithm for the heterogeneous fleet green vehicle 
routing problem with time windows. Transportation Research Part B: Methodological, 122, 511-527. 

Zulvia, F. E., Kuo, R. J., & Nugroho, D. Y. (2020). A many-objective gradient evolution algorithm for solving a green vehicle 
routing problem with time windows and time dependency for perishable products. Journal of Cleaner Production, 242, 
118428.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

676

 

  

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

  


