

* Corresponding author Tel: +86-180-6250-8408
E-mail: leileiyok@gzhu.edu.cn (L. Yue)

2022 Growing Science Ltd.
doi: 10.5267/j.ijiec.2022.8.003

International Journal of Industrial Engineering Computations 13 (2022) 457–472

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Bi-objective optimization of identical parallel machine scheduling with flexible maintenance and
job release times

Yarong Chena,b, Zailin Guana, Chen Wangb, Fuh-Der Choub and Lei Yuec*

aSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
bSchool of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
cSchool of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510000, China
C H R O N I C L E A B S T R A C T

Article history:
Received May 21 2022
Received in Revised Format
July 31 2022
Accepted August 6 2022
Available online
August, 6 2022

 This paper investigates an identical parallel machine scheduling problem with flexible maintenance
and job release times and attempts to optimize two objectives: the minimization of the makespan
and total tardiness simultaneously. A mixed-integer programming (MIP) model for solving small-
scale instances is presented first, and then a modified NSGA-Ⅱ (M-NSGA-Ⅱ) algorithm is
constructed for solving medium- and large-scale instances by incorporating several strategies.
These strategies include: (ⅰ) the proposal of a decoding method based on dynamic programming,
(ⅱ) the design of dynamic probability crossover and mutation operators, and (ⅲ) the presentation
of neighborhood search method. The parameters of the proposed algorithm are optimized by the
Taguchi method. Three scales of problems, including 52 instances, are generated to compare the
performance of different optimization methods. The computational results demonstrate that the M-
NSGA-Ⅱ algorithm obviously outperforms the original NSGA-Ⅱ algorithm when solving medium-
and large-scale instances, although the time taken to solve the instances is slightly longer.

© 2022 by the authors; licensee Growing Science, Canada

Keywords:
Identical parallel machine
scheduling
Flexible maintenance
Bi-objective optimization
MIP
M-NSGA-Ⅱ

1. Introduction

Parallel machine scheduling (PMS) is an important branch of production scheduling (Cheng & Sin, 1990). In the literature on
PMS, most studies assume that machines are available at all times (Liu et al., 2020; Kim et al., 2019). However, in real-world
manufacturing, machines need to be maintained and hence may become unavailable during a certain period, which makes it
highly important to jointly schedule production and maintenance tasks to simultaneously improve system availability and
system throughput. The problem of scheduling jobs with maintenance reduces to the problem often referred to in the literature
as scheduling with machine availability constraints. Lee and Chen (2000) first researched a parallel machine scheduling
problem (PMSP) with maintenance in which each machine must be maintained once in the planning horizon, and they
proposed branch and bound (B&B) algorithms based on the column generation approach. To date, many studies on various
PMS with different preventive maintenance (PM) strategies have been carried out. Unfortunately, most research focuses on
single-objective optimization, especially the makespan, and few studies focus on multiple objective optimization. Berrichi et
al. (2009) researched the PMSP with machine reliability and simultaneously minimized the makespan and machine system
unavailability. Based on this research, Wang and Liu (2015) proposed a multi-objective PMSP with two kinds of resources
(machines and moulds) and flexible PM activities on resources, to simultaneously minimize the makespan, the machine system
unavailability, and the mould system unavailability. With the development of intelligent manufacturing, customer satisfaction
plays an increasingly vital role in both the manufacturing and service industries. On-time delivery is becoming increasingly
important. Therefore, the bi-objective to simultaneously minimize the makespan and total tardiness is studied in this paper.
In addition, most studies on the joint optimization of production scheduling and PM usually assume that jobs reach zero time.

458

However, in real-world manufacturing, it is very common for jobs to arrive at different times. Many PMSP studies consider
job release times without considering integration optimization with PM (Kramer et al., 2020; Abedi et al., 2015; Nessah et al.,
2008; Yalaoui & Chu, 2006). Cui and Lu (2017) studied the single machine scheduling problem with machine flexible
maintenance and job release times. Chen et al. (2021) studied two identical parallel machines with flexible maintenance to
minimize the makespan without considering the job’s release time. To the best of our knowledge, the PMSP with PM and job
release times has not been documented in the literature. In this research, we extended the number of machines from references
(Cui & Lu, 2017; Chen et al., 2021) to multiple machines and considered job release times to simultaneously minimize the
makespan and total tardiness. Our objective is to determine the assignment of jobs to the parallel machines, the decision of
the maintenance activities, and the optimal sequence of jobs and PM on each machine. The MIP model and an M-NSGA-II
are successfully customized to solve the considered problem.

The rest of the paper is organized as follows: the next section surveys the related literature. A problem description is presented
in Section 3. The MIP model is proposed in Section 4. Section 5 provides details about the modified NSGA-II. The
experimental results are demonstrated in Section 6, and finally, Section 7 includes conclusions and discusses future research.

2. Literature review

2.1. PMSP with preventive maintenance

PMSPs incorporated with PM can be divided into different models according to different criteria. The basic criterion is the
number of maintenance tasks, including single maintenance (Xu et al., 2009; Wang & Wei, 2011) or multiple maintenance
(Hashemian et al., 2014; Li et al., 2017; Xu et al., 2008). In addition, maintenance may be performed on one of the parallel
machines or on all parallel machines. Some earlier studies assumed that maintenance is only performed on some parallel
machines (Tan et al., 2011) or only once within the planning horizon (Lee & Chen, 2008; Yoo & Lee, 2016). Recent research
has generally assumed that all parallel machines have multiple maintenance, and the related research is divided into three
kinds: fixed interval maintenance, flexible maintenance, and variable maintenance in the form of maintenance activities. Fixed
interval maintenance involves periodically performing fixed time maintenance according to a fixed time interval. Yoo and Lee
(2016) studied the PMSP in which each machine requires maintenance activity once within a given time window. Li et al.
(2017) studied the PMSP in which each machine is subject to periodic maintenance. Xu et al. (2009) considered two PMSPs
in which one machine is periodically unavailable. Flexible maintenance is fixed time maintenance within a flexible time
window or upper threshold. Xu et al. (2008) studied a PMSP with ɛ-almost periodic maintenance activities to minimize the
makespan. Sun and Li (2010) studied a similar problem and assumed that the largest consecutive processing time for each
machine cannot exceed an upper limit T. Chen et al. (2021) studied two identical PMSPs with flexible maintenance to
minimize the makespan. Variable maintenance is a kind of maintenance in which the maintenance interval and time depend
on the condition of the machines and/or jobs. Wang and Wei (2011) studied PMSPs with deteriorating maintenance activity,
that is, when delaying maintenance increases the time required to perform it. Wu et al. (2020) considered the dispatching-
dependent deterioration of machines and machine-health-dependent production rates and proposed a dynamic dispatching and
PM model to minimize the weighted long-run average waiting costs of MTO systems. Moradi and Zandieh (2010) studied the
joint production and maintenance problem of parallel machines, and they concluded that the availability of machines is related
to the failure rate and repair rate.

2.2. Multi-objective optimization of PMSP

Instead of a single objective, multiple but conflicting objectives are often considered when a manager executes production
scheduling. Thus, a Pareto front consisting of a set of non-dominated solutions is required so that the manager can choose one
of the alternatives from the set while preparing the production plan. However, compared with a single objective, such as
minimizing the makespan, multi-objective optimization of PMSPs is rarely studied. According to the number of objectives,
this problem can be divided into two types: bi-objective and multi-objective. For bi-objective optimization, in the context of
green manufacturing, minimizing the energy or power consumption and cost is an important objective; therefore, the objective
is to minimize the power and the makespan (Wang et al., 2018; Anghinolfi et al., 2021) as well as the tardiness penalty and
power cost (Fang & Lin, 2013). In addition, the bi-objective to minimize the makespan and the total weighted earliness and
tardiness of jobs (Abedi et al., 2015) as well as the makespan and the system unavailability (Berrichi et al., 2009), Moradi and
Zandieh (2010)) can also be found in the literature. For multiple objective optimizations, based on the literature (Berrichi et
al., 2009), the bi-objective is extended to three; Wang and Liu (2015) proposed a multi-objective PMSP with two kinds of
resources (machines and moulds) and with flexible preventive maintenance activities on resources, and presented an integrated
optimization method with NSGA-II adaptation. Bandyopadhyay and Bhattacharya (2013) proposed a modified version of
NSGA-II with a new mutation algorithm for a PMSP with three objectives. Cochran et al. (2003) proposed a two-stage multi-
population genetic algorithm to solve PMSPs with multiple objectives.

2.3. Solution methodology of the PMSP

The solutions to PMSP generally include two decisions: one assigns jobs to machines, and the second sorts of the jobs assigned
to the machine. These two decisions can be made in parallel, i.e., allocation first and then sequencing, or sequencing can be
performed during assignment. The solution method for PMSP in the literature mainly includes the exact method, rule-based
heuristics, the meta-heuristic algorithm and the intelligent evolutionary algorithm.

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 459

The exact method can obtain the optimal solution to the problem, but it is only suitable for small-scale instances. The exact
methods proposed for solving the PMSP are mainly the B&B algorithm (Nessah et al., 2008; Yalaoui & Chu, 2006) and
mathematical models (Wu & Wang, 2018; Naderi & Roshanaei, 2020). To improve the efficiency of the exact models, the
lower bounds and the dominance properties have been incorporated into the B&B algorithm. In addition, Alhadi et al. (2020)
presented a polynomial-time approximation scheme to generate an approximate Pareto Frontier that minimizes the maximum
lateness and makespan. Rule-based heuristics are widely used in the real-world manufacturing industry (Lee, 2018). The rules
proposed for the problem Pm//𝐶௠௔௫ include the LPT, MULTIFIT, COMBINE, and LISTFIT (Gupta & Ruiz-Torres, 2001);
those proposed for the problem Pm//∑𝑇௝ include the EDD, SPT, TPI, MDD, KPM, Minimum Slack and BHG (Biskup et al.,
2008); and those proposed for the problem Pm//∑𝑤௝𝑇௝ଶ are the QB and QBP procedures (Schaller & Valente, 2018).
Considering the job’s release time, Akturk and Ozdemir (2001) proposed some rules, namely, the ATC (apparent tardiness
cost), X-RM (X-dispatch ATC), KZRM (Kanet and Zhou approach to ATC), and COVERT (weighted cost over time), for the
problem 1/r௝/∑𝑇௝. Meta-heuristics and intelligent evolutionary algorithms are the focus of the existing research. Kayvanfar
et al. (2017) proposed an intelligent water drop algorithm for PMSP with controllable processing times. Dipak and Gupta
(2018) proposed an improved cuckoo search algorithm to minimize the makespan for identical PMSP. Abdeljaoued et al.
(2020) proposed a simulated annealing meta-heuristic for PMS under resource constraints.

3. Problem statement

This paper investigates the problem that a set of jobs 𝐽 = {𝐽ଵ,⋯ , 𝐽௝ ⋯ , 𝐽௡} is to be scheduled on a set of identical machines 𝑀 = {𝑀ଵ,⋯ ,𝑀௜ ⋯ ,𝑀௠}, and the objectives are to simultaneously minimize the makespan and total tardiness. The problem
can be denoted as Pm/𝑟௝ , nr, FPM/(𝐶௠௔௫ ,∑𝑇௝), where “Pm” represents the identical parallel machines, “𝑟௝” represents jobs
released at different times, “nr” represents jobs that are non-resumable, and “FPM” represents flexible preventive
maintenance, which means that the continuous processing time of the machines cannot exceed the maintenance threshold UT.
Additionally, we assume that 𝑝௝ ≤ 𝑈𝑇 for all jobs. The maintenance time is denoted by 𝑚𝑡. The Gantt chart of a schedule for
this problem is shown in Fig. 1. As shown in Fig. 1, each schedule consists of jobs and PMs, and the number of jobs on
machine 𝑀௜ is 𝑛௜. 𝐽௜[௞] is the job processed in the 𝑘௧௛ position of machine 𝑀௜, 𝑟௜[௞] is the release time of 𝐽௜[௞], 𝑝௜[௞] is the
processing time of 𝐽௜[௞], and 𝐶௜[௞] is the completion time of 𝐽௜[௞]. Assume 𝑑௜[௞] is the due date of 𝐽௜[௞]; then, the tardiness of 𝐽௜[௞]
is calculated by the equation 𝑇௜[௞] = 𝑚𝑎𝑥 {𝐶௜[௞] − 𝑑௜[௞], 0}. Let 𝐵௜௕ be the set of jobs of the 𝑏௧௛ batch in machine 𝑀௜, i.e., 𝐵௜௕ =൛𝐽௜[ଵ], ⋯ , 𝐽௜[௞್]ൟ, and |𝐵௜௕| = 𝑘௕. Let 𝑇𝑃௜௕ be the sum processing time of the jobs in batch 𝐵௜௕, i.e., 𝑇𝑃௜௕ = ∑ 𝑝௜[௝]௃೔[ೕ]∈ಳ೔್ . 𝑃𝑀௜௕
is the 𝑏௧௛ PM of machine 𝑀௜, and 𝐶௜[௡೔] is the makespan of machine 𝑀௜.

Fig. 1. A Gantt chart of a solution for the identical PMSP with m machines and n jobs

Theorem 1. Problem P: Pm/𝑟௝ , nr, FPM/(𝐶௠௔௫ ,∑𝑇௝) is NP-Hard.

Proof. The sequencing problem of each machine in Pm/𝑟௝ , nr, FPM/(𝐶௠௔௫,∑𝑇௝) is equivalent to the bin-packing problem.
Because both the bin-packing problem and the P2//𝐶௠௔௫ problem have been proven to be NP-Hard, the problem P2/nr, FPM/𝐶௠௔௫ is NP-Hard. In addition, the problem 1/𝑟௝/∑𝑇௝ is NP-Hard (Nessah et al. (2008)); thus, Pm/𝑟௝/∑𝑇௝ is
NP-Hard. The problem Pm/𝑟௝, nr, FPM/(𝐶௠௔௫ ,∑𝑇௝) extends the number of identical parallel machines from 2 to m and
considers the constraint of the job’s release time and the objective of minimizing total tardiness; thus, problem Pm/𝑟௝ , nr, FPM/(𝐶௠௔௫,∑𝑇௝) is NP-Hard.

Definition: Full loading (FL) means that the cumulative processing time of the jobs during two consecutive PMs, or the sum
processing time of the jobs in a batch, is equal to the maintenance threshold UT. When 𝑇𝑃௜௕ = 𝑈𝑇, batch 𝐵௜௕ is fully loaded;
otherwise, batch 𝐵௜௕ is not fully loaded, and the waste time is equal to 𝑈𝑇 − 𝑇𝑃௜௕.

4. MIP model

Based on the following assumptions, an MIP model for the problem studied in this paper is established: (1) each job has a
release time; (2) the processing time, release time and due date of the job are known in advance; (3) the maintenance threshold
and maintenance time are known in advance; (4) the time allocated to any machine for processing the same job is the same;
(5) each machine can only process one job at any given time and shall maintain continuous processing, which shall not be

460

pre-empted and interrupted by other jobs; and (6) there is no job importance, that is, the weight is not considered. The input
parameters and decision variables are introduced before developing the proposed model.

Input Parameters 𝐽 set of jobs 𝑀 set of machines 𝑗, 𝑘 job index from set 𝐽 𝑖 machine index from set 𝑀 𝑝௝ the processing time of job 𝐽௝ 𝑟௝ the release time of job 𝐽௝ 𝑑௝ the due date of job 𝐽௝ 𝐶௝ the completion time of job 𝐽௝ 𝑆𝑇௜௞ the start time at the 𝑘௧௛ position of machine 𝑀௜ 𝑄௜௞ the cumulative processing time at the 𝑘௧௛ position of machine 𝑀௜ 𝐶𝑇௜௞ the completion time of machine 𝑀௜ in position k 𝑈𝑇 threshold of the cumulative processing time that the machine can process continuously 𝑚𝑡 time required for maintenance 𝐿 a sufficiently large positive integer, it is safe to set 𝐿 = ∑𝑝௝ + 𝑛 ∗ 𝑚𝑡
Decision variables 𝑋௜௝௞ equal to 1 if job 𝐽௝ is processed at the 𝑘௧௛ position of machine 𝑀௜, 0 otherwise 𝑌௜௞ equal to 1 if maintenance is conducted after the 𝑘௧௛ position of machine 𝑀௜, 0 otherwise

Mathematical model
 𝑚𝑖𝑛. 𝐶௠௔௫ (1) 𝑚𝑖𝑛. 𝑇𝑇 = ෍ 𝑇௜௡௝ୀଵ (2)

෍ 𝑋௜௝௞ ≤ 1,∀ ቄ𝑖 = 1,2,3, … ,𝑚𝑘 = 1,2,3, … ,𝑛௡௝ୀଵ (3) ∑ ∑ 𝑋௜௝௞௡௞ୀଵ௠௜ୀଵ = 1,∀ 𝑗 = 1,2,3, … ,𝑛 (4) 𝑌௜௡ = 0,∀ 𝑖 = 1,2,3, … ,𝑚 (5) 𝑆𝑇௜௞ ≥෍ 𝑟௝ ∗ 𝑋௜௝௞௡௝ୀଵ ,∀ ቄ𝑖 = 1,2,3, … ,𝑚 𝑘 = 2,3, … ,𝑛 (6)

𝑆𝑇௜௞ ≥ 𝐶𝑇௜(௞ିଵ) + 𝑚𝑡 ∗ 𝑌௜(௞ିଵ) ,∀ ቄ𝑖 = 1,2,3, … ,𝑚 𝑘 = 2,3, … ,𝑛 (7) 𝐶𝑇௜௞ ≥ 𝑆𝑇௜௞ + ෍ 𝑝௝௡௝ୀଵ ∗ 𝑋௜௝௞ ,∀ ቄ𝑖 = 1,2,3, … ,𝑚𝑘 = 2,3, … ,𝑛 (8) 𝑄௜ଵ = ∑ 𝑝௝௡௝ୀଵ ∗ 𝑋௜௝ଵ ,∀ 𝑖 = 1,2,3, … ,𝑚 (9)

⎩⎨
⎧𝑄௜(௞ିଵ) + ෍ 𝑝௝ ∗ 𝑋௜௝௞ ≤ 𝑄௜௞ + 𝐿 ∗ 𝑌௜(௞ିଵ)௡௝ୀଵ෍ 𝑝௝ ∗ 𝑋௜௝௞௡௝ୀଵ ≤ 𝑄௜௞ + 𝑚𝑡 ∗ ൫1 − 𝑌௜(௞ିଵ)൯ , ∀ ቄ𝑖 = 1,2,3, … ,𝑚𝑘 = 2,3, … ,𝑛

(10)

𝑄௜௞ ≤ 𝑈𝑇,∀ ቄ𝑖 = 1,2,3, … ,𝑚𝑘 = 1,2,3, … ,𝑛 (11) ∑ 𝑋௜௝௞௡௝ୀଵ ≤ ∑ 𝑋௜௝(௞ିଵ)௡௝ୀଵ ,∀ ቄ𝑖 = 1,2,3, … ,𝑚𝑘 = 2,3, … ,𝑛 (12) 𝐶௠௔௫ ≥ 𝐶𝑇௜௡,∀𝑖 = 1,2,3, … ,𝑛 (13) 𝐶௝ ≥ 𝐶𝑇௜௞ + 𝐿 ∗ ൫𝑋௜௝௞ − 1൯,∀ ൝𝑖 = 1,2,3, … ,𝑚𝑗 = 1,2,3 … ,𝑛𝑘 = 1,2,3 … ,𝑛
(14)

൜𝑇௝ ≥ 𝐶௝ − 𝑑௝𝑇௝ ≥ 0 ,∀𝑗 = 1,2,3, … ,𝑛
(15)

In this model, the objectives are to minimize 𝐶௠௔௫ and ∑𝑇௝ as shown in Eq. (1) and Eq. (2). Constraints (3) and (4) ensure
that each job can only be processed at one position of one machine and that each position of one machine can only be occupied
by one job. Constraint (5) specifies that no PM is required after the last position of each machine. Constraints (6) and (7) limit
the start time of each machine at each position. Constraint (8) defines the completion time of each machine at each position.
Constraint (9) describes the cumulative processing time of each machine at the first position. Constraint (10) defines the
cumulative processing time of each machine at each position. Constraint (11) ensures that the cumulative processing time of
each machine at each position is not larger than UT. Constraint (12) ensures that the job is arranged in a more forward position.

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 461

Constraint (13) defines the maximum completion time. Constraint (14) defines the completion time of each job. Constraint
(15) defines the tardiness of each job.

5. M-NSGA-Ⅱ algorithm

For the proposed problem, an M-NSGA-II algorithm is presented by incorporating three strategies. (ⅰ) A decoding method
based on dynamic programming (DP) is constructed. (ⅱ) Dynamic probability crossover and mutation are designed. (ⅲ)
Neighbourhood search method is proposed. The general operation of the M-NSGA-II algorithm is shown in Algorithm 1.

Algorithm 1:M-NSGA-Ⅱ algorithm
1 Create an initial population 𝑃௢ of size 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 using a random rule
2 Decode the individual using the method based on DP, sort the population based on the fast-non-dominated
sorting method
3 Create offspring population 𝑄௢ by applying the dynamic probability crossover and mutation operators as
well as elitist operators
4 While stopping criteria are not verified, do

Create population R௧ = 𝑃௧ ∪ 𝑄௧ of size 2𝑃𝑜𝑝𝑠𝑖𝑧𝑒 and construct the different 𝐹௜ of R௧ using the fast-
non-dominated sorting procedure
Put 𝑃௧ାଵ = ∅ and 𝑖 = 0

While |𝑃௧ାଵ| + |𝐹௜| < 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 do 𝑃௧ାଵ = 𝑃௧ାଵ⋃𝐹௜ 𝑖 = 𝑖 + 1
End While

Include in 𝑃௧ାଵ the (𝑃𝑜𝑝𝑠𝑖𝑧𝑒 − |𝑃௧ାଵ|) of 𝐹௜ according to the crowding procedure
Renew population 𝑃௧ାଵ with neighbourhood search method
Create offspring population 𝑄௧ାଵ by selection, crossover, and mutation with dynamic probability

End While

5.1. Chromosome representation

According to the decision of the proposed problem, the presentation of the chromosome is a vector with length n + m − 1,
where n is the number of jobs, and m is the number of machines. An example is 𝐽ଵ[ଵ],⋯ , 𝐽ଵ[௡భ], 0,⋯ ,0,⋯ ,0, 𝐽௠[ଵ],⋯ , 𝐽௠[௡೘],
where the jobs allocated to different machines are distinguished by 0, and the string of numbers divided by 0 represents the
sequence of the jobs processed on one machine.

5.2. Decoding method

For the solution 𝜋 = ൛𝐽ଵ[ଵ],⋯ , 𝐽ଵ[௡భ], 0,⋯ ,0,⋯ ,0, 𝐽௠[ଵ],⋯ , 𝐽௠[௡೘]ൟ, although the job allocation and sequence on each machine
have been determined according to the position of 0 in the chromosome, the maintenance or the job-grouping batch decision
still needs to be made. For the identical PMSP without considering the job’s release time to minimize 𝐶௠௔௫, a near-optimal
solution can be obtained by a maintenance decision made based on the FL principle as shown in Appendix 1. However, it is
not true for the same problem considering the job release times. An example with five jobs on a single machine is used to
explain, and the jobs data is shown in Table 1. Assume the solution π = {Jଵ, Jଶ, Jହ, Jସ, Jଷ}, UT = 10, and mt = 2. The Gantt
chart of the solution obtained based on the FL and non-FL principle is shown in Fig. 2. The solution obtained without
considering the FL is better than that obtained with the FL. The reason is that machine have to be idle for a period to be fully
loaded. For the identical PMSP considering the job release times, the maintenance decision is a dynamic decision, and we
propose a decoding method based on dynamic programming (DP) process (Zhou et al., 2018)). In each stage, only the different
job-grouping batch schemes of a newly added job and the currently sorted job are compared, and the best optimal solution is
selected as the final decoding result.

Table 1
Basic information for 5 jobs example

Job 𝐽ଵ 𝐽ଶ 𝐽ଷ 𝐽ସ 𝐽ହ 𝑟௝ 1 1 9 0 9 𝑝௝ 2 2 7 5 5 𝑑௝ 3 4 28 17 16

Fig. 2. Solution obtained by different decoding methods for the example

462

To decode the solution based on the DP method, the individual 𝜋 is first divided into 𝑚 segments, representing 𝑚 machines,
and then the solution is decoded for each machine by the Algorithm 2. When decoding the job sequence on machine 𝑀௜, the
set of the first 𝑘 jobs is ∆௞= {𝐽[ଵ], … , 𝐽[௞]}, and the last 𝑔 jobs in the set ∆௞ are ∇௚௞= {𝐽[௞ି௚ାଵ], 𝐽[௞ି௚ାଶ], … , 𝐽[௞]}.𝑍଴(𝛥௞) and 𝑍ଵ(𝛥௞) represent the makespan and total tardiness of 𝑘 jobs in a given sequence, respectively, so 𝛥଴ = {∅},𝑍଴(𝛥଴) =0,𝑍ଵ(𝛥଴) = 0. The makespan and the total tardiness of 𝑘 sequenced jobs are represented by the state function of the 𝑘௧௛ stage
as shown in Eq. (16); the calculation method for the makespan and total tardiness is shown in Eq. (17) and Eq. (18).
 𝑍(𝛥௞) = ൫𝑍଴(𝛥௞),𝑍ଵ(𝛥௞)൯ = minଵஸ௚ஸ௞{𝑓௚଴ ቀ𝛻௚௞,𝑍଴(𝛥௞ି௚)ቁ ,𝑓௚ଵ ቀ𝛻௚௞ ,𝑍ଵ(𝛥௞ି௚)ቁ} (16)

𝑓௚଴ ቀ𝛻௚௞,𝑍଴(𝛥௞ି௚)ቁ =
⎩⎪⎪
⎨⎪
⎪⎧ max൛𝑍଴(𝛥଴), 𝑟[௞]ൟ + 𝑝[௞] 𝑔 = 1 and k = gmax൛𝑍଴(𝛥௞ି௚) + 𝑚𝑡, 𝑟[௞]ൟ + 𝑝[௞] 𝑔 = 1 and k > gmax ቄ𝑓௚ିଵ଴ ቀ𝛻௚ିଵ௞ିଵ,𝑍଴(𝛥௞ି௚)ቁ , 𝑟[௞]ቅ + 𝑝[௞] 𝑔 > 1 and ෍ 𝑝ఘఘ∈ఇ೒ೖ ≤ 𝑈𝑇
∞ 𝑔 > 1 and ෍ 𝑝ఘఘ∈ఇ೒ೖ > 𝑈𝑇

(17)

𝑓௚ଵ ቀ𝛻௚௞ ,𝑍ଵ(𝛥௞ି௚)ቁ =
⎩⎪⎪⎨
⎪⎪⎧𝑍ଵ(𝛥௞ି௚) + max ቄ𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ − 𝑑[௞], 0ቅ 𝑔 = 1𝑓௚ିଵଵ ቀ𝛻௚ିଵ௞ିଵ,𝑍ଵ(𝛥௞ି௚)ቁ + max ቄ𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ − 𝑑[௞], 0ቅ 𝑔 > 1 𝑎𝑛𝑑 ෍ 𝑝ఘఘ∈ఇ೒ೖ ≤ 𝑈𝑇
∞ 𝑔 > 1 𝑎𝑛𝑑 ෍ 𝑝ఘఘ∈ఇ೒ೖ > 𝑈𝑇

(18)

Algorithm 2: DP decoding algorithm
0 Initialize the completion time set of machines 𝑀𝐶 = {∅}, 𝛥଴ = {∅}, 𝑍଴(𝛥଴) = 0,𝑍ଵ(𝛥଴) = 0, UT, and mt
1 For chromosome ℎ = 1 to 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 do
2 For machine 𝑖 = 1 to 𝑚 do
3 For the machine’s job position 𝑘 = 1 to 𝑛௜, ∆௞= {𝐽[ଵ], 𝐽[ଶ], … , 𝐽[௞]}
4 For 𝑔 = 1 to 𝑘，∇௚௞= {𝐽[௞ି௚ାଵ], 𝐽[௞ି௚ାଶ], … , 𝐽[௞]}
// Compute the makespan and total tardiness

If 𝑔 = 1
If 𝑘 = 𝑔, then 𝑍଴(𝛥௞) = 𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ = max൛𝑍଴(𝛥଴), 𝑟[௞]ൟ + 𝑝[௞]
Else if k > g, then 𝑍଴(𝛥௞) = 𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ = max൛𝑍଴(𝛥௞ି௚) + 𝑚𝑡, 𝑟[௞]ൟ + 𝑝[௞] 𝑍ଵ(𝛥௞) = 𝑓௚ଵ ቀ𝛻௚௞,𝑍ଵ(𝛥௞ି௚)ቁ = 𝑍ଵ(𝛥௞ି௚) + max {𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ − 𝑑[௞], 0}

If 𝑔 > 1
If ∑ 𝑝ఘఘ∈ఇ೒ೖ ≤ 𝑈𝑇, then 𝑍଴(𝛥௞) = 𝑓௚଴ ቀ𝛻௚௞,𝑍଴(𝛥௞ି௚)ቁ = max ቄ𝑓௚ିଵ଴ ቀ𝛻௚ିଵ௞ିଵ,𝑍଴(𝛥௞ି௚)ቁ , 𝑟[௞]ቅ + 𝑝[௞] 𝑍ଵ(𝛥௞) = 𝑓௚ଵ ቀ𝛻௚௞ ,𝑍ଵ(𝛥௞ି௚)ቁ= 𝑓௚ିଵଵ ቀ𝛻௚ିଵ௞ିଵ,𝑍ଵ(𝛥௞ି௚)ቁ + max {𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ − 𝑑[௞], 0}
Else if ∑ 𝑝ఘఘ∈ఇ೒ೖ > 𝑈𝑇, then 𝑍଴(𝛥௞) = 𝑓௚଴ ቀ𝛻௚௞ ,𝑍଴(𝛥௞ି௚)ቁ = ∞ 𝑍ଵ(𝛥௞) = 𝑓௚ଵ ቀ𝛻௚௞,𝑍ଵ(𝛥௞ି௚)ቁ = ∞

5 End For
6 End For
7 𝐶௜ = 𝑍଴(𝛥௞), 𝑀𝐶 = 𝑀𝐶 ∪ {C௜},𝑇௜ = 𝑍ଵ(𝛥௞)
8 End For
9 𝐶௠௔௫ = max{𝐶௜ ,𝐶௜ ∈ 𝑀𝐶},𝑇𝑇 = ∑ 𝑇௜௠௜ୀଵ
10 End For

5.3. Neighbourhood Search operators

For the identical PMSP, it is easy to generate redundant solutions in the population because of the symmetry of the machines.
For example, the solution 𝜋ଵ = {𝐽ସ, 𝐽ଷ, 𝐽଺, 0, 𝐽ଵ, 𝐽ଶ, 𝐽ହ} is equal to the solution 𝜋ଶ = {𝐽ଵ, 𝐽ଶ, 𝐽ହ, 0, 𝐽ସ, 𝐽ଷ, 𝐽଺}. Too many redundant

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 463

solutions will lead to premature convergence of the algorithm. To improve the diversity of the population, we firstly need to
identify the redundant solution, then to renew it with a neighbourhood search method. If chromosome 𝑞ଵ and 𝑞ଶ in the
population is different, then the difference between the two chromosomes is 𝑑(𝑞ଵ,𝑞ଶ) ≻ 0, otherwise 𝑑(𝑞ଵ, 𝑞ଶ) = 0. If the
difference between chromosome 𝑞௤ and other chromosomes in the population is equal to 0, the solution corresponding to
chromosome 𝑞௤ is redundant solution. Because each chromosome is composed of m segments, firstly the lengths of the m
segments are compared. If they are different, the chromosomes are different; otherwise, the difference is determined by
comparing the genes. The Eq. (19) and Eq. (20) respectively give the calculation method of the difference of each segment
and the difference of the whole chromosome between two chromosomes 𝑞ଵ and 𝑞ଶ with the same length.
 𝑑(𝑞ଵ௜ ,𝑞ଶ௜ᇲ) = ∑ |𝑔ଵ௜௧ − 𝑔ଶ௜ᇲ௧|௡೔௧ୀଵ 𝑛௜

(19)

𝑑(𝑞ଵ, 𝑞ଶ) = ∑ 𝑑(𝑞ଵ௜ ,𝑞ଶ௜ᇲ)௠௜ୀଵ 𝑛
(20)

where 𝑞ଵ௜ and 𝑞ଶ௜ᇲ is gene segments on chromosomes 𝑞ଵ and 𝑞ଶ, respectively; 𝑛௜ is the length of the gene segment, and 𝑔ଵ௜௧
and 𝑔ଵ௜ᇲ௧ is the locus in the gene segment.
Let 𝑁ଵ represent the number of redundant solutions in the population, and 𝑑𝑤 represents the density of the redundant solutions;
then, 𝑑𝑤 = 𝑁ଵ/𝑃𝑜𝑝𝑠𝑖𝑧𝑒. If the 𝑑𝑤 is larger than the threshold, a neighbourhood search method is used to renew the
individuals in the redundant solutions population. If the new solution is better than the original solution, it replaces the original
solution; otherwise, the original solution is kept.
Because the two objectives are optimized, two kinds of four neighbourhood search operators are designed. The average
makespan 𝐶̅ of the maximum makespan MaxC୫ୟ୶ and the minimum makespan 𝑀𝑖𝑛𝐶௠௔௫, the average ∑𝑇ത of the maximum
total tardiness M𝑎𝑥 ∑𝑇௝, and the minimum total tardiness 𝑀𝑖𝑛∑𝑇௝ in the redundant solution’s population are calculated firstly,
then the neighbourhood search operators are used.

5.3.1 Neighbourhood search guided by makespan improvement

If the objective of the 𝑘௧௛ individual satisfies 𝐶௞ > 𝐶̅, one of the two M-neighbourhood search methods is randomly selected.
The purpose of the M-neighbourhood search method is to improve the 𝐶௠௔௫ of the solution, including M-Insert and M-Swap.
M-Insert: Select a batch with waste time p௪௧ from machine 𝑀௠௜௡௖௧ with the minimum completion time, search for a job with
a processing time equal to or less than 𝑝௪௧ in machine 𝑀௠௔௫௖௧ with the maximum completion time, and insert it into the
selected batch on machine 𝑀௠௜௡௖௧.

M-Swap: The job with a longer processing time selected from machine 𝑀௠௔௫௖௧ is swapped with the job with a shorter
processing time selected from machine 𝑀௠௜௡௖௧. The difference in processing time between the swapped jobs should be less
than the difference in the completion time of the two machines.

5.3.2 Neighbourhood search guided by total tardiness improvement

If the objective of the 𝑘௧௛ individual satisfies ∑𝑇௞ > ∑𝑇ത, one of the two T-neighbourhood search methods is randomly
selected. The purpose of the T-neighbourhood search method is to improve the ∑𝑇௝ of the solution, including T-Insert and T-
Swap.

T-Insert: Select the job with the shortest processing time from among the delayed jobs and insert them one by one into the
position before the job with a larger due date time.
T-Swap. Select the job with the longest processing time from among the delayed jobs and swap its position with the job whose
subsequent due date is smaller than the job one by one.

5.4. Genetic operators

5.4.1 Crossover operator
A fixed crossover probability 𝑝௖ = 0.5 is set for the NSGA-II algorithm, and a dynamic crossover probability pୡᇱ = 1.5 −ଶୣషౝృଵାୣషౝృ × pୡ is designed for the M-NSGA-Ⅱ algorithm. g represents the number of iterations at present, and G represents the

total number of iterations to be performed.

A two-point crossover method is adopted. A random chromosome 𝑝௫ in the first Pareto front Fଵ of the population after fast
non-dominated sorting and a random chromosome 𝑝௬ in the other front are selected as parents. A random gene in [1,𝑛 + 𝑚− 1] is selected from each parent for crossover, and the other genes are obtained by mapping. If the offspring is
better than the parent 𝑝௬, it will be retained. Otherwise, the original parent is retained. An example of crossover is shown in
Fig. 3.

464

Fig. 3. Example of the crossover operation

5.4.2 Mutation operator

A fixed mutation probability 𝑝௠ = 0.05 is set for the NSGA-Ⅱ algorithm, and a dynamic mutation probability p୫ᇱ =ଶୣషౝృଵାୣషౝృ × p୫ is designed for the M-NSGA-Ⅱ algorithm. Two methods, MO1 and MO2, are used for the mutation operation of

the first 50% generation population and the last 50% generation population, respectively. MO1 randomly selects an individual,
selects a gene fragment of length ⌊𝑛/𝑚⌋, and reverses the sequence of jobs in this gene fragment. MO2 selects an individual
and randomly selects two genes to exchange. If the randomly selected gene is 0, reselection is required. An example of the
mutation operation is shown in Fig. 4.

Fig. 4. Example of the mutation operation

6. Parameter tuning and computational experiments

The NSGA-Ⅱ and the M-NSGA-Ⅱ algorithms were written using the Dev C++ language, and the MIP model was constructed
on the IBM ILOG CPLEX Optimization Studio Ver. 12.7.1 platform. The three algorithms’ simulation experiments were all
run on an Intel(R) Xeon(R) E5-2650 v4 @2.20 GHz CPU and 64 GB RAM workstation.

6.1. Performance measures

This paper compares different algorithms in terms of operation efficiency and effectiveness. The operation efficiency is
directly expressed by the operating time. Four measures are used to compare the operation effectiveness or different aspects
of the non-dominated fronts obtained by MIP, the NSGA-Ⅱ algorithm and the M-NSGA-Ⅱ algorithm, including the number
of Pareto solutions 𝑁ௗ, the C metric, the inverted generational distance (IGD) and the distance ∆஽ଵ between the different
solutions. The C metric is used to show differences between two Pareto fronts (Wang & Liu, 2015). The 𝐶(𝐴,𝐵) states the
percentage of a solution in B dominated by at least one solution of A. It is calculated by Eq. (21):
 𝐶(𝐴,𝐵) = |{𝑏 ∈ 𝐵|∃𝑎 ∈ 𝐴:𝑎 < 𝑏 }||𝐵| (21)

where 𝑎 < 𝑏 means that a dominates b or b is dominated by a. It can be seen from Equation (21) that if all individuals in
solution set A dominate all individuals in solution set B, then 𝐶(𝐴,𝐵) = 1; otherwise, 𝐶(𝐴,𝐵) = 0. In this metric, 𝐶(𝐴,𝐵) ≠𝐶(𝐵,𝐴); thus, both 𝐶(𝐴,𝐵) and 𝐶(𝐵,𝐴) must be calculated, and A is better than B if 𝐶(𝐴,𝐵) > 𝐶(𝐵,𝐴).

The IGD is the inverse mapping of the generational distance (Zhang et al., 2021), which is represented by the average distance
from the individual in the Pareto solution set to the non-dominated solution set solved by the algorithm. The computing
formula is shown in Eq. (22):
 𝐼𝐺𝐷(𝐴,Ω) = ∑ ୫୧୬ೌ∈ಲ ௗೣೌೣ∈ಈ|ஐ| (22)

where 𝑑௫௔ is the Euclidean distance between solutions 𝑥 and 𝑎, and Ω is the approximate Pareto front, and is acquired by
merging the Pareto solutions obtained by all algorithms. The smaller the 𝐼𝐺𝐷(𝐴,Ω) is, the better of the algorithm.
 ∆஽ଵ is used in the literature (Wang et al., 2018), and it is defined by Eq. (23):

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 465∆஽ଵ= ෍ ห೏೥ష೏ഥห|ಲ|షభ|஺|ିଵ௭ୀଵ
(23)

where 𝑑௭ is the Euclidean distance between two consecutive solutions in the obtained non-dominated set A, and 𝑑̅ is the
average of all distances 𝑑௭. The smaller the ∆஽ଵ is, the better of the algorithm.

6.2. Parameter tuning

Parameters largely affect the performance of the M-NSGA-Ⅱ algorithm. Therefore, it is necessary to tune the parameters using
appropriate methods. The Taguchi method is a strong stochastic technique from among the design of experiments (DOE)
methods. It aims to improve quality and reduce cost when designing a process or production, and its main idea is to combine
different factors and their degrees using vertical arrays and factorial designs. Then, the analysis is conducted with fewer
numbers of experiments (Wang et al., 2018). The parameters that affect the performance of the M-NSGA-II algorithm include
the population number Popsize, the number of iterations Gensize, the crossover rate pୡ, and the mutation rate p୫. The levels
of these four parameters were determined according to the preliminary experiments as shown in Table 2.

Table 2
M-NSGA-II algorithm parameters and levels

Parameters Small Medium Large Popsize 50,75,100 100,200,300 200,300,400 Gensize 50,75,100 100,150,200 150,200,250 pୡ 0.5,0.7,0.9 0.5,0.7,0.9 0.5,0.7,0.9 p୫ 0.01,0.05,0.10 0.05,0.1,0.15 0.1,0.15,0.2

A set of 13 typical problem instances with three scales (small, medium, and large) were generated to perform the parameter
tuning experiments, and a decoding method based on FL was adopted. The signal-to-noise (S/N) ratio of the parameters was
analysed to determine the parameters of the M-NSGA-II algorithm. Using Popsize, MaxGen, pୡ and p୫ as control factors
where each factor has 3 levels, the number of orthogonal experiments is Lଽ(3ସ), the objective function is used as the response
variable, and the number of experiments is 13×9×10=1170. The results for the small-scale problem instances are shown in
Table 3. Because there are two objectives, the same data normalization method used in reference (Yue et al., 2019) is applied.
Through normalization of the S/N at different levels of different response variables, the comprehensive S/N ratio at the final
parameter level was obtained, and Fig. 5 shows the mean S/N for the small-scale problems.

Table 3
Orthogonal results for the small-scale instances

No. Popsize Gensize pୡ p୫ m2n6(10,5) m2n8(10,5) m2n10(10,5) 𝐶௠௔௫തതതതതതത TTതതതത 𝐶௠௔௫ TT 𝐶௠௔௫ TT 𝐶௠௔௫ TT
1 50 50 0.5 0.01 24.017 7.983 30.880 9.640 38.708 25.483 31.202 14.369
2 50 75 0.7 0.05 24.033 7.567 30.733 9.200 38.992 28.300 31.253 15.022
3 50 100 0.9 0.1 24.067 8.200 30.800 10.825 38.700 26.592 31.189 15.206
4 75 50 0.7 0.1 24.167 7.633 30.850 11.650 38.668 28.573 31.228 15.952
5 75 75 0.9 0.01 24.233 7.767 30.700 9.258 39.058 26.333 31.331 14.453
6 75 100 0.5 0.05 23.967 8.117 31.067 11.867 39.150 27.737 31.394 15.907
7 100 50 0.9 0.05 24.033 7.533 30.700 10.067 38.705 25.762 31.146 14.454
8 100 75 0.5 0.1 24.333 7.533 30.767 9.875 39.145 27.940 31.415 15.116
9 100 100 0.7 0.01 24.242 7.775 30.783 10.917 38.945 28.135 31.323 15.609

Due to the two objectives of the minimization functions, the level of the parameter at which the minimum value of the
evaluation criteria is obtained is preferred. The parameters of NSGA-II for different sets of problem instances were also
selected using the Taguchi method. The optimum level of parameters for each algorithm for each instance set is illustrated in
Table 4.

Table 4
Parameter values for M-NSGA-Ⅱ and NSGA-II

 M-NSGA-II NSGA-II
Instance 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 𝐺𝑒𝑛𝑠𝑖𝑧𝑒 𝑝௖ 𝑝௠ 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 𝐺𝑒𝑛𝑠𝑖𝑧𝑒 𝑝௖ 𝑝௠
Small 50 50 0.9 0.05 50 50 0.9 0.05
Medium 200 200 0.9 0.15 200 200 0.9 0.15
Large 200 250 0.9 0.1 200 250 0.9 0.1

466

Fig. 5. The mean S/N results for the bi-objective of makespan and TT of small-scale problems

6.3. Computational experiments and discussion

6.3.1 Data generation
The experimental data in this paper are based on the data in the literature (Kramer et al. (2020), Nessah et al. (2008), Chen et
al. (2021) and Li et al. (2019)). The experiments were conducted using the machine parameters, job parameters and PM
activity parameters. The machine parameters include the number of machines 𝑚; the job parameters include the number of
jobs 𝑛, processing time 𝑝௝, release time 𝑟௝ and due date 𝑑௝; and the PM activity parameters include the threshold 𝑈𝑇 and
maintenance time 𝑚𝑡. The instances and the range of experimental parameter are shown in Table 5.

Table 5
Instances and experimental parameters

Instances 𝑚 𝑛 𝑝௝ 𝑈𝑇 𝑚𝑡
Small 2, 3 6,8,10 U[1,9] 10 2, 5

Medium 3, 5 15,20,25 U[1,9] 10, 15 5, 8
Large 5, 10 50,100 U[1,9] 15, 20 5, 8

The due date 𝑑௝ satisfies the uniform distribution 𝑈[𝑟௝ , 𝑟௝ + (ଵାொି஼)∑ ௣ೕ೙ೕసభ௠], where 𝑄 = [0.4,0.5] and 𝐶 = [0.4,0.3]. The
release time 𝑟௝ of the job is set to obey a uniform distribution 𝑈[0, 𝑘 × 𝑛 × 𝛼/𝑚], where 𝑘 = [2.02,3.03] and 𝛼 =[0.4,0.5,0.6].

6.3.2 Comparison results for different decoding methods

To validate the performance of the decoding method based on DP, we solved the problem instances using the DP-based and
FL-based decoding methods. For each instance, the method was run 10 times by considering randomness, and the average
values of the performance metrics were recorded. The fronts obtained by the two methods mentioned above were combined,
and all the non-dominated solutions were used to form set Ω to compute the IGD. The results are shown in Table 6.

Table 6
Results of the different decoding methods of the M-NSGA-Ⅱ algorithm

Size Instances FL: A DP: B
m, n (UT, mt) t(s) Nd C(A,B) IGD ∆஽ଵ t(s) Nd C(B,A) IGD ∆஽ଵ

Small

m2n6(10,2) 2.20 2 0.63 1.30 0.00 2.43 2.3 0.78 0.20 1.42
m2n8(10,2) 3.30 2.4 0.57 0.95 1.15 4.50 2.3 0.78 0.69 0.59
m2n10(10,2) 3.99 2.4 0.62 1.71 3.84 6.31 1.7 0.45 3.30 0.50
m3n6(10,2) 2.52 2.1 0.92 0.19 0.46 2.77 2.3 1.00 0.00 0.46
m3n8(10,2) 3.16 2.1 0.65 0.67 0.17 4.86 2.3 0.85 0.46 0.92
m3n10(10,2) 4.07 2.8 0.49 1.23 1.96 5.89 2.6 0.62 1.34 2.54
m2n6(10,5) 2.52 3.0 0.93 0.18 2.54 4.77 3.0 0.97 0.03 2.41
m2n8(10,5) 3.14 3.0 0.87 0.28 1.14 5.49 3.1 0.58 1.18 1.00
m2n10(10,5) 3.44 3.5 0.30 1.96 2.07 7.79 3.3 0.55 0.76 3.13
m3n6(10,5) 1.94 3.0 0.83 0.36 1.90 2.65 3.0 1.00 0.00 0.97
m3n8(10,5) 2.83 3.5 0.63 0.57 2.17 5.11 3.1 0.75 0.83 1.44
m3n10(10,5) 4.37 3.0 0.48 1.40 2.04 7.59 3.0 0.75 0.47 2.31

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 467

Table 6
Results of the different decoding methods of the M-NSGA-Ⅱ algorithm (Continued)

Size Instances FL: A DP: B
m, n (UT, mt) t(s) Nd C(A,B) IGD ∆஽ଵ t(s) Nd C(B,A) IGD ∆஽ଵ

Medium

m3n15(10,5) 107.97 2.2 0.33 3.26 3.07 185.60 2.8 0.48 1.27 3.84
m3n20(10,5) 156.04 2.5 0.57 2.49 1.51 261.42 2.3 0.25 2.46 2.11
m3n25(10,5) 190.18 1.8 0.36 4.41 0.22 367.29 2.4 0.45 1.92 7.85
m5n15(10,5) 112.02 2 0.45 1.16 3.90 151.67 2.3 0.52 1.32 3.56
m5n20(10,5) 166.34 2 0.30 3.54 1.89 219.32 1.9 0.75 0.48 2.71
m5n25(10,5) 196.62 2.4 0.26 4.37 2.77 318.34 2.6 0.65 1.29 2.63
m3n15(10,8) 134.90 2.2 0.37 2.14 2.36 172.75 2.1 0.62 1.69 2.76
m3n20(10,8) 182.52 2.4 0.20 5.88 4.15 248.46 1.7 0.74 2.95 1.94
m3n25(10,8) 194.37 2.5 0.12 8.04 6.52 326.17 2 0.68 5.04 2.92
m5n15(10,8) 115.44 2 0.50 1.30 2.30 124.12 2.2 0.67 0.87 2.88
m5n20(10,8) 160.18 1.9 0.28 4.50 1.94 203.88 2.8 0.60 0.95 1.82
m5n25(10,8) 213.20 2.7 0.28 5.16 3.39 249.11 2.1 0.50 2.69 10.22
m3n15(15,5) 108.43 2.7 0.35 1.77 3.15 160.02 2.6 0.61 1.48 1.81
m3n20(15,5) 153.16 2 0.34 1.86 3.24 207.99 2.7 0.60 1.39 4.60
m3n25(15,5) 163.92 2.7 0.23 5.54 10.15 350.90 2.5 0.75 1.18 1.63
m5n15(15,5) 122.81 2.1 0.47 1.38 1.99 122.67 1.6 0.83 0.42 3.14
m5n20(15,5) 149.96 2.3 0.32 1.55 1.34 220.55 1.8 0.55 0.93 1.08
m5n25(15,5) 207.96 2.5 0.50 1.68 2.27 302.78 2 0.55 2.38 0.49
m3n15(15,8) 33.90 3.2 0.53 1.53 3.53 78.46 3.2 0.56 1.18 3.69
m3n20(15,8) 43.72 3.5 0.37 4.75 3.51 117.30 3.8 0.48 3.22 3.49
m3n25(15,8) 50.59 3.1 0.39 4.69 8.92 170.31 3.4 0.47 3.78 2.66
m5n15(15,8) 23.44 2.8 0.73 0.68 2.59 58.59 2.7 0.23 1.76 0.85
m5n20(15,8) 39.32 3.2 0.43 3.74 1.87 109.28 3.1 0.58 0.93 3.93
m5n25(15,8) 49.01 3.2 0.42 3.54 3.28 132.92 3.3 0.60 2.72 2.29

Large

m5n50(15,5) 408.28 2.3 0.40 13.07 4.44 656.13 3.7 0.50 13.72 7.59
m5n100(15,5) 717.37 4.5 0.38 70.35 12.63 1762.36 3.4 0.45 61.54 26.97
m10n50(15,5) 413.37 1.8 0.33 13.80 12.60 535.59 2 0.50 2.21 6.15
m10n100(15,5) 809.03 2.7 0.38 29.97 6.33 1222.25 2.2 0.59 21.71 21.09

m5n50(15,8) 350.95 2.3 0.23 16.11 11.10 663.09 3.4 0.40 10.83 16.26
m5n100(15,8) 674.02 3.5 0.26 142.49 48.29 1749.16 2.8 0.55 37.95 23.92
m10n50(15,8) 439.74 2.0 0.32 12.52 4.00 562.49 1.8 0.48 4.39 11.97
m10n100(15,8) 757.55 2.1 0.35 67.22 3.86 1205.37 3.8 0.49 25.90 23.03

m5n50(20,5) 419.26 3.2 0.42 17.77 4.04 679.66 2.4 0.45 5.37 3.92
m5n100(20,5) 709.87 3.6 0.27 112.63 17.48 1797.70 4.3 0.67 21.01 15.57
m10n50(20,5) 385.11 1.6 0.30 5.64 0.00 597.70 2.1 0.60 3.88 0.67
m10n100(20,5) 788.78 3 0.40 28.40 3.49 1237.99 2.2 0.48 20.64 7.12

m5n50(20,8) 249.44 3.7 0.25 9.52 5.77 660.86 2.5 0.62 6.00 3.61
m5n100(20,8) 520.18 4.6 0.26 145.98 29.14 1772.32 3.7 0.70 16.28 24.92
m10n50(20,8) 177.79 3.3 0.33 6.86 1.38 548.57 2.6 0.56 2.27 3.15
m10n100(20,8) 485.64 4 0.25 67.18 16.72 1225.39 3.4 0.70 13.09 7.35

The results show that the DP-based decoding method performs better than the FL-based decoding method in terms of the C
metric and IGD, especially for large-scale problem instances composed of many jobs. There is no significant difference
between the two decoding methods in terms of the ∆஽ଵ metric. The Nd metric obtained by the FL-based decoding method is
slightly larger than that obtained by the DP-based decoding method. This result shows that the solution set obtained by the
DP-based decoding method is more diversity and better approximates the Pareto front. In this paper, the Nd metric obtained
by the NSGA-II and M-NSGA-II algorithms is limited since minimizing the makespan indirectly leads to minimizing the total
tardiness, which is why the Nd metric of the FL-based decoding method slightly outperforms the DP-based decoding method.
The DP-based decoding method searches for the job-grouping solution from the first position to the current position when
adding a job at each stage to make maintenance decisions to obtain the best solution, which also limits the number of Pareto
solutions. Thus, the DP-based decoding method requires more time than the FL-based decoding method.

6.3.3 Comparison results for different neighbourhood search methods

To validate the performance of the proposed neighbourhood search method, the M-NSGA-II algorithm with and without the
neighbourhood search method was used to solve the instances. The results are shown in Fig. 6. The results show that the M-
NSGA-II method with neighbourhood search can obtain better non-dominated solutions compared to the method without
neighbourhood search in terms of the C metric and IGD. This advantage becomes more evident as the size of the problem
increases. However, there is no significant difference between the two methods in terms of the ∆஽ଵ metric and Nௗ. Since
neighbourhood search adds further exploration and searching of the solution space, the time required is longer than that
without neighbourhood search. These results fully show that the use of neighbourhood search can improve the search quality
of the solution, improve the distribution and quality of the solution, and requires a longer time to obtain a better solution.

468

Fig. 6. Results for five performance metrics with and without neighbourhood search method

6.3.4 Comparison results for different algorithms

To compare the performance of MIP, M-NSGA-II, and NSGA-II, all three methods were used to solve the small-scale
instances, and the M-NSGA-II and NSGA-II algorithms were used to solve the medium- and large-scale instances. The results
are shown in Table 7 and Table 8.

Table 7
Performance results for different algorithms (small-scale problem instances)
Size Instance MIP: A NSGA-Ⅱ: B M-NSGA-Ⅱ: C

t(s) Nd C(A,B) C(A,C) IGD ∆஽ଵ t(s) Nd C(B,A) C(B,C) IGD ∆஽ଵ t(s) Nd C(C,A) C(C,B) IGD ∆஽ଵ

Small

m2n6 (10,2) 5.3 2.2 1 1 0 0.30 0.88 2.1 0.72 0.80 0.84 1.35 3.62 2.2 0.62 0.63 0.72 0.75
m2n8 (10,2) 32.4 2.4 1 1 0 2.20 1.64 2.6 0.45 0.71 1.14 1.49 4.68 2.5 0.37 0.58 1.32 2.08
m2n10 (10,2) 4096.0 2.9 1 1 0 3.02 2.76 2.6 0.28 0.73 2.56 4.64 6.28 2.4 0.15 0.48 3.13 6.19
m3n6 (10,2) 7.2 2.4 1 1 0 0.55 0.82 2.4 0.95 1.00 0.05 0.55 2.01 2.1 0.79 0.79 0.41 0.46
m3n8 (10,2) 49.7 2.7 1 1 0 1.55 1.91 2.4 0.40 0.52 1.15 1.57 3.53 2.2 0.59 0.68 0.96 0.62
m3n10 (10,2) 3449.5 3.4 1 1 0 1.62 2.90 2.8 0.35 0.58 1.38 1.34 6.31 2.5 0.22 0.44 1.97 1.62
m2n6 (10,5) 10.6 3 1 1 0 2.56 0.91 2.7 0.77 0.75 1.06 1.27 4.46 2.6 0.73 0.70 0.61 3.91
m2n8 (10,5) 55.0 2.8 1 1 0 1.18 1.65 2.4 0.42 0.67 1.26 1.84 5.08 2.4 0.45 0.63 1.12 1.82
m2n10 (10,5) 13264.7 3.4 1 1 0 2.29 2.76 3.1 0.32 0.73 2.00 2.33 7.10 2.1 0.22 0.40 4.03 2.71
m3n6 (10,5) 25.5 3 1 1 0 1.08 0.82 3.1 0.97 1.00 0.03 1.13 2.76 2.9 0.93 0.92 0.15 1.09
m3n8 (10,5) 210.0 3.4 1 1 0 1.70 1.80 3 0.58 0.67 1.06 2.17 5.10 2.5 0.36 0.47 1.69 1.51
m3n10 (10,5) 15269.2 3.2 1 1 0 2.45 3.22 2.5 0.35 0.57 2.77 2.19 6.19 2.2 0.22 0.45 3.30 1.76

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 469

Table 8
Performance results for different algorithms (medium- and large-scale problem instances)

Size Instance NSGA-Ⅱ: A M-NSGA-Ⅱ: B
t(s) Nd C(A, B) IGD ∆஽ଵ t(s) Nd C (B, A) IGD ∆஽ଵ

Medium

m3n15(10,5) 47.64 2.3 0.25 3.47 2.00 206.14 2.2 0.65 0.68 3.67
m3n20(10,5) 71.72 2.4 0.13 6.78 5.12 338.95 2.3 0.50 3.27 9.46
m3n25(10,5) 89.84 2.6 0.30 6.88 12.19 365.60 2.9 0.57 4.27 5.93
m5n15(10,5) 47.49 2.2 0.47 1.08 4.69 94.94 2.2 0.57 1.87 1.69
m5n20(10,5) 68.28 2.3 0.58 1.54 1.52 151.99 2.3 0.26 2.52 5.31
m5n25(10,5) 96.35 3.1 0.22 4.73 2.68 269.25 2.6 0.49 2.52 5.95
m3n15(10,8) 45.01 2.5 0.28 4.67 5.82 162.42 2.4 0.63 4.12 2.22
m3n20(10,8) 78.37 2.4 0.03 8.95 3.64 320.89 2.5 0.89 0.61 2.73
m3n25(10,8) 84.82 2.6 0.25 12.08 7.87 437.04 2.5 0.55 2.91 6.35
m5n15(10,8) 52.80 2.6 0.45 0.76 1.77 144.50 1.8 0.64 0.82 2.82
m5n20(10,8) 75.58 2.8 0.32 2.93 4.87 189.48 2.8 0.40 4.14 7.31
m5n25(10,8) 96.21 2.2 0.18 9.34 2.33 278.11 2.3 0.61 3.06 5.30
m3n15(15,5) 38.69 2.1 0.30 2.40 8.20 145.51 1.8 0.68 1.12 2.48
m3n20(15,5) 66.65 2.3 0.26 2.89 1.02 204.21 2.2 0.53 1.53 4.07
m3n25(15,5) 88.78 4 0.21 7.24 3.57 248.33 2.7 0.55 5.79 6.44
m5n15(15,5) 47.68 1.9 0.63 0.68 2.61 107.42 1.7 0.66 1.38 13.30
m5n20(15,5) 67.78 2.6 0.44 1.29 3.26 189.53 2.2 0.53 2.15 3.71
m5n25(15,5) 100.24 2.2 0.28 2.69 0.80 253.04 2.5 0.68 1.72 5.01
m3n15(15,8) 42.94 2.3 0.00 4.61 4.04 176.97 2.3 0.92 0.12 0.74
m3n20(15,8) 64.78 3.1 0.27 5.12 4.21 245.88 3.4 0.63 2.41 5.89
m3n25(15,8) 89.45 2.9 0.05 9.56 5.11 415.90 2.8 0.81 4.14 6.91
m5n15(15,8) 51.59 2.2 0.63 1.54 2.66 151.53 2.2 0.67 0.70 0.82
m5n20(15,8) 74.89 2.2 0.43 2.20 4.52 223.01 2.7 0.43 2.48 9.35
m5n25(15,8) 98.04 2.1 0.30 3.22 4.24 308.37 2.3 0.52 3.52 2.50

Large

m5n50(15,5) 182.18 3.4 0.03 58.42 4.88 396.15 2.7 0.57 22.03 18.88
m5n100(15,5) 441.01 3.5 0.00 285.12 5.78 1591.75 2.2 0.34 269.86 3.75
m10n50(15,5) 203.41 2.6 0.10 21.68 4.00 387.27 1.8 0.61 6.31 3.85
m10n100(15,5) 462.61 2.3 0.00 190.68 7.05 1044.38 2.0 0.58 69.14 43.41
m5n50(15,8) 196.90 3.4 0.05 56.04 23.14 543.69 2.6 0.45 36.85 19.83
m5n100(15,8) 394.61 3.5 0.02 540.18 44.27 1241.68 3.7 0.46 174.98 59.58
m10n50(15,8) 237.12 1.9 0.08 13.37 5.28 413.20 2.4 0.23 6.24 5.16
m10n100(15,8) 514.55 3.1 0.00 174.53 4.79 858.93 2.5 0.51 105.91 19.10
m5n50(20,5) 197.17 3.0 0.03 32.86 2.12 568.50 2.5 0.47 14.32 11.03
m5n100(20,5) 408.87 4.6 0.00 325.77 27.53 1688.12 2.9 0.46 276.07 11.42
m10n50(20,5) 214.53 2.5 0.03 10.22 4.91 321.24 2.6 0.46 6.02 7.74
m10n100(20,5) 473.33 3.3 0.00 152.84 8.95 1105.91 1.8 0.51 62.49 0.00
m5n50(20,8) 207.05 3.3 0.17 36.43 22.51 560.19 2.5 0.49 18.64 12.50
m5n100(20,8) 416.37 3.5 0.00 302.44 10.38 1270.85 2.6 0.29 239.52 12.06
m10n50(20,8) 222.82 2.1 0.10 10.00 3.23 316.07 2.3 0.45 4.78 4.77
m10n100(20,8) 512.82 2.8 0.00 158.64 4.25 1191.68 2.5 0.33 82.77 9.83

As seen in Table 7, the MIP method can obtain the optimal Pareto solution for all 12 instances, although the time needed for
solving the problem greatly increased with the increase in the size of the problem. The NSGA-Ⅱ algorithm slightly
outperforms the M-NSGA-II algorithm in terms of the IGD, the C metric and Nௗ. There is no significant difference between
the two methods in terms of ∆஽ଵ. The NSGA-Ⅱ algorithm is more efficient than the MIP and M-NSGA-II algorithms, and this
advantage becomes more evident as the size of the problem increases. It can be seen from Table 8 that the M-NSGA-Ⅱ
algorithm outperforms the NSGA-Ⅱ algorithm in terms of the IGD and C metrics for medium- and large-scale problem
instances, and this advantage also becomes more evident as the size of the problem increases. However, there is no significant
difference between the two methods in terms of Nௗ and ∆஽ଵ. The efficiency of the NSGA-II algorithm is better than that of
M-NSGA-II because M-NSGA-II uses the DP-based decoding method and the neighbourhood search method.

6.3.5 Influence of PM parameters

To judge the influence of the PM parameters on the NSGA-Ⅱ and M-NSGA-Ⅱ algorithms, their four metrics were analysed
using variance analysis (the confidence interval was 95%), and the results are shown in Table 9.

As shown in Table 9, for the different UT and 𝑚𝑡, all the indicators for the M-NSGA-II algorithm are not significantly
different. In contrast, for the NSGA-II algorithm, the Nௗ indicator for small instances and the IGD indicator for medium
instances are significantly different for parameter 𝑚𝑡. This result shows that the M-NSGA-Ⅱ algorithm is stable and effective
for all instances.

470

Table 9
Significance level of the different algorithms
NSGA-Ⅱ
Size Small Medium Large
Parameter Nௗ IGD C(A,B) ∆஽ଵ Nௗ IGD C(A,B) ∆஽ଵ Nௗ IGD C(A,B) ∆஽ଵ UT / / / / 0.955 0.016 0.563 0.442 0.463 0.171 0.780 0.752 𝑚𝑡 0.018 0.548 0.902 0.509 0.955 0.005 0.162 0.798 0.4015 0.345 0.212 0.288
M-NSGA-Ⅱ
Size Small Medium Large
Parameter Nௗ IGD C(A,B) ∆஽ଵ Nௗ IGD C(A,B) ∆஽ଵ Nௗ IGD C(A,B) ∆஽ଵ UT / / / / 1 0.569 0.201 0.872 0.884 0.938 0.527 0.115 𝑚𝑡 0.330 0.256 0.899 0.857 0.123 0.976 0.120 0.368 0.059 0.740 0.111 0.499

7. Conclusions

In this paper, an identical PMSP with machine flexible maintenance and job release times has been investigated to minimize
the makespan and total tardiness simultaneously. A MIP model was first established to obtain the exact Pareto fronts for small-
scale instances. To tackle the medium- and large-scale instances, an M-NSGA-Ⅱ algorithm was constructed with three
strategies. After tuning the M-NSGA-Ⅱ parameters using the DOE and the Taguchi method, computational experiments were
conducted. The results show that the M-NSGA-Ⅱ algorithm obviously outperforms the original NSGA-Ⅱ algorithm when
solving medium- and large-scale instances, although the time required to solve these instances is slightly longer.

In future research, more realistic parallel machine manufacturing environments such as unrelated parallel machines should be
investigated. The maintenance period depends on the machine’s reliability, and the objective is to minimize the energy and
power costs. Furthermore, considering the development of Big Data and Intelligent Manufacturing, parallel machine dynamic
scheduling and intelligent scheduling methods based on reinforcement learning should be developed.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.51705370).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdeljaoued, M. A., Saadani, N. E. H., & Bahroun, Z. (2020). Heuristic and metaheuristic approaches for parallel machine

scheduling under resource constraints. Operational Research, 20, 2109-2132.
Abedi, M., Seidgar, H., Fazlollahtabar, H., & Bijani, R. (2015). Bi-objective optimisation for scheduling the identical parallel

batch-processing machines with arbitrary job sizes, unequal job release times and capacity limits. International Journal
of Production Research, 53(6),1680-1711.

Akturk, M. S., & Ozdemir, D. (2001). A new dominance rule to minimize total weighted tardiness with unequal release dates.
European Journal of Operational Research,135(2),394-412.

Alhadi, G., Kacem, I., Laroche, P., & Osman, I. M. (2020). Approximation algorithms for minimizing the maximum lateness
and makespan on parallel machines. Annals of Operations Research, 285(1-2),369-395.

Anghinolfi, D., Paolucci, M., & Ronco, R. (2021). A bi-objective heuristic approach for green identical parallel machine
scheduling. European Journal of Operational Research, 289(2),416-434.

Bandyopadhyay, S., & Bhattacharya, R. (2013). Solving multi-objective parallel machine scheduling problem by a modified
NSGA-II. Applied Mathematical Modelling, 37(10-11),6718-6729.

Berrichi, A., Amodeo, L., Yalaoui, F., Châtelet,E., & Mezghiche, M. (2009). Bi-objective optimization algorithms for joint
production and maintenance scheduling: application to the parallel machine problem. Journal of Intelligent
Manufacturing, 20(4),389-400.

Biskup, D., Herrmann, J., & Gupta, J. N.D. (2008). Scheduling identical parallel machines to minimize total tardiness.
International Journal of Production Economics,115(1),134-142.

Chen, Y., Huang, P., Huang, C., Huang, S., & Chou, F. (2021). Makespan minimization for scheduling on two identical parallel
machines with flexible maintenance and nonresumable jobs. Journal of Industrial and Production Engineering, 38(1),1-
14.

Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal
of Operational Research, 47(3),271-292.

Cochran, J. K., Horng, S., & Fowler, J.W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling

Y. Chen et al. / International Journal of Industrial Engineering Computations 13 (2022) 471

problems for parallel machines. Computers & Operations Research, 30(7),1087-1102.
Cui, W., & Lu, Z. (2017). Minimizing the makespan on a single machine with flexible maintenances and jobs’ release dates.

Computers & Operations Research,80,11-22.
Dipak, L., & Gupta., J.N.D. (2018). An Improved Cuckoo Search Algorithm for Scheduling Jobs on Identical Parallel

Machines. Computers & Industrial Engineering,126, 348-360.
Fang, K. T., & Lin, B. (2013). Parallel-machine scheduling to minimize tardiness penalty and power cost. Computers &

Industrial Engineering, 64(1),224-234.
Gupta, J.N.D., & A.J. Ruiz-Torres. (2001). A LISTFIT heuristic for minimizing makespan on identical parallel machines.

Production Planning & Control,12(1), 28-36.
Hashemian, N., Diallo, C., & Vizvari, B. (2014). Makespan minimization for parallel machines scheduling with multiple

availability constraints. Annals of Operations Research, 213,173-186.
Kayvanfar, V., Zandieh, M., & Teymourian, E. (2017). An intelligent water drop algorithm to identical parallel machine

scheduling with controllable processing times: a just-in-time approach. Computational and Applied Mathematics, 36,159-
184.

Kim, J. G., Song, S., & Jeong, B. (2020). Minimising total tardiness for the identical parallel machine scheduling problem
with splitting jobs and sequence-dependent setup times. International Journal of Production Research, 58(6), 1628-1643.
DOI:10.1080/00207543.2019.1672900.

Kramer, A., Dell’Amico, M., Feillet, D., & Iori, M. (2020). Scheduling jobs with release dates on identical parallel machines
by minimizing the total weighted completion time. Computers & Operations Research, 123, 105018.

Lee, C. H. (2018). A dispatching rule and a random iterated greedy metaheuristic for identical parallel machine scheduling to
minimize total tardiness. International Journal of Production Research, 56(6), 2292-2308.

Lee, C.Y., & Chen, Z.L. (2000). Scheduling jobs and maintenance activities on parallel machines. Naval Research Logistics,
47,145-165.

Li, G., Liu, M., Sethi, S.P., & Xu, D. (2017). Parallel-machine scheduling with machine-dependent maintenance periodic
recycles. International Journal of Production Economics,186, 1-7.

Li, K., Xiao, W., & Yang, S. (2019). Minimizing total tardiness on two uniform parallel machines considering a cost constraint.
Expert Systems With Applications,123,143-153.

Liu, X., Chu, F., Zheng, F., Chu, C., & Liu, M. (2020). Parallel machine scheduling with stochastic release times and
processing times. International Journal of Production Research,59(20),6327-6346.

Moradi, E., & Zandieh, M. (2010). Minimizing the makespan and the system unavailability in parallel machine scheduling
problem: a similarity-based genetic algorithm. International Journal of Advanced Manufacturing Technology, 51(5-
8),829-840.

Naderi, B., & Roshanaei, V. (2020). Branch-Relax-and-Check: A tractable decomposition method for order acceptance and
identical parallel machine scheduling. European Journal of Operational Research, 286,811-827.

Nessah, R., Yalaoui, F., & Chu, C. (2008). A branch and bound algorithm to minimize total weighted completion time on
identical parallel machines with job release date. Computers & Operations Research, 35(4),1176-1190.

Schaller, J., & Valente, J. M. S. (2018). Efficient heuristics for minimizing weighted sum of squared tardiness on identical
parallel machines. Computers & Industrial Engineering, 119,146-156.

Tan, Z., Yong, C., & An, Z. (2011). Parallel machines scheduling with machine maintenance for minsum criteria. European
Journal of Operational Research, 212(2),287-292.

Wang, J. B., & Wei, C.M. (2011). Parallel machine scheduling with a deteriorating maintenance activity and total absolute
differences penalties. Applied Mathematics and Computation, 217(20),8093-8099.

Wang, S., & Cui, W. (2020). Approximation algorithms for the min-max regret identical parallel machine scheduling problem
with outsourcing and uncertain processing time. International Journal of Production Research, 59(15),4579-4592.

Wang, S., & Liu, M. (2015). Multi-objective optimization of parallel machine scheduling integrated with multi-resources
preventive maintenance planning. Journal of Manufacturing Systems,37,182-192.

Wang, S., Wang, X., Yu, J., Ma, S., & Liu, M. (2018). Bi-objective identical parallel machine scheduling to minimize total
energy consumption and makespan. Journal of Cleaner Production,193,424-440.

Wu, L., & Wang, S. (2018). Exact and heuristic methods to solve the parallel machine scheduling problem with multi-
processor tasks. International Journal of Production Economics, 201,26-40.

Wu, C., Yao, Y., Dauzère-Pérès, S., & Yu, C. (2020). Dynamic dispatching and preventive maintenance for parallel machines
with dispatching-dependent deterioration. Computers & Operations Research,113,104779.

Xu, D., Sun, K., & Li, H. (2008). Parallel machine scheduling with almost periodic maintenance and non-preemptive jobs to
minimize makespan. Computers and Operations Research,35(4),1344-1349.

Xu, D., Cheng, Z., Yin, Y., & Li, H. (2009). Makespan minimization for two parallel machines scheduling with a periodic
availability constraint. Computers & Operations Research,36(6),1809-1812.

Yalaoui, F., & Chu, C. (2006). New exact method to solve the 𝑃𝑚/𝑟௝/∑𝐶௝ schedule problem. International Journal of
Production Economics,100(1),168-179.

Yue, L., Guan, Z., Zhang, L., Ullah, S., & Cui, Y. (2019). Multi objective lotsizing and scheduling with material constraints
in flexible parallel lines using a Pareto based guided artificial bee colony algorithm. Computers & Industrial Engineering,
128,659-680.

Yoo, J., & Lee, I.S. (2016). Parallel machine scheduling with maintenance activities. Computers & Industrial Engineering,

472

101,361-371.
Zhang, L., Deng, Q., Zhao, Y., Fan, Q., Liu, X., & Gong, G. (2021). Joint optimization of demand-side operational utility and

manufacture-side energy consumption in a distributed parallel machine environment. Computers & Industrial
Engineering, 164 (2022),107863.

Zhou, H., Pang, J., Chen, P., & Chou, F. (2018). A modified particle swarm optimization algorithm for a batch-processing
machine scheduling problem with arbitrary release times and non-identical job sizes. Computers & Industrial Engineering,
123,67-81.

Appendix 1. Decoding algorithm based on FL

Algorithm 3：Full loading decoding algorithm

0 Initialize the cumulative processing time of each machine 𝑄ଵ = ⋯ = 𝑄௠ = 0, the completion time set of jobs 𝐽𝐶 = {∅}, the
tardiness set of jobs 𝐽𝑇 = {∅}, and the completion time set of machines 𝑀𝐶 = {∅}, UT, mt, etc.
1 For chromosome ℎ = 1 to 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 do
2 For machine 𝑖 = 1 to 𝑚 do
3 For the machine’s job position 𝑘 = 1 to 𝑛௜, select job 𝐽௜௞
4 If (𝑄௜ + 𝑝௜௞ < 𝑈𝑇) then 𝐶௜௞ = max (𝐶௜(௞ିଵ), 𝑟௜௞) + 𝑝௜௞, 𝑄௜ = 𝑄௜ + 𝑝௜௞
5 If (𝑄௜ + 𝑝௜௞ = 𝑈𝑇) then 𝐶௜௞ = max൫𝐶௜(௞ିଵ), 𝑟௜௞൯ + 𝑝௜௞ + 𝑚𝑡,𝑄௜ = 0
6 If (𝑄௜ + 𝑝௜௞ > 𝑈𝑇) then 𝐶௜௞ = max൫𝐶௜(௞ିଵ), 𝑟௜௞൯ + 𝑝௜௞ + 𝑚𝑡,𝑄௜ = 𝑝௜௞
7 𝑇௜௞ = max {𝐶௜௞ − 𝑑௜௞, 0}, 𝐽𝐶 = 𝐽𝐶 ∪ {𝐶௜௞}，𝐽𝑇 = 𝐽𝑇 ∪ {𝑇௜௞}
8 End For
9 𝐶௜ = max{𝐶௜௞}, 𝑀𝐶 = 𝑀𝐶 ∪ {𝐶௜},𝑇௜ = ∑𝑇௜௞
10 End For
11 𝐶௠௔௫ = max{𝐶௜ ,𝐶௜ ∈ 𝑀𝐶}, 𝑇𝑇 = ∑ 𝑇௜௠௜ୀଵ
12 End For

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

