
  

* Corresponding author   
E-mail: max@zjut.edu.cn    (X. Ma) 
  
2022 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2022.1.003 
 
 

 
 

International Journal of Industrial Engineering Computations 13 (2022) 405–420 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
Decision analysis of individual supplier in a vendor-managed inventory program with revenue-
sharing contract 

 

 

Xide Zhua, Lingling Xiea, GuiHua Lina and Xiuyan Mab*  
 
 

aSchool of Management, Shanghai University, Shanghai 200444, China 
bSchool of Management, Zhejiang University of Technology, Hangzhou 310023, China 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received November 5  2021 
Received in Revised Format  
December 26 2021 
Accepted January 23 2022 
Available online  
January, 23  2022 

 As a useful strategy to improve the flexibility of the system to manage uncertainty in supply and 
demand and to improve the sustainability of the supply chain, vendor-managed inventory (VMI) 
programs have attracted widespread attention in the field of supply chain management. However, 
a growing body of empirical literature has shown that participants’ decisions deviate significantly 
from the standard theoretical predictions. Under a VMI program, the supplier bears not only the 
production cost, but also the risk of leftover inventory. Moreover, the inequality among participants 
and different personalities of decision-makers in VMI programs may lead to the divergence of 
decision-making. To understand the supplier’s replenishment decision in view of the behavioral 
pattern, we propose a new inventory model for the supplier with the focus theory of choice. The 
proposed model conceives that the retailer evaluates each replenishment quantity based on the most 
salient demand for him/her instead of calculating the expected utility. By employing this inventory 
model, we construct a two-tier supply chain model with revenue-sharing contract and theoretically 
derive the optimal sharing percentage of the revenue and replenishment quantity. Results analysis 
gains managerial insights into the strategic selection of the retailer who faces suppliers with 
different personalities. Comparisons between the classic revenue-sharing contract model and the 
proposed model are also carried out by illustrative examples. This research provides a new 
perspective to analyze individual supplier’s behavior in a VMI program with revenue-sharing 
contracts. 
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1. Introduction 

The vendor-managed inventory (VMI) program studies an inventory management problem faced by an upstream supplier that 
is in a collaborative agreement (Kadiyala et al., 2020). Under a VMI program, the supplier decides on the quantity and time 
of replenishment and the retailer, on the other hand, is relieved of keeping track of its inventory and placing orders with the 
supplier from time to time. The well-known pioneer that adopts such a VMI program is Wal-Mart partnering with P&G and 
many other suppliers. Many other companies have followed the general trend, e.g. Campbell Soup, Barilla, GE and Intel. As 
one centralized program, VMI has been proved to improve supply chain’s efficiency and responsiveness to customer needs 
(Aviv, 2007; Bookbinder et al. 2010). VMI practices decrease supply chain greenhouse gas  emissions because they improve 
the flexibility of the system to manage uncertainty in supply and demand (Ugarte et al. 2016). However, it is also reported 
that behaviors related to the inequality and decline of trust between two parties may lead to the poor performance of VMI 
programs (Zammori et al., 2009). Since the VMI supply chain cannot realize the expected benefits, analyzing the behavior of 
supply chain participants in VMI programs is becoming an important research topic of supply chain management. Till now, a 
considerable amount of studies have appeared in the VMI literature (see, e.g., Beheshti et al., 2020; Hariga et al., 2019; Hong 
et al., 2016; Zanoni et al., 2012). 
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To better coordinate the channel members, designing coordinating contracts for VMI programs has received a great deal of 
attention. Coordinating contracts can motivate channel members to behave in ways that are best for the whole channel while 
maximizing their own profits (Phan et al., 2019). This situation results in a coordination of the VMI supply chain. In practice, 
many coordination mechanisms such as buyback, consignment, quantity discount, stockout-cost sharing, revenue-sharing 
contracts and others have been introduced and implemented in industry (see, e.g., Bai et al., 2019; Chakraborty et al., 2015; 
Hu et al., 2018; Lee et al., 2016; Sainathan & Groenevelt, 2019). As one payment scheme, the VMI program with revenue 
sharing has been widely employed in industries, especially in retail businesses (Gerchak & Wang, 2004). For instance, 
Amazon, Tmall, JD and other online platforms will charge a certain percentage of commission according to the transaction 
amount realized on the platforms. Due to its wide application, revenue-sharing contracts in VMI programs attract a lot of 
attention from many researchers. In traditional research, most of them predict the equilibrium outcomes in a game by 
maximizing the expected utility with the assumption of rational decision-makers. For example, Cai et al. (2017) established 
dynamic game relationships under a revenue-sharing contract and constructed three subsidy contracts to coordinate a VMI 
supply chain with service-level sensitive customers. Hu et al. (2017) considered a random demand and customers’ uncertain 
return behavior and used a backward induction to solve equilibrium solutions. Other related areas have also been studied (see, 
e.g., Cachon & Lariviere, 2005; Chen & Wei, 2012; Gerchak & Wang, 2004; Li et al., 2009; Lim et al., 2015). However, Zhao 
et al. (2019) conducted experiments to reveal that decisions under revenue-sharing contracts deviate significantly from the 
standard theoretical predictions. Meanwhile, many empirical studies proved that the decision maker may be irrational through 
experiments. These observations motivate us to study the behaviors of supply chain participants. Accordingly, to better 
coordinate the VMI supply chain, it is significant to understand the behaviors of supply chain members and their impact on 
supply chain performance. 
 
To understand the supplier’s replenishment decision in view of the behavioral pattern, in this paper we propose a new inventory 
model for the supplier with the focus theory of choice. Different from the classic inventory model in which the supplier seeks 
an optimal replenishment quantity by maximizing the weighted average profit considering all possible demands, the proposed 
model conceives that the supplier evaluates each replenishment quantity by examining the most salient demand (called focus) 
for him/her instead of calculating the expected value. The focus theory of choice initially proposed by Guo (2019) is based 
on the bounded rationality of individuals (Simon, 1976) due to their limited attention (Masatlioglu et al., 2012). The focus 
theory of choice axiomatized a decision-making procedure and explained several well-known anomalies such as St. Petersburg 
paradoxes, Allais, Ellsberg paradoxes, violations of stochastic dominance and so on. The core idea of the focus theory of 
choice is that the most salient event corresponds to the most-preferred action, which plays a significant role in human decision-
making. Decision-maker’s specific frame of mind and behavioral patterns may affect the salience (attention-grabbing 
information), which is consistent with the results of the psychological experiments conducted by Stewart et al. (2016). 
Moreover, a number of literature has also shown the importance of salience information in human decision making under 
uncertainty (Lacetera et al., 2012; Busse et al., 2013; Brandstätter & Körner, 2014). As a special case of focus theory of choice, 
the one-shot decision theory (Guo, 2011) has been applied in a variety of fields and solved several decision problems, such as 
duopoly markets of innovative products (Guo, 2010; Guo et al., 2010), newsvendor problems for innovative products (Guo & 
Ma, 2014; Zhu & Guo, 2017), auction problems (Wang & Guo, 2017), production planning problems (Zhu & Guo, 2020) and 
supply chain management (Fang et al., 2021; Ma, 2019). 
 
In this paper, we assume the supplier is an optimistic decision maker so that we employ the positive evaluation system of the 
focus theory of choice to analyze the supplier’s replenishment decision in a VMI program with revenue-sharing contracts. We 
consider a two-tier VMI supply chain consisting of a single supplier and a single retailer for an innovative product. Due to the 
short life cycle of such a product (Fisher, 1997), the supplier usually has only one chance to replenish the product. With the 
assumption of personality information sharing, the operational procedure for revenue-sharing contract is that a rational retailer 
first sets a percentage of revenue and then the supplier determines a replenishment quantity. Within the framework of the 
focus theory of choice, the supplier makes the decision through a two-step process shown below. First, for each potential 
replenishment quantity, the supplier chooses his/her most salient demand while considering the payoff caused by the 
occurrence of the demand and the probability of the demand occurring. Each selected demand is called the focus of the 
replenishment quantity. Second, the supplier selects the most-preferred replenishment quantity by considering the focus of all 
possible replenishment quantities.  
 
Under the proposed inventory model, we construct a Stackelberg supply chain game under the revenue-sharing contract mode. 
We theoretically derive the optimal sharing percentage of the revenue for the retailer by maximizing his/her expected profits. 
Theoretical analysis is consistent with several situations in reality and can help us to gain managerial insights into the strategic 
selection of the supplier and retailer under a revenue-sharing contract. Further, comparisons between the classic revenue-
sharing contract model and the proposed model are also carried out by illustrative examples. This research provides a new 
perspective to analyze individual supplier’s behavior in a VMI program with revenue-sharing contracts. 
 
The remainder of this paper is organized as follows. In Section 2, we propose a new inventory model in a VMI program by 
employing the focus theory of choice under the positive evaluation system. In Section 3, we theoretically derive the optimal 
replenishment quantity for the supplier with the focus theory of choice under the positive evaluation system, and discuss the 
existence of equilibrium solutions to the new revenue-sharing contract model. In Section 4, we conduct a numerical example 
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to specifically solve the proposed model and gain the managerial insights through results analysis. Finally, conclusions and 
future research are given in Section 5.  
 
2. Revenue-sharing contract model with the focus theory of choice under the positive evaluation system 
 
The VMI supply chain considered in this paper consists of a single supplier and a single retailer, they make their own decisions 
of a short life cycle product according to a revenue-sharing contract in this two-tier supply chain. First, the retailer determines 
the percentage 𝑠 (0 < 𝑠 ≤ 1) of revenue shared with the supplier. Second, after receiving the value of 𝑠, the supplier 
determines the replenishment quantity 𝑞 > 0 before the selling season. The supplier’s unit production cost is 𝑐 > 0. We 
assume that the customer demand for the product is a random variable, denoted by 𝑋, and it has a density function 𝑓(∙) and follows a cumulative distribution function 𝐹(∙). We assume that the demand lies on an interval ሾ𝑙,ℎሿ where 0 ≤ 𝑙 ≤ℎ. Clearly, the replenishment quantity should also lie within the demand interval [𝑙,ℎ]. When the demand 𝑥 is observed, the 
retailer will sell units (limited by the supply 𝑞 and the demand 𝑥) at the exogenous unit retail price 𝑟 (𝑟 > 𝑐). Based on the 
above description, the supplier’s payoff function can be given as follows: 
 𝑣(𝑠, 𝑞, 𝑥) = ൜𝑠𝑟𝑥 − 𝑐𝑞,     if 𝑥 < 𝑞,𝑠𝑟𝑞 − 𝑐𝑞,     if 𝑥 ≥ 𝑞,   (1) 

                 
where 𝑠 represents the sharing percentage provided by the retailer. The supplier needs to determine a replenishment quantity 
referring to the sharing percentage and demand. In this paper, we do not consider the unit opportunity cost and assume that 
the residual value of unsold products is zero. According to (1), it can be conceived that the highest profit of the supplier is 
 𝑣௨ = 𝑠𝑟ℎ − 𝑐ℎ, 
 
that is, the supplier replenishes the most and the demand is the largest. To ensure 𝑣௨ ≥ 0, we assume 𝑠 ≥ 𝑐/𝑟. The lowest 
profit is the case that the supplier replenishes the most but demand is lowest, that is  
 𝑣௟ = 𝑠𝑟𝑙 − 𝑐ℎ. 
 
As we know, many practical VMI supply chains consider the following operational procedure, which can be simplified into 
three stages. In the first stage, the retailer proposes the revenue-sharing contract and shares the percentage 𝑠 of revenue with 
the supplier. In the second stage, after receiving the percentage 𝑠 from the retailer, the supplier decides the replenishment 
quantity 𝑞 with a total cost 𝑐𝑞. In the last stage, after the demand is realized, they distribute the resultant revenue according 
to the contract terms of the revenue-sharing contracts. In general, over the above procedure, the retailer and the supplier make 
respective decisions at different stages. With the above operational procedure, we will establish a Stackelberg game model in 
the VMI supply chain where the participants (a retailer and a supplier) follow a revenue-sharing contract. The retailer acts as 
the leader and decides its revenue-sharing percentage at first. Then, the supplier as the follower will refer to the percentage 𝑠 
provided by the retailer to determine his/her optimal replenishment quantity 𝑞(𝑠).  Based on standard backward induction, we 
can analyze the equilibrium of the game under the assumption of complete information. The main analysis process includes: 
Firstly, since the supplier decides the replenishment quantity after observing the sharing percentage, we use the focus theory 
of choice to derive his optimal replenishment quantity under the positive evaluation system; Then, with optimal replenishment 
quantity of the supplier, we proceed to solve the optimal revenue-sharing percentage of the retailer. Therefore, a perfectly 
rational retailer may infer the supplier’s personality traits based on the past transactions and determine the revenue-sharing 
percentage in the contract by conjecturing the supplier's decision in this VMI supply chain. By maximizing his/her expected 
profit, the optimal sharing percentage can be solved. Thus, the equilibrium strategy of this Stackelberg game is obtained. 
 
2.1. The inventory model with the focus theory of choice 
 
With the increasing popularity of the VMI program in practice, many problems of its implementations have also been exposed. 
Among these problems, behaviors such as the irrational factors (social preferences and/or decision bias) of partners may lead 
to the poor performance of VMI supply chains (Zhao et al., 2019). In recent years, a growing number of literatures have shown 
salience rather than the expected value plays an important role in decision making (Lacetera et al., 2012; Busse et al., 2013; 
Brandstätter & Körner, 2014). In light of these observations, we apply the focus theory of choice framework in the revenue-
sharing contract model and suppose that a supplier evaluates each replenishment quantity by examining the most salient 
demand (called focus) for him/her rather than the expected profit. To better construct a new revenue-sharing contract model 
with the focus theory of choice, we next convert the payoff function into a satisfaction function and the supplier’s probability 
density function to a relative likelihood function. 
 
Definition 1. Let 𝑉 be the range of the supplier’s payoff. The function 𝑢:𝑉 → [0, 1] is called a satisfaction function if  𝑢(𝑣ଵ) > 𝑢(𝑣ଶ) ⇔ 𝑣ଵ > 𝑣ଶ, ∀ 𝑣ଵ, 𝑣ଵ ∈ 𝑉, and ∃ 𝑣௖ ∈ 𝑉 such that 𝑢(𝑣௖) = max௩∈௏𝑢(𝑣) = 1. 
 
For simplicity of writing, we denote the composite function 𝑢൫𝑣(𝑠, 𝑞, 𝑥)൯ as 𝑢(𝑠, 𝑞, 𝑥). For any given sharing percentage 𝑠 ∈



  

 

408[𝑐/𝑟, 1] and replenishment quantity 𝑞 ∈ [𝑙, ℎ], 𝑢(𝑠, 𝑞, 𝑥) represents the supplier’s satisfaction level about the resulting payoff 
if the demand arises as 𝑥. The satisfaction function represents the relative position of different payoffs exogenously determined 
by the decision maker (supplier). In this paper, we take the following satisfaction function: 
 

𝑢(𝑠,𝑞, 𝑥): = 𝑣(𝑠, 𝑞, 𝑥) − 𝑣௟𝑣௨ − 𝑣௟ = ⎩⎪⎨
⎪⎧𝑥 − 𝑙ℎ − 𝑙 + 𝑐(ℎ − 𝑞)𝑠𝑟(ℎ − 𝑙) , if 𝑥 ≤ 𝑞,𝑞 − 𝑙ℎ − 𝑙 + 𝑐(ℎ − 𝑞)𝑠𝑟(ℎ − 𝑙) , if 𝑥 > 𝑞. 

 
 

(2) 

 
Definition 2. Let 𝑓: [𝑙,ℎ] → ℝା be the density function of stochastic demand. The function 𝜋: [𝑙, ℎ] → [0,1] is called the 
relative likelihood function if it satisfies that 
  𝜋(𝑥ଵ) > 𝜋(𝑥ଶ) ⇔ 𝑓(𝑥ଵ) > 𝑓(𝑥ଶ), ∀ 𝑥ଵ, 𝑥ଶ ∈ [𝑙,ℎ], and ∃ 𝑥௖ ∈ [𝑙, ℎ], such that 𝜋(𝑥௖) = max௫∈[௟,௛]𝜋(𝑥) = 1. 
 
For any 𝑥 ∈ [𝑙,ℎ], we call 𝜋(𝑥) as the relative likelihood degree of 𝑥. The relative likelihood function represents the relative 
position of the probability of different demands. In this paper, we take the following relative likelihood function: 
 𝜋(𝑥): = ௙(௫)୫ୟ୶ೣ∈[೗,೓] ௙(௫). (3) 

 
The focus theory of choice takes the relative likelihood and satisfaction functions as basic decision inputs, which are more 
convenient to obtain, instead of adopting original probability and profit functions. Compared to absolute values in human 
decision making, the relative values are suggested by a large amount of evidence that they are more perceptible and accessible 
(Frank, 1985; Solnick & Hemenway, 1998). 
 
To analyze the revenue-sharing contract model, we make the following basic assumptions on the uncertain demand: 
 
Assumption 1. The probability density function 𝑓 is continuous and strictly quasi-concave on the interval [𝑙,ℎ], and ∃ 𝑚 ∈[𝑙,ℎ] such that 𝑓(𝑚) = max௫∈[௟,௛] 𝑓(𝑥). 
 
Since 𝑙 and ℎ are the lower and upper bounds of the demand respectively, 𝑓(𝑥) is increasing in the interval [𝑙,𝑚] and 
decreasing in the interval [𝑚, ℎ]. Thus, we know that 𝜋(𝑥) attaining its unique maximum at 𝑥 = 𝑚, 𝜋(𝑥) is strictly increasing 
on [𝑙,𝑚] and decreasing on [𝑚, ℎ]. As we know, many common distributions satisfy Assumption 1, such as triangular 
distribution, truncated (logarithmic) normal distribution and truncated gamma distribution. The focus theory of choice owns 
two different evaluation systems: positive and negative. In the positive evaluation system, an event that has a relatively high 
satisfaction level and a relatively high likelihood possesses a relatively high salience. Contrary to it, in the negative evaluation 
system, an event that has a relatively low satisfaction level and a relatively high likelihood stands out as more salient. In line 
with what is described above, the focus theory of choice can characterize decision-makers’ behavioral patterns in face of 
decision under risk. As for which one is at work, it depends on the frames of mind and personal traits of the decision maker. 
For example, when a decision maker is optimistic, the positive evaluation system is usually active. On the contrary, the 
negative system corresponds to a pessimistic decision maker. In this paper, we analyze the vendor-managed inventory problem 
with the focus theory of choice under the positive evaluation system. Since the life cycle of innovative products is generally 
shorter than the procurement lead-time, the supplier needs to take into account that which demand should be considered 
because there is only one demand occurring and he/she has only one chance to determine the replenishment quantity. 
According to the focus theory of choice, the procedure for decision-making is separated into two steps. In the first step, the 
supplier selects most salient outcomes (referred to as foci) from all possible demands of each action, which is the most 
appropriate scenario for him/her. In the second step, the supplier chooses the optimal action (replenishment quantity) by 
assessing all associated foci. Next, we introduce the specific model of the supplier’s strategy selection.  Under the positive 
evaluation system, we know that the supplier identifies the most salient demand with a relatively high satisfaction level and a 
relatively high likelihood. Hence, for any given sharing percentage 𝑠 and replenishment quantity 𝑞 ∈ [𝑙, ℎ], we denote 𝑃(𝑠, 𝑞) 
as the set of optimal solutions to the following optimization problem: 
 max௫ ∈[௟,௛]   minሼ𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑞, 𝑥)ሽ (4) 

 
where parameter 𝜑 is a positive real number and denoted as a scaling factor that directly decides whether the focus with a 
higher satisfaction level or a higher likelihood from the inner minimization operation in Eq. (4). The optimization problem 
(4) is derived from the positive focus representation theorem in Guo (2019). Given 𝑞, for 𝑥ଵ, 𝑥ଶ ∈ [𝑙, ℎ], if 𝜋(𝑥ଵ) ≥ 𝜋(𝑥ଶ) 
and 𝑢(𝑠, 𝑞,𝑥ଵ) ≥ 𝑢(𝑠, 𝑞, 𝑥ଶ), then we have minሼ𝜑 ∗ 𝜋(𝑥ଵ),𝑢(𝑠, 𝑞, 𝑥ଵ)ሽ ≥ minሼ𝜑 ∗ 𝜋(𝑥ଶ),𝑢(𝑠, 𝑞, 𝑥ଶ)ሽ. Clearly, for any 
replenishment quantity 𝑞 in a VMI program, Eq, (4) seeks the demand that processes a relatively high satisfaction level and a 
relatively high likelihood degree. In the above optimization problem, parameter 𝜑 can be interpreted as a weight that measures 
the supplier’s emphasis on the satisfaction level and likelihood. Therefore, 𝜑 can represent the optimistic level of the supplier: 
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the higher the value of 𝜑, the more optimistic the supplier. Next, we define the positive focus of the replenishment quantity 𝑞. 
 
Definition 3. If there is only one element in 𝑃(𝑠, 𝑞), then it is the positive focus of the replenishment quantity 𝑞, denoted by 𝑥(𝑠, 𝑞). If there exists more than one element in 𝑃(𝑠, 𝑞) and ∄ 𝑥 ∈ 𝑃(𝑠, 𝑞) such that 𝜋(𝑥) > 𝜋൫𝑥(𝑠, 𝑞)൯, 𝑢(𝑠, 𝑥, 𝑞) ≥𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)or𝜋(𝑥) ≥ 𝜋൫𝑥(𝑠, 𝑞)൯, 𝑢(𝑠, 𝑥, 𝑞) > 𝑢(𝑠,𝑥(𝑠, 𝑞), 𝑞) for 𝑥(𝑠, 𝑞) ∈ 𝑃(𝑠, 𝑞), then 𝑥(𝑠, 𝑞) is called the positive 
focus of 𝑞. 
  
From Definition 3, we know that the dominated outcomes are excluded and 𝑥(𝑠, 𝑞) is the most favorable demand for 
replenishment quantity 𝑞. If multiple positive foci exist, we denote the set of positive foci 𝑥(𝑠, 𝑞) as 𝑃ା(𝑠, 𝑞). Based on the 
above procedure, the optimal replenishment quantity is determined in the next step. Among all the possible positive foci for 
different replenishment quantities, we derive the optimal replenishment quantity by the following optimization problem: 
 max௤ ∈[௟,௛]   max௫(௦,௤) ∈௉శ(௦,௤)  minሼ𝜅 ∗ 𝜋(𝑥(𝑠, 𝑞)),𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)ሽ (5) 

 
where parameter 𝜅 is a positive real number. Eq. (5) is derived from the optimal action representation theorem under the 
positive evaluation system in Guo (2019). We define the set of optimal solutions of Eq. (5) as 𝑄(𝑠). For any 𝑞ଵ,𝑞ଶ ∈ [𝑙, ℎ], if 𝜋൫𝑥(𝑠, 𝑞ଵ)൯ ≥ 𝜋൫𝑥(𝑠, 𝑞ଶ)൯ and 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ), 𝑞ଵ) ≥ 𝑢(𝑠, 𝑥(𝑠, 𝑞ଶ), 𝑞ଶ), then we have min൛𝜅 ∗𝜋൫𝑥(𝑠, 𝑞ଵ)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ), 𝑞ଵ)ൟ ≥ min൛𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞ଶ)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞ଶ),𝑞ଶ)ൟ. It implies that Eq. (5) seeks an optimal 
replenishment quantity whose focus has a relatively high likelihood and generates a relatively high satisfaction level. Similar 
to the interpretation of parameter 𝜑, we know that increasing 𝜅 will result in a replenishment quantity whose positive focus 
has a relatively high satisfaction level but a relatively low likelihood. Hence, the parameter 𝜅 can measure the confidence 
index of the supplier to his/her decision: the higher the value of 𝜅, the more confident the supplier. 
 
Definition 4. If there is only one element in 𝑄(𝑠), then it is the optimal replenishment quantity under the positive evaluation 
system, denoted by 𝑞(𝑠). If there exists more than one element in 𝑄(𝑠) and ∄ 𝑞 ∈ 𝑄(𝑠) such that 𝜋(𝑥(𝑠, 𝑞)) >𝜋 ቀ𝑥൫𝑠, 𝑞(𝑠)൯ቁ ,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) ≥ 𝑢(𝑠, 𝑥(𝑠, 𝑞(𝑠)), 𝑞(𝑠)) or 𝜋(𝑥(𝑠, 𝑞)) ≥ 𝜋 ቀ𝑥൫𝑠, 𝑞(𝑠)൯ቁ ,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) >𝑢(𝑠, 𝑥(𝑠, 𝑞(𝑠)), 𝑞(𝑠)) for 𝑞(𝑠) ∈ 𝑄(𝑠), then 𝑞(𝑠) is the optimal replenishment quantity under the positive evaluation system. 
  
From Definition 4, we know that the optimal replenishment quantity 𝑞(𝑠) weakly dominates all other elements in 𝑄(𝑠) if it 
contains multiple optimal replenishment quantities under the positive evaluation system. We denote the set of optimal 
replenishment quantities under the positive evaluation system as 𝑄ା(𝑠). 
 
2.2. The Stackelberg game model with revenue-sharing contract 
 
In this subsection, we will establish a Stackelberg game model in the VMI supply chain where the retailer and supplier follow 
a revenue-sharing contract. First, the retailer acts as the leader and decides its revenue-sharing percentage first. Then, the 
supplier as the follower will refer to the percentage provided by the retailer to determine his/her optimal replenishment 
quantity. With conjecturing the supplier’s replenishment quantity 𝑞(𝑠), the retailer decides an optimal sharing percentage 𝑠∗ 
by maximizing his/her expected profits. That is, solving the following optimization problem: 
 max௖/௥ஸ௦ஸଵ  max௤(௦)∈ொశ(௦)  𝑟(1 − 𝑠)𝔼{min(𝑋, 𝑞(𝑠))} (6) 

 
After observing the sharing percentage 𝑠∗ provided by the retailer, the supplier replenishes an optimal quantity 𝑞(𝑠∗) as the 
Stackelberg follower. In the next section, we will derive the optimal replenishment quantity for the supplier with the focus 
theory of choice under the positive evaluation system, and discuss the existence of equilibrium solutions to the Stackelberg 
game model with the revenue-sharing contract. 
 
3. Theoretical analysis of revenue-sharing contract model under a VMI program 
 

This section is separated into two parts: in the first part, we will derive the focus and optimal replenishment quantity of the 
supplier with the focus theory of choice under the positive evaluation system; in the second part, we will specifically discuss 
the existence of the retailer’s optimal sharing percentage by solving the problem (6). Note that the proofs of all lemmas and 
theorems in this section are presented in Appendix A. 

3.1 Optimal replenishment quantity for the supplier 
 
We first propose some lemmas and theorems in this part to derive the optimal solution and characterize the properties of the 
optimal solution with the focus theory of choice under the positive evaluation system. As described below, Lemma 1 can be 
proposed to characterize the focus demand for any given replenishment quantity under the positive evaluation system, which 
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is the solution to the lower level program (4).  
 
Lemma 1. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1] and replenishment quantity 𝑞 ∈ [𝑙,ℎ], its positive focus 𝑥(𝑠, 𝑞) is 
characterized as follows: 
 

(i) If 𝜑 > ௨(௦,௤,௤)గ(௤) , for 𝑞 ∈ [𝑙,𝑚], 𝑥(𝑠, 𝑞) = 𝑚; for 𝑞 ∈ (𝑚, ℎ], 𝑥(𝑠, 𝑞) = 𝑞; 
(ii) If ௨(௦,௠,௤)గ(௠) ≤ 𝜑 ≤ ௨(௦,௤,௤)గ(௤) , for 𝑞 ∈ [𝑙,𝑚], 𝑥(𝑠, 𝑞) = 𝑚; for 𝑞 ∈ (𝑚,ℎ], there is a unique solution 𝑥(𝑠, 𝑞) to the equation 𝑢(𝑠, 𝑥, 𝑞) = 𝜑 ∗ 𝜋(𝑥) for 𝑥 on [𝑚, 𝑞]; 
(iii) If 0 < 𝜑 < ௨(௦,௠,௤)గ(௠) , 𝑥(𝑠, 𝑞) = 𝑚. 

 
According to Lemma 1, we know that for any replenishment quantity 𝑞 ∈ [𝑙,𝑚], no matter what the value of 𝜑, the focus 
demand 𝑥(𝑠, 𝑞) always equals to 𝑚. It illustrates that the choice of positive focus is unconcerned with an optimistic index 𝜑 
for any 𝑞 ∈ [𝑙,𝑚] and the replenishment quantity 𝑞 may affect the choice of the positive focus. In this case, the relative 
likelihood function stands out in determining the focus. Lemma 1 also characterizes the importance of parameter 𝜑 in 
determining the focus for any given replenishment quantity 𝑞 ∈ (𝑚, ℎ] under the positive evaluation system. When parameter 𝜑 is sufficiently high in case (i), the satisfaction function plays an important role in determining the focus 𝑥(𝑠, 𝑞) = 𝑞, which 
has the highest satisfaction level at an even lower likelihood. After that, when 𝜑 decreases into the middle range in case (ii), 
the focus possesses a lower satisfaction level, but a higher likelihood. When parameter 𝜑 decreases to sufficiently small in 
case (iii), the relative likelihood function stands out in identifying the focus 𝑥(𝑠, 𝑞) = 𝑚, which possesses the highest 
likelihood at a lower satisfaction level. Based on lemma 1, we confirm the following result. 
 
Theorem 1. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1], 𝑥(𝑠, 𝑞) equals to 𝑚 for any 𝑞 ∈ [𝑙,𝑚] whenever 𝜑 > 0, and 
increases as 𝑞 increases in the interval [𝑚, ℎ].    
 
Theorem 1 demonstrates the relationship between the replenishment quantity and positive focus. It represents that for any 
given replenishment quantity 𝑞௜ ∈ [𝑙,ℎ], 𝑖 = 1,2, if 𝑞ଵ < 𝑞ଶ, then the positive focus of 𝑞ଵ is smaller than or equal to the 
positive focus of 𝑞ଶ. Meanwhile, it implies that for any 𝑞 ∈ [𝑚,ℎ], the positive decision-maker tends to focus on a larger 
demand when he/she is given a larger replenishment quantity. Since 𝜋(𝑥) increases on [𝑙,𝑚] and decreases on [𝑚,ℎ], the 
following result is natural. 
 
Theorem 2. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1], 𝜋൫𝑥(𝑠, 𝑞)൯ equals to 𝜋(𝑚) for any 𝑞 ∈ [𝑙,𝑚] whenever 𝜑 > 0, 
and decreases as 𝑞 increases on [𝑚, ℎ].  
 
Theorem 2 illustrates that the relative likelihood function of the positive focus of 𝑞 is a quasi-concave function. When 𝜑 is 
sufficient small as per Lemma 1 (iii), it also holds when 0 < 𝜑 < ௨(௦,௠,௤)గ(௠)  for any 𝑞 ∈ [𝑙,ℎ]. Meanwhile, it still holds for any 
replenishment quantity 𝑞 ∈ [𝑙,𝑚] whenever 𝜑 > 0, in the case that we have 𝜋൫𝑥(𝑠, 𝑞)൯ = 𝜋(𝑚). To study the monotonicity 
of the function 𝑢(𝑠, 𝑥(𝑠, 𝑞),𝑞), we give the following lemma. 
 
Lemma 2. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1] and replenishment quantity 𝑞 ∈ [𝑚, ℎ], its positive focus 𝑥(𝑠, 𝑞) is 
determined as follows: 
 

(i) If 𝜑 > ௨(௦,௛,௛)గ(௛) , then 𝑥(𝑠, 𝑞) = 𝑞; 

(ii) If ௨(௦,௠,௠)గ(௠) ≤ 𝜑 ≤ ௨(௦,௛,௛)గ(௛) , then there is a unique solution 𝑥ఝ(𝑠)  for 𝑥 on the interval [𝑚, ℎ] to the equation 𝜑 ∗ 𝜋(𝑥) =𝑢(𝑠, 𝑥, 𝑥), such that 
 𝑥(𝑠, 𝑞) = ቊ𝑞,              for 𝑞 ∈ [𝑚, 𝑥ఝ],   𝑥௥(𝑠),      for 𝑞 ∈ (𝑥ఝ ,ℎ],     

 
where 𝑥௥(𝑠) is the unique solution to the equation 𝑢(𝑠, 𝑥, 𝑞) = 𝜑 ∗ 𝜋(𝑥) for 𝑥 on the interval [𝑚, 𝑞]; 
 

(iii) ௨(௦,௠,௛)గ(௠) ≤ 𝜑 < ௨(௦,௠,௠)గ(௠) , then there is a unique solution 𝑞ఝ(𝑠) for 𝑞 on the interval [𝑚,ℎ] to the equation 𝜑 ∗ 𝜋(𝑚) =𝑢(𝑠,𝑚, 𝑞), such that  𝑥(𝑠, 𝑞) = ቊ𝑚,                𝑓𝑜𝑟 𝑞 ∈ ൣ𝑚, 𝑞ఝ൧,𝑥௥(𝑠), 𝑓𝑜𝑟 𝑞 ∈ ൫𝑞ఝ,ℎ൧,  
where 𝑥௥(𝑠) is the unique solution to the equation 𝑢(𝑠, 𝑥, 𝑞) = 𝜑 ∗ 𝜋(𝑥) for 𝑥 on the interval [𝑚, 𝑞]; 
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(iv) 0 < 𝜑 < ௨(௦,௠,௛)గ(௠) , then 𝑥(𝑠, 𝑞) = 𝑚. 
 
Lemma 2 further derives the positive focus of the replenishment quantity 𝑞 on [𝑚,ℎ]. With the support from Lemma 1, we 
know that different positive focus arises within different ranges of parameter 𝜑. Moreover, the thresholds of 𝜑 that we can 
now pinpoint are independent of replenishment quantity. Lemma 2 can help the decision-maker (supplier) get managerial 
insights on how a supplier chooses the most salient demand given different replenishment quantities and how his/her 
personality traits that are reflected by the parameter 𝜑 can contribute to his/her behavioral decisions. With the assistance of 
Lemma 1, Theorem 1 and Lemma 2, we can further obtain the following result. 
 
Theorem 3. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1], the function 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is continuous and strictly quasi-
concave of 𝑞 on the interval [𝑙,ℎ]. 

(i) If 𝜑 > ௨(௦,௛,௛)గ(௛) , then 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑙,ℎ]. 
(ii) If ௨(௦,௠,௠)గ(௠) ≤ 𝜑 ≤ ௨(௦,௛,௛)గ(௛) , then 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on ൣ 𝑙, 𝑥ఝ൧ and decreasing on [𝑥ఝ(𝑠),ℎ] where 𝑥ఝ(𝑠) 

is the unique solution to the equation 𝑢(𝑠, 𝑥, 𝑥) = 𝜑 ∗ 𝜋(𝑥) for 𝑥 on [𝑚,ℎ]. 
(iii) If ௨(௦,௠,௛)గ(௠) ≤ 𝜑 < ௨(௦,௠,௠)గ(௠) , then 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑙,𝑚] and strictly decreasing on [𝑚, ℎ].  
(iv) If 0 < 𝜑 < ௨(௦,௠,௛)గ(௠) , then 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑙,𝑚] and strictly decreasing on [𝑚,ℎ]. 

 
We are ready to derive the optimal replenishment quantity of the inventory model, which is the solution to the upper level 
program (5). 
 
Theorem 4. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1], the optimal replenishment quantity 𝑞(𝑠) under the positive 
evaluation system and its corresponding optimal positive focus 𝑥(𝑠, 𝑞(𝑠)) are defined as follows:  

(i) When 𝜑 > ௨(௦,௛,௛)గ(௛) , 

𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = ⎩⎪⎨
⎪⎧ℎ,            if 𝜅 > ௨(௦,௛,௛)గ(௛) ,                    𝑥఑(𝑠),    if ௨(௦,௠,௠)గ(௠) ≤ 𝜅 ≤ ௨(௦,௛,௛)గ(௛)𝑚,           if 0 < 𝜅 < ௨(௦,௠,௠)గ(௠) .         , 

(ii) When ௨(௦,௠,௠)గ(௠) ≤ 𝜑 ≤ ௨(௦,௛,௛)గ(௛) , 

𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = ⎩⎪⎨
⎪⎧ 𝑥ఝ(𝑠),    if 𝜅 > 𝜑,                     𝑥఑(𝑠),    if 𝑢(𝑠,𝑚,𝑚)𝜋(𝑚) ≤ 𝜅 ≤ 𝜑,𝑚,          if 0 < 𝜅 < 𝑢(𝑠,𝑚,𝑚)𝜋(𝑚) .  

(iii) When 0 < 𝜑 < ௨(௦,௠,௠)గ(௠) , 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑚, ∀ 𝜅 > 0. 
Here, 𝑥ఝ(𝑠) is a unique solution to the equation 𝜑 ∗ 𝜋(𝑥) = 𝑢(𝑠, 𝑥, 𝑥) for 𝑥 on the interval [𝑚, ℎ], and 𝑥఑(𝑠) is a unique 
solution to the equation 𝜅 ∗ 𝜋(𝑥) = 𝑢(𝑠, 𝑥, 𝑥) for 𝑥 on the interval [𝑚, ℎ]. 
 
Theorem 4 shows the results of how a supplier makes his/her decisions under the positive evaluation system in a VMI program 
after identifying the focus at the first stage. It also illustrates that the optimal replenishment quantity must lie in the interval [𝑚,ℎ] under the positive evaluation system. Actually, this conclusion is intuitive and well-understood in decision-making 
because the replenishment quantity 𝑚 brings the highest likelihood and the highest satisfaction when the quantity 𝑞 is confined 
to the interval [𝑙,𝑚]. As mentioned earlier, we know that the parameter 𝜅 can reflect the confidence level of the supplier when 
he/she makes decisions under the positive evaluation system. These results of Theorem 4 effectively interpret the behavioral 
patterns of the supplier’s inventory decisions under the revenue-sharing contract mode. Based on the analysis of the above 
new supply chain model with the focus theory of choice, we achieve a perspective to understand how the supplier makes 
his/her replenishment decisions under the revenue-sharing contract mode by considering the optimism and confidence levels 
as well as the behavioral patterns. For any given sharing percentage 𝑠 ∈ [𝑐/𝑟, 1], we can specifically derive the optimal 
positive focus 𝑥(𝑠, 𝑞(𝑠)) and optimal replenishment quantity 𝑞(𝑠) for the supplier with focus theory of choice under the 
positive evaluation system with functions (2) and (3). The numerical results in Section 4 can help us to clearly understand 
how the supplier makes replenishment decisions by considering his/her optimism and confidence levels as well as the 
behavioral patterns.  
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3.2 Optimal sharing percentage for the retailer 
 
In the Stackelberg game of the new revenue-sharing contract model, the retailer needs to decide his/her optimal sharing 
percentage by conjecting the supplier’s replenishment decision. Thus, through maximizing his/her expected profits as the 
problem (6), we derive the optimal sharing percentage 𝑠∗ for the retailer and the optimal replenishment quantity 𝑞(𝑠∗) for the 
supplier in the game. Then, we analyze the existence of the optimal sharing percentage by solving the first and second 
derivatives of the objective function of problem (6). We denote the objective function of problem (6) as 𝐻(𝑠). The first and 
second derivatives of 𝐻(𝑠) with respect to 𝑠 can be given as follows:  
 𝐻ᇱ(𝑠) = 𝑟 ቄ׬ 𝐹(𝑥)𝑑𝑥 − 𝑞(𝑠) + (1 − 𝑠)௤(௦)௟ (𝑞(𝑠))ᇱ[1 − 𝐹(𝑞(𝑠))]ቅ,      (7) 𝐻ᇱᇱ(𝑠) = 𝑟[(1 − 𝑠)(𝑞(𝑠))ᇱᇱ − (𝑞(𝑠))ᇱ][1 − 𝐹(𝑞(𝑠))] −  𝑟(1 − 𝑠)𝑓(𝑞(𝑠))((𝑞(𝑠))ᇱ)ଶ.                             (8) 
 
Based on the Eqs. (7-8), we mainly consider three possible situations to analyze the existence of the optimal sharing percentage 
as follows. 
 
(i) If the objective function 𝐻(𝑠) is strictly increasing on the sharing percentage 𝑠, that is, its first derivative of 𝐻(𝑠) is strictly 
greater than 0 (𝐻ᇱ(𝑠) > 0), it illustrates that the retailer’s expected profit increases as the sharing percentage increases. Thus, 
the retailer needs to provide a maximal sharing percentage to maximize his/her expected profit in this situation. 
 
(ii) If the objective function 𝐻(𝑠) is strictly decreasing on the sharing percentage 𝑠, that is, its first derivative of 𝐻(𝑠) is 
strictly smaller than 0 (𝐻ᇱ(𝑠) < 0), it illustrates that the retailer’s expected profit decreases as the sharing percentage 
increases. Thus, the retailer needs to provide a minimal sharing percentage to maximize his/her expected profit in this situation. 
 
(iii) If the objective function 𝐻(𝑠) is a strictly concave function of the sharing percentage 𝑠, that is, its second derivative of 𝐻(𝑠) is smaller than 0 (𝐻ᇱᇱ(𝑠) < 0), and there exists a sharing percentage 𝑠଴ such that 𝐻ᇱ(𝑠଴) = 0, this situation illustrates 
that there exists a unique sharing percentage to maximize the retailer’s expected profit.  
 
4. Numerical examples and results analysis 
 
A fashion clothing company (supplier), located in China, is planning to replenish a new design dress for the clothing store 
(retailer) according to the revenue-sharing contract in a VMI program. For such an innovative product, the procurement lead 
time is usually longer than the selling season so that there is only one opportunity for the supplier to replenish the new dress. 
The rights and responsibilities of both parties are stipulated in the agreement: the supplier takes the responsibility for the 
replenishment and inventory of the new dress, and the retailer is loss-free and does not bear inventory costs. Therefore, the 
supplier bears not only the production cost, but also the risk of leftover inventory in the VMI program.  
 
4.1 Basic settings of the revenue-sharing contract model under the VMI program 
 
The revenue-sharing contract also specific relevant parameters: the unit selling price of the retailer is 𝑟 = 60 (RMB), the unit 
production cost of the supplier is 𝑐 = 15 (RMB), and the revenue sharing percentage is in the interval of [25%, 100%]. We 
assume that the market demand is a random variable whose support set is [100, 300] and the density function 𝑓(𝑥) is a 
symmetric triangular function and the most possible demand is 𝑚 = 200. Among two participants, the retailer is perfectly 
rational and self-interested, the supplier has optimistic personalities, which is evaluated by the focus theory of choice under 
the positive evaluation system. These parameters and supplier’s behavioral patterns are both common knowledge in this VMI 
program. Thus, the satisfaction level function of the supplier described by the Eq. (2) is 
 

𝑢(𝑠, 𝑥, 𝑞) = ൞𝑥 − 100200 + 300 − 𝑞800𝑠 , if 𝑥 < 𝑞,𝑞 − 100200 + 300 − 𝑞800𝑠 , if 𝑥 ≥ 𝑞. 
 

(9) 

 
The probability density function is 
 𝑓(𝑥) = ൜1 × 10ିସ𝑥 − 0.008,      if 100 ≤ 𝑥 < 200,−1 × 10ିସ𝑥 + 0.032,   if 200 ≤ 𝑥 ≤ 300. 
 

According to Eq. (3), the relative likelihood function of the supplier is 
 𝜋(𝑥) = ൞ 𝑥120 − 2/3,       if 100 ≤ 𝑥 < 200,− 𝑥120 + 8/3,   if 200 ≤ 𝑥 ≤ 300.  

(10) 
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Referring to the function of Eq. (9) and Eq. (10), we can derive the optimal replenishment quantity for the supplier under the 
positive evaluation system with the focus theory of choice (Theorem 4). The optimal replenishment quantity 𝑞(𝑠) under the 
positive evaluation system and its corresponding optimal positive focus 𝑥(𝑠, 𝑞(𝑠)) can be expressed as follows: 
 

(i) When 𝜑 ≥ 6, 

𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = ⎩⎪⎨
⎪⎧300 ,                                      if  𝜅 > 6,                      100(64𝜅𝑠 + 12𝑠 − 9)20𝜅𝑠 + 12𝑠 − 3 ,    if 18𝑠 + 12 ≤ 𝜅 ≤ 6,    200,                                       if  0 < 𝜅 < 18𝑠 + 12.     

(ii) When ଵ଼௦ + ଵଶ ≤ 𝜑 < 6, 

𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) =
⎩⎪⎪⎨
⎪⎪⎧100(64𝜑𝑠 + 12𝑠 − 9)20𝜑𝑠 + 12𝑠 − 3  ,   if  𝜅 > 𝜑,                      100(64𝜅𝑠 + 12𝑠 − 9)20𝜅𝑠 + 12𝑠 − 3 ,    if 18𝑠 + 12 ≤ 𝜅 ≤ 𝜑,   200,                                      if  0 < 𝜅 < 18𝑠 + 12.    

(iii) When 0 < 𝜑 < ଵ଼௦ + ଵଶ, 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 200, ∀ 𝜅 > 0. 
 
4.2 Optimal solutions of the revenue-sharing contract model under the VMI program 
 
According to above basic settings, we can obtain the optimal replenishment quantity for the supplier at different optimistic 
and confident levels in a VMI program. In the following part, we will specifically solve the value of optimal sharing percentage 𝑠∗, optimal replenishment quantity 𝑞(𝑠∗), the profits of the retailer 𝐻(𝑠∗), the satisfaction level of the supplier 𝑢(𝑠∗,𝑥(𝑠∗,𝑞(𝑠∗)), 𝑞(𝑠∗)) and the relative likelihood level of the supplier 𝜋(𝑥(𝑠∗, 𝑞(𝑠∗))) by setting the specific values of 𝜑 
and 𝜅. Setting 𝜑 = 0.5, 1.5, 3 and 9, we can obtain the following results with 𝜅 being 0.5, 1.5, 3 and 9 shown in Tables 1-4, 
respectively.  
 
Table 1  
Solutions of the proposed model with 𝜑 = 0.5 𝜅 𝑠∗ 𝑞(𝑠∗) 𝐻(𝑠∗) 𝑢(𝑠∗, 𝑥(𝑠∗,𝑞(𝑠∗)), 𝑞(𝑠∗)) 𝜋(𝑥(𝑠∗, 𝑞(𝑠∗))) 0.5 25% 200 7800 1 1 

1.5 25% 200 7800 1 1 
3 25% 200 7800 1 1 
9 25% 200 7800 1 1 

 
Table 2  
Solutions of the proposed model with 𝜑 = 1.5 𝜅 𝑠∗ 𝑞(𝑠∗) 𝐻(𝑠∗) 𝑢(𝑠∗, 𝑥(𝑠∗,𝑞(𝑠∗)), 𝑞(𝑠∗)) 𝜋(𝑥(𝑠∗, 𝑞(𝑠∗))) 0.5 25% 200 7800 1 1 

1.5 25% 240 11244 1 0.67 
3 25% 240 11244 1 0.67 
9 25% 240 11244 1 0.67 

 
Table 3  
Solutions of the proposed model with 𝜑 = 3 𝜅 𝑠∗ 𝑞(𝑠∗) 𝐻(𝑠∗) 𝑢(𝑠∗, 𝑥(𝑠∗,𝑞(𝑠∗)), 𝑞(𝑠∗)) 𝜋(𝑥(𝑠∗, 𝑞(𝑠∗))) 0.5 25% 200 7800 1 1 

1.5 25% 240 11244 1 0.67 
3 25% 280 15264 1 0.33 
9 25% 280 15264 1 0.33 

 
Table 4  
Solutions of the proposed model with 𝜑 = 9 𝜅 𝑠∗ 𝑞(𝑠∗) 𝐻(𝑠∗) 𝑢(𝑠∗, 𝑥(𝑠∗,𝑞(𝑠∗)), 𝑞(𝑠∗)) 𝜋(𝑥(𝑠∗, 𝑞(𝑠∗))) 0.5 25% 200 9000 1 1 

1.5 25% 240 11244 1 0.67 
3 25% 280 15264 1 0.33 
9 25% 300 17400 1 0.17 
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From Tables 1-4, we can solve the specific solutions to the new proposed revenue-sharing contract model under the VMI 
program. These results can also bring us the following three conclusions and management implications. The optimistic level 𝜑 and confidence level 𝜅 play an important role in determining the optimal replenishment quantity for the supplier under the 
positive evaluation system. For example, as shown in Table 1, if the supplier has a low optimistic level (𝜑 = 0.5), no matter 
what the value of 𝜅, he/she will take the most likely demand 200 as the optimal replenishment quantity. In this situation, the 
retailer can voluntarily compensate the supplier with an additional percentage of revenue after demand realization, which may 
improve the performance of both parties. There is also an extreme case that if the supplier is sufficiently optimistic and 
confident (both 𝜑 and 𝜅 take large values, as shown in Table 4), he/she will select the highest demand 300 as the optimal 
replenishment quantity. For such a positive and confident supplier, the retailer still needs to share a certain percentage of the 
revenue because of the inequality in the VMI program. If the supplier has a moderate optimistic level and confidence level 
(both 𝜑 and 𝜅 take the middle value) as Tables 2-3 shown, he/she will take the value between 200 and 300 as the optimal 
quantity. In general, these results are basically consistent with the analysis of Theorem 4, which is intuitive and understandable 
in real transactions. Meanwhile, they can also provide managerial insights into the retailer’s strategic selections of optimal 
sharing percentage when he/she faces suppliers with different personalities. The optimal replenishment quantity generally 
increases as the optimal sharing percentage increases, excluding some extreme cases (the supplier has high or low optimistic 
and confident levels simultaneously). It illustrates that the retailer can offer a higher percentage to better motivate the supplier 
because of the inequality in a VMI program. Moreover, it should be noted that the profit of the retailer 𝐻(𝑠∗) also has a 
positive relationship with the optimal sharing percentage 𝑠∗. It can explain that if the retailer can offer a higher percentage, 
this action will benefit both parties of the supplier and the retailer, which effectively embodies the spirit of cooperation in a 
VMI program. In the literature of Zhao et al. (2019), it proposes that the retailer may present equality preference with 
adjustment, and the sharing percentage should be about 50%. Otherwise, it will lead to the breakdown of the cooperative 
relationship because the supplier may exhibit fairness concerns. The results of this paper are generally consistent with this 
experiment. And the difference of parameters in the transaction may affect the final equilibrium result. 
 
4.3 Comparisons with traditional revenue-sharing contract model 
 
In the classic revenue-sharing contract model, the supplier and retailer are both assumed to be perfectly rational and self-
interested, the equilibrium of the game are mostly predicted by maximizing their own expected profits. Following the standard 
analysis, the optimal replenishment quantity of the supplier can be given as follows:  
 𝑞∗(𝑠) = ൝0,                                  if 𝑠 < 25%,𝐹ିଵ ൬60𝑠 − 1560𝑠 ൰ ,      if 𝑠 ≥ 25%. 
Thus, similar to the table frame of above section, the specific results of the traditional revenue-sharing contract model can be 
given as follow. 
 
Table 5  
Solutions of traditional revenue-sharing contract model 𝑠∗ 𝑞(𝑠∗) 𝐻(𝑠∗) 

25% 100 4500 
 

Under the traditional revenue-sharing contract model, the expected profits are mainly predicted by equilibrium outcomes in 
game, with a perfectly rational and self-interested decision maker aiming to maximize their own profits. As shown in Table 5, 
the theoretical optimal replenishment quantity of the supplier is 100, which is inconsistent with our numerical results. Instead 
of considering all events of a lottery simultaneously, our research suppose that the supplier can choose one most salient event 
under the positive evaluation system with the focus theory of choice for his/her limited attention. By considering the relative 
likelihood function and satisfaction level simultaneously, the supplier can select one optimal quantity, which is most 
appropriate for him. Compared with traditional research of the revenue-sharing percentage, our research consider that the 
supplier may have different personalities and the positive and confidence index may affect their decision-making in a VMI 
program. 
 
5. Conclusions 
 
In this research, we construct a new revenue-sharing contract model with the focus theory of the choice framework in a VMI 
program. Unlike the traditional model with the expected utility where the optimal replenishment quantity and the optimal 
sharing percentage are obtained based on the weighted average of all payoffs, our decision-making is a procedural rational 
process and based on event-based thinking. This procedure can be divided into two steps: in the first step, for each potential 
replenishment quantity, the supplier selects the positive focus while considering the relative likelihood and satisfaction level; 
in the second step, based on relevant foci of all replenishment quantities, the supplier selects a most-preferred quantity. 
Meanwhile, we construct a Stackelberg game in a two-tier VMI supply chain consisting of one supplier and one retailer. 
Theoretical analysis provides a new perspective to the strategic selection of the retailer when he/she faces suppliers with 
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different personalities, which may result in different Stackelberg equilibrium. There are several contributions that this research 
distinguishes from the previous work. First, we demonstrate that the optimal replenishment quantity of the supplier generally 
increases as the optimal sharing percentage increases under the positive evaluation system like under the traditional model 
mode. Second, the analysis also illustrates that optimistic and confident levels of the supplier both affect the determination of 
optimal replenishment quantity and optimal sharing percentage. We find that when the supplier is sufficiently optimistic and 
confident, he/she will replenish a large quantity although the retailer shares a low percentage of the revenue. In other extremes, 
when the supplier is sufficiently low optimistic and confident, he/she will replenish the most possible demand no matter what 
the value of sharing percentage. In these situations, we encourage the retailer to voluntarily compensate the supplier with an 
additional percentage of revenue in a VMI program after demand realization, which may improve the long-term and 
sustainable development of cooperation relationships. Third, our model employs the focus theory of choice framework in the 
revenue-sharing contract model and theoretical analysis provides new ideas for solving optimal solutions and shows some 
properties of them. 
  
This research enriches the literature of revenue-sharing contract models and can be extended from several other directions. 
First, this research only considers the positive evaluation system with the focus theory of choice framework, the negative 
evaluation system can be also investigated. Second, this work considers the revenue-sharing contract model, which is only 
one form of other supply chain contract models. Thus, the application of the focus theory of choice framework can be extended 
to other forms of contracts or new contract design. Third, this research focuses on the two-tier supply chain with one supplier 
and one retailer, more complicated supply chain with multiple participants can be observed. 
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Appendix A 
 
Proof of Lemma 1. For any replenishment quantity 𝑞 ∈ [𝑙, ℎ], as 𝑢(𝑠, 𝑞, 𝑞) ≥ 𝑢(𝑠,𝑚, 𝑞) and 0 < 𝜋(𝑞) ≤ 𝜋(𝑚), we have ௨(௦,௤,௤)గ(௤) ≥ ௨(௦,௠,௤)గ(௠) . 
  
(i) If any replenishment quantity 𝑞 ∈ [𝑙,𝑚],  we know that 𝑢(𝑠, 𝑥, 𝑞) stays the same on [𝑞,𝑚] and 𝜑 ∗ 𝜋(𝑥) strictly increase 
on [𝑞,𝑚] for the monotonicity of 𝑢(𝑠, 𝑥, 𝑞) and 𝜋(𝑥). For any 𝑥 ≠ 𝑚, as 𝜑 ∗ 𝜋(𝑞) > 𝑢(𝑠, 𝑞, 𝑞), we have 𝜑 ∗ 𝜋(𝑚) > 𝜑 ∗𝜋(𝑥), 𝜑 ∗ 𝜋(𝑚) > 𝑢(𝑠,𝑚, 𝑞) and 𝑢(𝑠,𝑚, 𝑞) = 𝑢(𝑠, 𝑥, 𝑞) for 𝑥 ∈ [𝑞,𝑚]. Hence, we can obtain that min{𝜑 ∗𝜋(𝑚),𝑢(𝑠,𝑚, 𝑞)} = 𝑢(𝑠,𝑚, 𝑞) ≥ 𝑢(𝑠, 𝑥, 𝑞) ≥ min{𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑥, 𝑞)}. Based on (5) and the definition of the positive 
focus, we have 𝑥(𝑠, 𝑞) = 𝑚. Then, if any replenishment quantity 𝑞 ∈ (𝑚,ℎ], for any 𝑥 ≠ 𝑞, as 𝜑 ∗ 𝜋(𝑞) > 𝑢(𝑠, 𝑞, 𝑞),we have min{𝜑 ∗ 𝜋(𝑞),𝑢(𝑠, 𝑞, 𝑞) } = 𝑢(𝑠, 𝑞, 𝑞) > 𝑢(𝑠, 𝑥, 𝑞) ≥ min{𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑥, 𝑞)}. Based on (5) and the definition of the 
positive focus, we have the positive focus 𝑥(𝑠, 𝑞) = 𝑞. 
 
(ii) If any replenishment quantity 𝑞 ∈ [𝑙,𝑚], for any 𝑥 ≠ 𝑚, as 𝜑 ∗ 𝜋(𝑚) ≥ 𝑢(𝑠,𝑚, 𝑞) and 𝜑 ∗ 𝜋(𝑞) ≤ 𝑢(𝑠, 𝑞, 𝑞), we know 
that 𝑢(𝑠, 𝑥, 𝑞) stays the same on [𝑞,𝑚] and 𝜑 ∗ 𝜋(𝑥) strictly increase on [𝑞,𝑚] for the monotonicity of 𝑢(𝑠, 𝑥, 𝑞) and 𝜋(𝑥). 
Thus, we have min{𝜑 ∗ 𝜋(𝑚),𝑢(𝑠,𝑚, 𝑞) } = 𝑢(𝑠,𝑚, 𝑞) ≥ 𝑢(𝑠, 𝑥, 𝑞) ≥ min{𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑥, 𝑞)}. Based on (5) and the 
definition of the positive focus, we have 𝑥(𝑠, 𝑞) = 𝑚. For any replenishment quantity 𝑞 ∈ (𝑚,ℎ] , as 𝑢(𝑠, 𝑞, 𝑞) ≥ 𝜑 ∗ 𝜋(𝑞) 
and 𝑢(𝑠,𝑚, 𝑞) ≤ 𝜑 ∗ 𝜋(𝑚), we know that 𝑢(𝑠, 𝑥, 𝑞) strictly increases on (𝑚, 𝑞] and 𝜑 ∗ 𝜋(𝑥) strictly decreases on (𝑚, 𝑞]. 
Thus, there exists a unique solution to the equation 𝑢(𝑠, 𝑥, 𝑞) = 𝜑 ∗ 𝜋(𝑥) for 𝑥 on [𝑚, 𝑞], denoted by 𝑥௥(𝑠, 𝑞,𝜑). For any 𝑥 ≠𝑥௥(𝑠, 𝑞,𝜑), we have min{𝜑 ∗ 𝜋(𝑥௥(𝑠, 𝑞,𝜑)),𝑢௦(𝑥௥(𝑠, 𝑞,𝜑), 𝑞) } > min{𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑥, 𝑞)}, which means 𝑥(𝑠, 𝑞) =𝑥௥(𝑠, 𝑞,𝜑). 
  
(iii) For any demand 𝑥 ≠ 𝑚, as 𝜑 ∗ 𝜋(𝑚) < 𝑢(𝑠,𝑚, 𝑞), we can have min{𝜑 ∗ 𝜋(𝑚),𝑢(𝑠,𝑚, 𝑞)} = 𝜑 ∗ 𝜋(𝑚) >𝜑 ∗ 𝜋(𝑥) ≥ min{𝜑 ∗ 𝜋(𝑥),𝑢(𝑠, 𝑥, 𝑞)}. It means that 𝑥(𝑠, 𝑞) = 𝑚.                                                         
 
Proof of Theorem 1. According to Lemma 1, for any 𝑞 ∈ [𝑙,𝑚], we know that 𝑥(𝑠, 𝑞) = 𝑚 whatever 𝜑 > 0. Thus, the 
positive focus 𝑥(𝑠, 𝑞) is independent of replenishment quantity 𝑞 in this case. 
 
In the case of 𝑞 ∈ [𝑚, ℎ], we have 𝑥(𝑠,𝑚) = 𝑚 whenever 𝜑 > 0. let 𝑞ଵ, 𝑞ଶ ∈ [𝑚,ℎ] and 𝑞ଵ < 𝑞ଶ. From Lemma 1, we know 𝑥(𝑠, 𝑞௜) ∈ [𝑚, 𝑞௜] for 𝑖 = 1, 2. Then, contradictions can be used to show the proof in the following. Suppose 𝑥(𝑠, 𝑞ଵ) >𝑥(𝑠, 𝑞ଶ), then we have 𝑚 ≤ 𝑥(𝑠, 𝑞ଶ) < 𝑥(𝑠, 𝑞ଵ) ≤ 𝑞ଵ < 𝑞ଶ ≤ ℎ. By the definitions of 𝑣(𝑠, 𝑥, 𝑞) and 𝑢(𝑠, 𝑥, 𝑞), it is easy to 
verify that  
 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ),𝑞ଵ) > 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ),𝑞ଶ)                  (A.1) 
 
and 
 𝑢(𝑠, 𝑥(𝑠, 𝑞ଶ), 𝑞ଶ) < 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ),𝑞ଶ) (A.2) 
 

                 
Considering 𝑥(𝑠, 𝑞ଵ) > 𝑚, it follows from Lemma 1 that this situation is either  𝜑 > ௨(௦,௤భ,௤భ)గ(௤భ)   or  ௨(௦,௠,௤భ)గ(௠) ≤ 𝜑 ≤ ௨(௦,௤భ,௤భ)గ(௤భ)  

and if 𝜑 > ௨(௦,௤భ,௤భ)గ(௤భ) , we have 𝑥(𝑠, 𝑞ଵ) = 𝑞ଵ, otherwise 𝑥(𝑠, 𝑞ଵ) satisfies the equation 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ), 𝑞ଵ) = 𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଵ)). In 
either of above situation, we have 
 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ),𝑞ଵ) ≤ 𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଵ)) (A.3) 
 
Combining (A.3) and (A.1), it results in 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ),𝑞ଶ) < 𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଵ)). Since 𝑥(𝑠, 𝑞ଶ) ∈ 𝑋(𝑠, 𝑞ଶ) and 𝑥(𝑠, 𝑞ଵ) ≠𝑥(𝑠, 𝑞ଶ), we further have  
 𝑢(𝑠, 𝑥(𝑠, 𝑞ଶ),𝑞ଶ) ≥ min{𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଶ),𝑢(𝑠, 𝑥(𝑠, 𝑞ଶ), 𝑞ଶ)} > min{𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଵ),𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ), 𝑞ଶ)}  = 𝑢(𝑠, 𝑥(𝑠, 𝑞ଵ), 𝑞ଶ)                                                                                                     
It is clear that (A.3) and (A.2) contract each other. Thus, for any 𝑞ଵ, 𝑞ଶ ∈ [𝑚,ℎ], if 𝑞ଵ < 𝑞ଶ, then 𝑥(𝑠,𝑚) ≤x(𝑠, 𝑞ଵ) ≤ 𝑥(𝑠, 𝑞ଶ). 
Over the above discussion, the Theorem 1 can be proved.   
 
Proof of Lemma 2. According to the definitions of relative likelihood function and satisfaction functions, we know that 𝜋(𝑥) 
is strictly decreasing and 𝑢(𝑠, 𝑥, 𝑥) is strictly increasing on the 𝑞 ∈ [𝑚, ℎ]. 
 
(i) If 𝜑 > ௨(௦,௛,௛)గ(௛)  𝑎𝑛𝑑 𝑞 ∈ [𝑚,ℎ], we have 𝜑 > ௨(௦,௛,௛)గ(௛) ≥ ௨(௦,௤,௤)గ(௤) . According to the Lemma 1 (i), we know that 𝑥(𝑠, 𝑞) = 𝑞. 
Thus, 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) = 𝑢(𝑠, 𝑞, 𝑞). 
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(ii) If ௨(௦,௠,௠)గ(௠) ≤ 𝜑 ≤ ௨(௦,௛,௛)గ(௛) , then there is a unique solution 𝑥ఝ(𝑠) for 𝑥 on [𝑚, ℎ] to the equation 𝜑 ∗ 𝜋(𝑥) = 𝑢(𝑠, 𝑥, 𝑥) for 
the monotonicity of 𝑢(𝑠, 𝑥, 𝑥) and 𝜋(𝑥). In the case of 𝑞 ∈ [𝑚, 𝑥ఝ], as 𝜑 ∗ 𝜋(𝑞) > 𝑢(𝑠, 𝑞, 𝑞), we have 𝑥(𝑠, 𝑞) = 𝑞 as the 
result of Lemma 1(i). In the case of 𝑞 ∈ (𝑥ఝ(𝑠),ℎ], we have 𝜑 = ௨(௦,௫ക(௦),௫ക(௦))గ(௫ക(௦)) ≤ ௨(௦,௤,௤)గ(௤)  and 𝜑 ≥ ௨(௦,௠,௠)గ(௠) ≥ ௨(௦,௠,௤)గ(௠) . From 

Lemma 1(ii), we know that there is a unique solution  𝑥௥(𝑠) to the equation of 𝑢(𝑠, 𝑥, 𝑞) = 𝜑 ∗ 𝜋(𝑥) over 𝑥 ∈ [𝑚, ℎ]. Then, 
we have 𝑥(𝑠, 𝑞) =  𝑥௥(𝑠). In addition, 𝑥൫𝑠, 𝑥ఝ(𝑠)൯ = 𝑥ఝ(𝑠). 
 
(iii) If ௨(௦,௠,௛)గ(௠) ≤ 𝜑 < ௨(௦,௠,௠)గ(௠) , since 𝑢(𝑠,𝑚, 𝑥) is strictly decreasing over 𝑞 ∈ [𝑚, ℎ], then there exists a unique solution 𝑞ఝ(𝑠) 
for 𝑞 on [𝑚, ℎ] to the equation 𝜑 ∗ 𝜋(𝑚) = 𝑢(𝑠,𝑚, 𝑞). In the case of 𝑞 ∈ ൣ𝑚, 𝑞ఝ(𝑠)൧, as 𝜑 ∗ 𝜋(𝑚) < 𝑢(𝑠,𝑚, 𝑞), it can be 
referred as Lemma 1(iii) that 𝑥(𝑠, 𝑞) = 𝑚. In the case of the quantity 𝑞 ∈ ൫𝑞ఝ(𝑠),ℎ൧, as 𝜑 ∗ 𝜋(𝑚) = 𝑢(𝑠,𝑚, 𝑞ఝ(𝑠)), we can 
have 𝜑 = ௨(௦,௠,௤ക(௦))గ(௠) ≥ ௨(௦,௠,௤)గ(௠)  and 𝜑 = ௨(௦,௠,௤ക(௦))గ(௠) ≤ ௨(௦,௠,௠)గ(௠) ≤ ௨(௦,௤,௤)గ(௤) . From Lemma 1(ii), we have 𝑥(𝑠, 𝑞) =  𝑥௥(𝑠). 

Additionally, we have 𝑥൫𝑠, 𝑞ఝ(𝑠)൯ = 𝑚. 
 
(iv) If 0 < 𝜑 < ௨(௦,௠,௛)గ(௠) , then we have 𝜑 ∗ 𝜋(𝑚) < 𝑢(𝑠,𝑚,ℎ) ≤ 𝑢(𝑠,𝑚, 𝑞) for 𝑞 ∈ [𝑚,ℎ]. From Lemma 1(iii), we know that 𝑥(𝑠, 𝑞) = 𝑚.   
     
Proof of Theorem 3. According to (1), we know that 𝑣(𝑠, 𝑥(𝑠, 𝑞), 𝑞) = min {𝑟 ∗ 𝑠 ∗ 𝑥(𝑠, 𝑞) − 𝑐 ∗ 𝑞, 𝑟 ∗ 𝑠 ∗ 𝑞 − 𝑐 ∗ 𝑞}. Since 𝑥(𝑠, 𝑞) is continuous on [𝑙,ℎ], then 𝑣(𝑠, 𝑥(𝑞), 𝑞) is also continuous. Considering the definition of satisfaction function, we 
know that 𝑢(𝑠, 𝑥(𝑞), 𝑞) is also a continuous function of 𝑞 on [𝑙, ℎ]. In order to show the monotonicity of 𝑢(𝑠, 𝑥(𝑞), 𝑞), we 
separate [𝑙,ℎ] into two intervals: [𝑙,𝑚] and [𝑚,ℎ]. In the following proof, we consider the two cases respectively. 
 
Case 1. For 𝑞 ∈ [𝑙,𝑚], we have 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) = 𝑢(𝑠,𝑚, 𝑞) as Lemma 1 described. Thus, 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly 
increasing on [𝑙,𝑚] whenever 𝜑 > 0 for the monotonicity of 𝑣(𝑠, 𝑥(𝑠, 𝑞), 𝑞). 
 
Case 2. It follows from Lemma 1 that 𝑥(𝑠,𝑚) = 𝑚 whenever 𝜑 > 0. In the following, as Lemma 2 described above, we 
considering the monotonicity of 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) for cases (i), (ii), (iii) and (iv), respectively. 
 
(i) If 𝜑 > ௨(௦,௛,௛)గ(௛)  and 𝑞 ∈ [𝑚,ℎ], we have the focus demand 𝑥(𝑠, 𝑞) = 𝑞. As noted earlier, 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) = 𝑢(𝑠, 𝑞, 𝑞) is 
strictly increasing on [𝑚,ℎ]. Considering the continuity of 𝑢(𝑠,𝑥(𝑠, 𝑞), 𝑞) and Case 1, we know that 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly 
increasing on [𝑙,ℎ]. 
 
(ii) Since 𝑚 < 𝑥ఝ(𝑠) ≤ ℎ, we divide [𝑚,ℎ] into the following two intervals: [𝑚, 𝑥ఝ(𝑠)] and (𝑥ఝ(𝑠), ℎ]. In what follows, we 
consider the two cases respectively. 
 
(ii.a) For any 𝑞 ∈ [𝑚, 𝑥ఝ(𝑠)], it follows from Lemma 2(ii) that 𝑥(𝑠, 𝑞) = 𝑞. Clearly, 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) = 𝑢(𝑠, 𝑞, 𝑞) is strictly 
increasing on [𝑚, 𝑥ఝ]. 
 
(ii.b) Let 𝑞ଷ,𝑞ସ ∈ (𝑥ఝ(𝑠), ℎ] and 𝑞ଷ < 𝑞ସ. As per Lemma 1, we have 𝑥(𝑠, 𝑞௜) ≤ 𝑞௜ for 𝑖 = 3,4. By the definition of (1), we 
know that (8) holds for 𝑖 = 3,4. If 𝑥(𝑠, 𝑞ଷ) < 𝑥(𝑠, 𝑞ସ), as per Lemma 2(ii), we can have 𝑢(𝑠, 𝑥(𝑠, 𝑞௜), 𝑞) = 𝜑 ∗𝜋(𝑥(𝑠, 𝑞௜))for𝑖 = 3,4 and hence 𝑢(𝑥(𝑠, 𝑞ଷ), 𝑞ଷ) = 𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ଷ))> 𝜑 ∗ 𝜋(𝑥(𝑠, 𝑞ସ))= 𝑢(𝑥(𝑠, 𝑞ସ),𝑞ସ). If 𝑥(𝑠, 𝑞ଷ) =𝑥(𝑠, 𝑞ସ), (8) results in 𝑢(𝑠, 𝑥(𝑠, 𝑞ଷ), 𝑞ଷ) > 𝑢(𝑠, 𝑥(𝑠, 𝑞ସ),𝑞ସ) due to 𝑞ଷ < 𝑞ସ and hence, we have 𝑢(𝑠, 𝑥(𝑠, 𝑞ଷ),𝑞ଷ) >𝑢(𝑠, 𝑥(𝑠, 𝑞ଷ),𝑞ଷ). 
 
In summary, Case 1, (i) and (ii.a) show that the function 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑙, 𝑥ఝ(𝑠)], case (ii.b) show 
that 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly decreasing on [𝑥ఝ(𝑠), ℎ]. 
 
(iii) Since 𝑚 ≤ 𝑞ఝ(𝑠) ≤ ℎ, we divide [𝑚, ℎ] into the following two intervals: [𝑚, 𝑞ఝ(𝑠)] and (𝑞ఝ(𝑠),ℎ]. In what follows, we 
consider the two cases respectively. 
 
(iii.a) For any 𝑞 ∈ [𝑚, 𝑞ఝ(𝑠)], as Lemma 2(iii) described, then 𝑥(𝑠, 𝑞) = 𝑚. Thus, 𝑢(𝑠,𝑚, 𝑞) is strictly decreasing on [𝑚, 𝑞ఝ(𝑠)] for the definition of 𝑣(𝑠, 𝑥, 𝑞) 𝑎𝑛𝑑 𝑢(𝑠, 𝑥, 𝑞). 
 
(iii.b) Let 𝑞ହ, 𝑞଺ ∈ (𝑞ఝ(𝑠), ℎ] and 𝑞ହ < 𝑞଺. As per Lemma 1, we have 𝑥(𝑠, 𝑞௜) ≤ 𝑞௜ for 𝑖 = 5, 6. By the definition of (1), for 𝑖 = 5,6, we have 
 𝑣(𝑠, 𝑥(𝑠, 𝑞௜), 𝑞) = 𝑟 ∗ 𝑠 ∗ 𝑥(𝑠, 𝑞௜) − 𝑐 ∗ 𝑞.   (A.4) 
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If 𝑥(𝑠, 𝑞ହ) < 𝑥(𝑠, 𝑞଺), as per Lemma 2 (iii), we have 𝑢(𝑠, 𝑥(𝑠, 𝑞௜), 𝑞) = 𝜑 ∗ 𝜋(𝑥(𝑠,𝑞௜)) for 𝑖 = 5, 6 and hence 𝑢(𝑠, 𝑥(𝑠, 𝑞ହ),𝑞ହ) = 𝜑 ∗ 𝜋൫𝑥(𝑠,𝑞ହ)൯ > 𝜑 ∗ 𝜋൫𝑥(𝑠, 𝑞଺)൯ = 𝑢(𝑠, 𝑥(𝑠, 𝑞଺),𝑞଺). If 𝑥(𝑠, 𝑞ହ) = 𝑥(𝑠, 𝑞଺), (A.4) results in 𝑢(𝑠, 𝑥(𝑠, 𝑞ହ),𝑞ହ) > 𝑢(𝑠, 𝑥(𝑠, 𝑞଺),𝑞଺) due to 𝑞ହ < 𝑞଺ and hence, we have 𝑢(𝑠, 𝑥(𝑠, 𝑞ହ), 𝑞ହ) > 𝑢(𝑠, 𝑥(𝑠, 𝑞଺),𝑞଺). 
 
In summary, Case 1 shows that the function 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑙,𝑚], and (iii) shows that 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) 
is strictly decreasing on [𝑚,ℎ]. 
 
(iv) For any 𝑞 ∈ [𝑚, ℎ], it follows from Lemma 2(iv) that 𝑥(𝑠, 𝑞) = 𝑚. It is easy to verify from the definition of (1) that 𝑣(𝑠, 𝑥, 𝑞) = 𝑣(𝑠,𝑚,𝑞) is strictly decreasing on [𝑚, ℎ]. Considering the definition of satisfaction function, we know that 𝑢(𝑠,𝑚, 𝑞) is strictly decreasing on [𝑚,ℎ]. In summary, the function 𝑢(𝑠, 𝑥, 𝑞) is strictly increasing on [𝑙,𝑚] and strictly 
decreasing on [𝑚, ℎ].  
 
Proof of Theorem 4. In view of above lemmas and theorems, we know that 𝜋൫𝑥(𝑠,𝑚)൯ = 𝜋൫𝑥(𝑠, 𝑞)൯ and 𝑢(𝑠, 𝑥(𝑠,𝑚),𝑚) >𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) whenever 𝜑 > 0. This means that 𝑞(𝑠) will not exist in the interval [𝑙,𝑚). Thus, we only need to consider the 
interval [𝑚,ℎ] in the following proof. 
 
(i) When the parameter 𝜑 > ௨(௦,௛,௛)గ(௛) , we have 𝑥(𝑠, 𝑞) = 𝑞 for any quantity 𝑞 ∈ [𝑚,ℎ] referring to Lemma 2(i). As described 
above, 𝜋(𝑥) is strictly decreasing and 𝑢(𝑠, 𝑥, 𝑥) is strictly increasing on the interval [𝑚, ℎ] in this scenario. 
 
(i.a) If 𝜅 > ௨(௦,௛,௛)గ(௛) , we have min൛𝜅 ∗ 𝜋൫𝑥(𝑠, ℎ)൯,𝑢(𝑠, 𝑥(𝑠,ℎ),ℎ)ൟ = 𝑢(𝑠, ℎ,ℎ) > 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) ≥ min {𝜅 ∗𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)}. Based on Lemma 2, this means 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = ℎ. 
 
(i.b) If ௨(௦,௠,௠)గ(௠) ≤ 𝜅 ≤ ௨(௦,௛,௛)గ(௛) , there exists a unique solution 𝑥఑(𝑠) to the equation 𝜅 ∗ 𝜋(𝑥) = 𝑢(𝑠, 𝑥, 𝑥) on [𝑚,ℎ]. For any 
replenishment quantity 𝑞 ∈ [𝑚, 𝑥఑(𝑠)) ∪ (𝑥఑(𝑠),ℎ], we can also have min൛𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑥఑(𝑠))൯,𝑢(𝑠, 𝑥(𝑠, 𝑥఑(𝑠)), 𝑥఑(𝑠))ൟ =min{𝜅 ∗ 𝜋(𝑥఑(𝑠)),𝑢(𝑠, 𝑥఑(𝑠), 𝑥఑(𝑠))} > min {𝜅 ∗ 𝜋(𝑞),𝑢(𝑠, 𝑞, 𝑞)} = min {𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)}. This means 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑥఑(𝑠) in this situation. 
 
(i.c) If 0 < 𝜅 < ௨(௦,௠,௠)గ(௠) , for any replenishment quantity 𝑞 ∈ (𝑚, ℎ], we can have min൛𝜅 ∗ 𝜋൫𝑥(𝑠,𝑚)൯,𝑢(𝑠, 𝑥(𝑠,𝑚),𝑚)ൟ =𝜅 ∗ 𝜋(𝑚) > 𝜅 ∗ 𝜋(𝑞) ≥ min {𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)}. This means 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑚 in this situation. 
 
(ii) When ௨(௦,௠,௠)గ(௠) ≤ 𝜑 ≤ ௨(௦,௛,௛)గ(௛) , we know that 𝜋൫𝑥(𝑠, 𝑞)൯ is decreasing on the interval [𝑚, ℎ] as Theorem 2 described, and 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) is strictly increasing on [𝑚, 𝑥ఝ(𝑠)] and strictly decreasing on [𝑥ఝ(𝑠),ℎ] as Theorem 3 described. Thus, this 
means that 𝑞(𝑠) will only lie in the interval [𝑚, 𝑥ఝ(𝑠)]. We only consider this scenario in the following proof. Moreover, we 
have 𝑥(𝑠, 𝑞) = 𝑞 for any 𝑞 ∈ [𝑚, 𝑥ఝ(𝑠)] as Lemma 2(ii) described. 
 
(ii.a) If the confidence index 𝜅 > 𝜑 = ௨(௦,௫ക(௦),௫ക(௦))గ(௫ക(௦)) , we can have min ቄ𝜅 ∗ 𝜋 ቀ𝑥൫𝑠, 𝑥ఝ(𝑠)൯ቁ ,𝑢൫𝑠, 𝑥൫𝑠, 𝑥ఝ(𝑠)൯, 𝑥ఝ(𝑠)൯ቅ =𝑢൫𝑠, 𝑥൫𝑠, 𝑥ఝ(𝑠)൯, 𝑥ఝ(𝑠)൯ > 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) ≥ min {𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)} for any 𝑞 ∈ [𝑚, 𝑥ఝ(𝑠)). Thus, this means 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑥ఝ(𝑠) in this situation. 
 
(ii.b) If 𝜑 ≤ 𝜅 ≤ ௨(௦,௠,௠)గ(௠) , we have 𝑥(𝑠, 𝑞) = 𝑞 for any 𝑞 ∈ ൣ𝑚, 𝑥ఝ(𝑠)൧ as Lemma 2(ii) described. Since 𝜅 ∗ 𝜋൫𝑥(𝑠,𝑚)൯ = 𝜅 ∗𝜋(𝑚) ≥ 𝑢(𝑠,𝑚,𝑚) = 𝑢(𝑠, 𝑥(𝑠,𝑚),𝑚) and 𝜅 ∗ 𝜋 ቀ𝑥൫𝑠, 𝑥ఝ(𝑠)൯ቁ = 𝜅 ∗ 𝜋൫𝑥ఝ(𝑠)൯ ≤ 𝜑 ∗ 𝜋൫𝑥ఝ(𝑠)൯ = 𝑢൫𝑠, 𝑥ఝ(𝑠), 𝑥ఝ(𝑠)൯ =𝑢൫𝑠, 𝑥൫𝑠, 𝑥ఝ(𝑠)൯, 𝑥ఝ(𝑠)൯, there exists a unique solution to the equation 𝜅 ∗ 𝜋(𝑥) = 𝑢(𝑠, 𝑥, 𝑥), which can be denoted by 𝑥఑(𝑠). 
Thus, we can have min൛𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑥௞(𝑠))൯,𝑢(𝑠, 𝑥(𝑠, 𝑥௞(𝑠)),𝑥௞(𝑠))ൟ = 𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑥௞(𝑠))൯ = 𝜅 ∗ 𝜋(𝑥௞(𝑠)) > 𝜅 ∗ 𝜋(𝑞) =𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯ ≥ min൛𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠,𝑥(𝑠, 𝑞), 𝑞)ൟ that holds for any quantity 𝑞 ∈ [𝑚, 𝑥௞(𝑠)) and min൛𝜅 ∗𝜋൫𝑥(𝑠, 𝑥௞(𝑠))൯,𝑢(𝑠, 𝑥(𝑠, 𝑥௞(𝑠)), 𝑥௞(𝑠))ൟ = 𝑢(𝑠, 𝑥(𝑠, 𝑥௞(𝑠)), 𝑥௞(𝑠)) > 𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) ≥ min൛𝜅 ∗𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)ൟ that holds for any 𝑞 ∈ (𝑥௞(𝑠), 𝑥ఝ(𝑠)]. This means 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑥఑(𝑠) in this situation. 
 
(ii.c) If 0 < 𝜅 < ௨(௦,௠,௠)గ(௠) , we also have 𝑥(𝑠, 𝑞) = 𝑞 for any 𝑞 ∈ ൣ𝑚, 𝑥ఝ(𝑠)൧ as Lemma 2(ii) described. Sincemin൛𝜅 ∗𝜋൫𝑥(𝑠,𝑚)൯,𝑢(𝑠, 𝑥(𝑠,𝑚),𝑚)ൟ = 𝜅 ∗ 𝜋(𝑚) > 𝜅 ∗ 𝜋(𝑞) = 𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯ ≥ min൛𝜅 ∗ 𝜋൫𝑥(𝑠, 𝑞)൯,𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞)ൟ holds for 
any 𝑞 ∈ (𝑚, 𝑥ఝ(𝑠)], we have 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑚 in this situation. 
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(iii) When 0 < 𝜑 < ௨(௦,௠,௠)గ(௠) , we have 𝜋൫𝑥(𝑠,𝑚)൯ ≥ 𝜋൫𝑥(𝑠, 𝑞)൯ for any 𝑞 ∈ (𝑚, ℎ] as Theorem 2 and 𝑢(𝑠, 𝑥(𝑠,𝑚),𝑚) >𝑢(𝑠, 𝑥(𝑠, 𝑞), 𝑞) as Theorem 3 (i)-(ii). Thus, we have 𝑞(𝑠) = 𝑥(𝑠, 𝑞(𝑠)) = 𝑚 for any 𝜅 > 0 in this case.   
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