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 This paper recommends a new kind of assembly line rebalancing and worker assignment problem, 
taking ergonomic risks into account. Assembly line rebalancing problem (ALRBP) occurs when a 
current line must be rebalanced due to conditions such as changes in demand, production processes, 
product design, or quality issues. Although there are several research attempts on ALRBP in the 
relevant literature, only a few studies consider workers as unique individuals. This paper aims to 
solve the double reassignment problem: tasks to workers and workers to stations, considering 
ergonomic risk factors. This paper is the first study that comprises worker assignment and 
ergonomic constraints in ALRBP literature to the best of our knowledge. Objectives of our novel 
problem are to minimize rebalancing cost, which includes transportation of tasks and workers and 
minimize stations' ergonomic risk factors. A randomized constructive rule-based heuristic approach 
is developed to cope with the problem. The proposed solution approach is applied to benchmark 
data, and obtained results are promising. Moreover, the proposed solution approach is implemented 
in an automotive parts manufacturing plant. 
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1. Introduction 

Assembly line balancing problem (ALBP) is relevant for optimizing one or more objectives and fulfilling task precedence 
relationships by assigning tasks, each with a processing time and a collection of precedence relationships, to stations (Özbakır 
& Seçme, 2020). To solve the ALBP, many algorithms and approaches have been applied since Salveson (1955) described 
the problem. Almost all of them have established an assembly line configuration from the beginning. However, in real life, a 
pre-balanced assembly line (AL) may have to be rebalanced for various reasons. The most usual reasons can be listed as; 
changes in cycle time due to demand fluctuations (Ağpak, 2010; Belassiria et al., 2018; Celik et al., 2014; Corominas et al., 
2008; Mokhtari & Mozdgir, 2015; Serin et al., 2019), changes in product design and features (Altemeier et al., 2010; Fattahi 
& Samouei, 2016; Makssoud et al., 2013; Yang & Gao, 2016), changes in task times (Li & Boucher, 2017;  Sikora et al., 
2017; Zha & Yu, 2014), changes in task precedence relations (Gamberini et al., 2006; Zhang et al., 2018), and machine 
breakdowns (Ishigaki, 2018; Sancı & Azizoğlu, 2017). As a result, the assembly line rebalancing problem (ALRBP) occurs. 
 
Many of the current AL rebalancing literature studies aim to rebalance the AL to reduce the number of changes to be made 
on the initial line. There is very limited work in the literature that tried to rebalance the AL, although the rebalancing problem 
typically occurs in real life very often. Moreover, worker assignment is barely studied in AL rebalancing literature. However, 
the assumption that all workers are identical does not represent the real-life case. Workers are unique in their ability, skill, 
and mentality. Hence, different workers operate the same task with different task times. Besides, in some cases, some workers 
could not operate specific tasks. Moreover, the mentioned rebalancing and worker assignment problems generally occur in 
manual ALs. Particularly in manual ALs, workers have certain occupational diseases due to repetitive unfavorable working 
conditions such as joint elbow syndromes and carpal tunnel. It takes a long time to treat certain occupational diseases, and 
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this causes a loss of productivity and workforce. Musculoskeletal conditions account for a significant portion of occupational 
illnesses in many European countries. In Turkey, approximately 40 percent of all occupational diseases are expected to be 
associated with musculoskeletal disorders (Berk, 2011). As a result of inadequate occupational ergonomics, work-related 
musculoskeletal problems arise. As a solution, workers' ergonomic stress should be held under a certain predetermined level 
due to exposure to repeated activities. This would eliminate occupational diseases and increase productivity. Although the 
influence of occupational exposure and ergonomics in production are becoming more and more important in practice, to our 
best knowledge, there has not been any research attempt that considers ergonomic aspects in the AL rebalancing literature. 
This study presents an assembly line rebalancing and worker assignment problem by considering ergonomic risk factors to 
narrow this distance between the literature and real-life (ErgoALWARBP). The presented ErgoALWARBP is interesting and 
novel since none of the previous work in the relevant literature handled the rebalancing of ALs under ergonomic and worker 
assignment constraints. The single assembly line balancing problem (SALBP) belongs to the NP-hard class of the 
combinatorial optimization problems (Karp, 1972). Since the ALRBP is a special case of the SALBP, it is NP-hard as well 
(Yang et al., 2013).  

The remainder of this study is organized as follows. In Section 2, the literature is reviewed, and the justification of this research 
is stated. In Section 3, the novel ErgoALWARBP is detailedly defined in mathematical formulations and various additional 
constraints. In Section 4, the randomized constructive rule-based heuristic approach is introduced. In section 5, the proposed 
heuristic is tested using benchmark test problems, and the results of the experiments are discussed, followed by the application 
of the developed approach on a real-life case in Section 6, and section 7 concludes the article and suggests some future work. 

2. Literature review  

Gamberini et al. (2006) published the first study in the ALRBP literature. Authors considered task reassignment as an objective 
function and offered a single-pass heuristic with a multi-attribute decision-making system based on the Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS). Researchers focused on solving a single model stochastic rebalancing 
problem on straight lines. Due to the changes in cycle time and precedence relations, a rebalancing problem occurred. The 
authors stated an index to quantify the similarity of the task assignment between original and rebalanced lines, called the 
similarity factor. The objective was to minimize task reassignment by minimizing the similarity factor.  

Several studies dealt with ALRBP for single-model, straight assembly lines, similar to the considered problem (Belassiria et 
al., 2018; Corominas et al., 2008; Fattahi & Samouei, 2016; Gamberini et al., 2006, 2009; Y. Li, 2017; Y. Li et al., 2021; Y. 
Li & Boucher, 2017; Makssoud et al., 2015, 2013; Mokhtari & Mozdgir, 2015; Rahman, 2010; Sancı & Azizoğlu, 2017). 
Gamberini et al. (2009) solved ALRBP with stochastic tasks with a heuristic algorithm. The objectives were to minimize task 
assignments' similarity and minimize expected assembly costs. Makssoud et al. (2015) suggested an exact solution method to 
solve the ALRBP of type-1. In their study, adding and removing tasks triggered the rebalancing, and the objectives were 
minimizing the number of stations and the number of modifications while considering negative task zoning constraints. 
Mokhtari and Mozdgir (2015) presented a differential evolution algorithm for solving ALRBP in which a new demand-related 
cycle time was needed. Researchers tried to optimize two objectives while rescheduling tasks to reduce cycle time: minimizing 
the incurred costs and non-smoothing the reconfigured line. Li and Boucher (2017) studied ALRBP of type-2, in which the 
assembly line was operated by robots, with stochastic task times. The authors offered a branch and bound method to deal with 
the rebalancing problem. Sancı and Azizoğlu (Sancı & Azizoğlu, 2017) stated a GA which was hybridized with a priority 
rule-based heuristic procedure for solving ALRBP. The objectives in their study were maximizing line efficiency and 
workload balance while minimizing total cost. Belassiria et al. (2018) solved single-model ALRBP with a hybrid genetic 
algorithm. The authors used prioritized rules to maximize the line's efficiency and minimize the rebalancing cost concurrently. 
Li et al. (2021) studied the AL rebalancing problem due to sudden disruption. They considered stochastic operation times, 
and the goal was minimizing total cost. The authors compared two solution approaches: i) periodic and ii) data-driven 
rebalancing policies. The results show that a data-driven rebalancing policy is better than a periodic rebalancing policy. 

Few studies deal with the single model U-shaped ALRBP (Ağpak, 2010; Celik et al., 2014; Serin et al., 2019; Sikora et al., 
2017; Zha & Yu, 2014). Workers can work on one of each sub-line or both of them simultaneously in U-shaped assembly 
lines (Ramezanian & Khalesi, 2021). Ağpak (2010) focused on rebalancing U-shaped and straight assembly lines with a 
heuristic method while considering task precedence constraints. Zha and Yu (2014) presented a hybrid ant colony optimization 
and filtered beam search for solving ALRBP. The authors considered multiple objectives: minimizing the number of stations, 
machine costs, labor costs, and walking time of operators. Unlike previous U-shaped studies, Celik et al. (2014) studied 
ALRBP with stochastic task times. To reduce the overall cost of rebalancing, the authors used an ant colony optimization 
algorithm. The rebalancing cost consists of task transportation costs, station opening/closing costs, and station operating costs 
while considering the probability of incompletion cost. Serin et al. (2019) stated a GA for solving U-type ALRBP with 
stochastic task times. Their objectives were to minimize the number of stations and total rebalancing costs. 

A two-sided assembly line is another widely used line type that there are two stations on two sides of a conveyor belt. The 
number of studies on two-sided ALRBP is limited ((Grangeon et al., 2011; Liu et al., 2012; Y.-H. Y. Zhang et al., 2018; Y. 
Zhang et al., 2018, 2020)) Liu et al. (2012) studied the rebalancing problem focused on two-side assembly lines. The authors 
studied the problem of how to reconfigure the conveyor assembly line to serus. Seru is a Japanese word for cell and usually 
refers to assembly cell. The authors gave a mathematical model that addressed two issues: the number of serus that should be 
established and the number of workers that should be assigned to each seru. They stated that the computational results were 
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promising. Zhang et al. (2018) modified non-dominated sorting GA for solving a real-life multi-objective ALRBP of type-2 
on two-sided lines. The objectives of their problem were minimizing cycle time while simultaneously minimizing rebalancing 
cost and minimizing similarity.  

Several product versions are manufactured simultaneously in some instances, which is called mixed-model (Mardani-Fard et 
al., 2020) ALRBP. Altemeier et al. (2010) defined a mathematical optimization method for solving mixed-model ALRBP. 
They considered task precedence restrictions, workplace limits (average workload on a station), and fixed processes (processes 
that could not be moved to other stations) as validity constraints while minimizing rebalancing costs. Grangeon et al. (2011) 
presented three heuristics for solving mixed-model two-sided ALRBP. The authors tried to minimize task relocation and 
workload smoothing. Ishigaki (2018) addressed a mixed-model ALRBP with station-dependent processing times. A heuristic 
method was developed to minimize the line stopping time. 

Several studies dealt with AL balancing and worker assignment. Even though they did not consider the rebalancing process, 
they gave initiation for rebalancing and worker assignment simultaneously (Borba & Ritt, 2014; Chaves et al., 2007; Costa & 
Miralles, 2009; Guo et al., 2008; Miralles et al., 2008; Moreira et al., 2015; Zacharia & Nearchou, 2016). However, published 
literature on ALRBPs often only focuses on the rebalancing of the assembly line. There is limited work that considers worker 
assignment together with the rebalancing problem (Corominas et al., 2008; Fattahi & Samouei, 2016; Girit & Azizoğlu, 2021; 
Liu et al., 2012; Sikora et al., 2017; Yang et al., 2013; Yang & Gao, 2016). Corominas et al. (2008) solved ALRBP in a 
motorcycle plant with a linear programming procedure while minimizing the number of temporary workers. Temporary 
workers needed more time to implement the tasks and could not perform some of them. Yang et al. (Yang et al., 2013) solved 
mixed-model ALRBP with a multi-objective genetic algorithm while minimizing workload smoothness, rebalancing cost, and 
the number of stations. Fattahi and Samouei (2016) developed a heuristic-simulation algorithm for mixed-model ALRBP of 
type-2 with worker assignment. The objective was to minimize cycle time with stochastic task times without changing the 
number of stations while considering task precedence and worker skill constraints. Yang and Gao (2016) offered a branch, 
bound, and remember algorithm for solving mixed-model ALRBP of type-1. A model for adjacent workforce cross-training 
policy assembly lines was presented, in which two employees in neighboring stations could learn the skills of each other. 
When there was a change in product demand or product mix, the tasks could only be shifted to adjacent stations to rebalance 
the line, where there was a worker who had previously learned the skills to process the task. Sikora et al. (2017) studied the 
U-shaped ALRBP of type-2 with worker assignment. The authors tried to minimize cycle time and total movement time. 
Simultaneously, traveling worker ALBP was solved, enabling workers to execute tasks in multiple stations. The authors stated 
a mixed-integer linear programming method which includes zoning and capacity constraints, human and robotic worker 
assignment restrictions, and set-up times. Girit and Azizoğlu (2021) rebalanced AL with two objectives: i) maximizing 
workload balance and ii) minimizing total replacement distance. They offered a fairness index to penalize higher workloads 
and smooth the work among stations. However, they assumed that all workers were identical.  

Note that none of the above-mentioned work considered workers as a unique resource. Although they considered the 
workforce while rebalancing, none of them considered varying operation times of tasks due to workers. Since the motivation 
of the worker assignment problem introduced by Miralles et al. (2008) is to address every worker as a unique resource, in this 
study, each task has a specific processing time depending on the worker. In the AL literature, labor uniqueness is typically 
underrated. However, the levels of skill, ability, experience, and physical conditions of workers directly affect the operation 
times of tasks. Limited work considers the importance of unique worker skills in the manufacturing environment (Fichera et 
al., 2017; Tóth & Kulcsár, 2021). Fichera et al. (2017) tackled the worker assignment problem in a cellular manufacturing 
plant by considering the different ability levels of workers and the learning effect. Tóth and Kulcsár (2021) studied worker-
dependent processing times in flexible manufacturing systems. The authors proposed a solution procedure by using simulation 
and demonstrated the effect of heterogeneous workers. Although these papers pay regard to unique workers and varying 
operation times of tasks, they study manufacturing environments rather than ALs. It is understood from the literature survey 
that there is a gap in the relevant literature that none of the rebalancing papers considers varying operation times of tasks 
depending on unique workers, which is one of the essential contributions of this paper. 

Moreover, note that none of the above-mentioned research studies consider ergonomic risk factors of the working 
environment. The limited number of  ALRBP studies with worker assignments mentioned above do not consider ergonomic 
issues as a constraint or in the objective function. Ergonomic aspects are becoming increasingly crucial in real-life scenarios, 
especially in manual assembly lines. Manual assembly lines cover a major part of manufacturing in Turkey. So, this is the 
main motivation of this research. This research study is a pioneer because while tackling ergonomic risks of the manufacturing 
environment, the presented method reassigns workers to stations and reassigns tasks to workers simultaneously. The 
motivation of this work is to fill the gap in the relevant literature. 

3. Assembly Line Rebalancing and Worker Assignment Problem Considering Ergonomic Risk Factors 
(ErgoALWARBP) 

As stated in the previous section, ALRBPs have barely been studied compared to ALBPs. Also, most of the rebalancing 
studies accept that all workers are identical in the relevant literature. However, this assumption is not realistic because workers 
have unique characteristics (Miralles et al., 2008). Especially in manual ALs, workers must be considered unique to represent 
the real-life manufacturing environment better. Moreover, it is essential to assign tasks as equally as possible among workers 
when rebalancing an existing line. Such assignment enables smoothening the strain levels of workers among stations (Otto & 
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Scholl, 2011). For ergonomic risk assessment in ALs, many methods have been used, such as Occupational Repetitive Action 
(OCRA)(Occhipinti, 1998), The European Assembly Worksheet (EAWS) (Schaub et al., 2013), the National Institute for 
Occupational Safety and Health (NIOSH) (Waters, 1994), Quick Exposure Check (QEC)(G. Li & Buckle, 1999), Rapid Upper 
Limb Assessment (RULA)(McAtamney & Nigel Corlett, 1993), and Rapid Entire Body Assessment (REBA)(Hignett & 
McAtamney, 2000). The OCRA method is used for estimating risk factors for tasks done by upper limbs repetitively with 
high frequency. In manual assembly lines, especially in automotive harness production, workers use their upper limbs 
repetitively in high frequency. Therefore, the OCRA method is used for ergonomic risk calculations in this study. Further 
details about ergonomic risk assessment and the OCRA method are described by Akyol and Baykasoğlu (Akyol & 
Baykasoğlu, 2019a). 
 
3.1 Assumptions 
 
The following assumptions are taken into account for the problem: 
 

• It is considered that: the line was previously balanced before the disruptive event occurred. 
• Each product model’s operating times and precedence diagrams are given. 
• A station can perform any operation, and a task can be allocated to one station. 
• Workers’ travel times are neglected. 
• The number of workers available for reassignment is greater than the number of workers in the initial assignment to 

fit the worker-need in case of opening additional stations while rebalancing the AL. 

3.2 Notations  
 
The notation used in the rest of the paper is as follows (Celik et al., 2014; Gamberini et al., 2006; Miralles et al., 2008; Yang 
et al., 2013): 𝑖. 𝑗 task index, for 𝑖. 𝑗 = 1. … .𝑛 𝑎. 𝑏 station index, for 𝑎. 𝑏 ∈ 𝑆 𝑻𝑪𝒓𝒃 the total cost of rebalancing 𝑐𝑜𝑠𝑡௢௣௘௡ opening costs of a new station 𝑐𝑜𝑠𝑡௖௟௢௦௘ cost of closing an existing station 𝑐𝑜𝑠𝑡௥௨௡ operating cost of a station for a month 𝑐𝑜𝑠𝑡𝑖 transportation cost of task i 𝑁௥௕ set of tasks that were transported for rebalancing 𝑚 number of stations 𝑚଴ initial station count 𝑚ା number of new stations that were opened after rebalancing 𝑚ି number of stations that were closed after rebalancing 𝑴𝑺𝑭 mean similarity factor of the line 𝑆𝐹𝑖  similarity factor of task i, for 𝑖 𝜖 𝑁 𝑇𝐼𝐵𝑖 set of tasks allocated to the same station as task i in the initial balancing, other than task i, for 𝑖 𝜖 𝑁 𝑇𝑁𝐵𝑖  set of tasks allocated to the same station as task i in the new balancing, other than task i, for 𝑖 𝜖 𝑁 𝑛 number of tasks 𝑛଴ number of tasks in the initial balancing 𝑾𝒐𝒓𝒌𝒆𝒓𝑴𝑺𝑭  mean similarity factor of the workers 𝑊𝑜𝑟𝑘𝑒𝑟𝑆𝐹𝑤 similarity factor of worker w, for 𝑤 ∈ 𝑊 𝑤 worker index, for 𝑤 ∈ 𝑊 𝑊 set of workers 𝑁𝑤 set of tasks assigned to worker w, for 𝑤 ∈ 𝑊 𝑁𝑤଴  initial set of tasks assigned to worker w, for 𝑤 ∈ 𝑊 𝒎𝒂𝒅𝑶𝑪𝑹𝑨 mean absolute deviation of OCRA index values 𝑎𝑣𝑔𝑂𝐶𝑅𝐴 OCRA average  𝑂𝐶𝑅𝐴𝑎 OCRA index value of station 𝑎 𝑑𝑖  negative deviation 𝑑𝑖ା positive deviation 𝒏𝒓𝒃 number of tasks that were transported for rebalancing 𝑁𝑆𝑎଴  initial set of tasks assigned to station a, for 𝑎 =  1. … .𝑚଴ 𝑁𝑆𝑎 set of tasks assigned to station a, for 𝑎 = 1. … .𝑚 
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LE line efficiency 
SX similarity index 𝑐 cycle time of the line 𝑇𝑡௔ total task processing time of station 𝑎 (station time) 𝑆 set of stations 𝑁 set of tasks 𝑦𝑎𝑤 binary variable equal to 1, only if worker w is assigned to station a 𝑥𝑖𝑎𝑤 binary variable equal to 1, only if task i and worker w are assigned to station a 𝑡𝑖𝑤 processing time of task i when worker w executes it 𝐼𝑃𝑗 immediate predecessors of task j 

 

3.3 Objective functions 

It is benefited from several previous studies in this study while defining the seven objective functions and their formulations. 
(Celik et al., 2014; Gamberini et al., 2006; Yang et al., 2013; Zacharia & Nearchou, 2016). The objectives are listed below: 𝒎𝒊𝒏.𝑇𝐶௥௕ = ሺ𝑐𝑜𝑠𝑡௢௣௘௡ ∗ 𝑚ାሻ + ሺ𝑐𝑜𝑠𝑡௖௟௢௦௘ ∗ 𝑚ିሻ + ሺ𝑐𝑜𝑠𝑡௥௨௡ ∗ (𝑚−𝑚଴)) + ෍ 𝑐𝑜𝑠𝑡𝑖௜∈ேೝ್  (1) 𝑚ା =  𝑚 −𝑚଴,         𝑚ି = 0;  𝑖𝑓 𝑚 > 𝑚଴ (1.1) 𝑚ି =  𝑚଴ −𝑚, 𝑚ା = 0;  𝑖𝑓 𝑚 < 𝑚଴ (1.2) 𝒎𝒂𝒙.𝑀𝑆𝐹 = ൭෍𝑆𝐹𝑖௡

௜ୀଵ ൱ 𝑛ൗ  (2) 

𝑆𝐹𝑖 = 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦൫𝑇𝐼𝐵𝑖 ∩ 𝑇𝑁𝐵𝑖൯  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦൫𝑇𝐼𝐵𝑖൯  (2.1) 𝑇𝐼𝐵𝑖 = ሼ 𝑗 𝜖 𝑁𝑆𝑎଴  | 𝑖 𝜖 𝑁𝑆𝑎଴  𝑎𝑛𝑑 𝑗 ≠ 𝑖 ሽ, 𝑓𝑜𝑟 𝑖 = 1, … ,𝑛଴ (2.2) 𝑇𝑁𝐵𝑖 = ሼ 𝑗 𝜖 𝑁𝑆𝑎 | 𝑖 𝜖 𝑁𝑆𝑎 𝑎𝑛𝑑 𝑗 ≠ 𝑖 ሽ, 𝑓𝑜𝑟 𝑖 = 1, … ,𝑛 (2.3) 𝒎𝒂𝒙.𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 =  ൭෍ 𝑊𝑜𝑟𝑘𝑒𝑟𝑆𝐹𝑤୵∈ௐ ൱ 𝑚ൗ  (3) 

𝑊𝑜𝑟𝑘𝑒𝑟𝑆𝐹𝑤 = 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁𝑤଴ ∩ 𝑁𝑤)  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁𝑤଴ ) , ∀𝑤 𝜖 𝑊 (3.1) 

𝒎𝒊𝒏.𝑚𝑎𝑑𝑂𝐶𝑅𝐴 = ൭෍|𝑎𝑣𝑔𝑂𝐶𝑅𝐴 − 𝑂𝐶𝑅𝐴𝑎|௠
௔ୀଵ ൱ 𝑚ൗ  (4) 

𝑎𝑣𝑔𝑂𝐶𝑅𝐴 = ൭෍𝑂𝐶𝑅𝐴𝑎௠
௔ୀଵ ൱ 𝑚ൗ  (4.1) 

𝒎𝒊𝒏.𝑛௥௕ = ෍ቀ𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁𝑆𝑎଴ ) − 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑁𝑆𝑎଴ ∩ 𝑁𝑆𝑎)ቁ ௠
௔ୀଵ  (5) 

𝒎𝒂𝒙.𝐿𝐸 = ൭෍𝑇𝑡௔௠
௔ୀଵ ൱ (𝑚 ∗ 𝑐)൘  (6) 

𝒎𝒊𝒏. 𝑆𝑋 = ඩ෍(𝑐 − 𝑇𝑡௔)ଶ௠
௔ୀଵ  (7) 

 
As Celik et al. (2014) stated, some tasks may be transferred between stations to rebalance the assembly line, and a new line 
balance may need more or a smaller number of stations. In the current study, the first objective (Eq. (1)) is minimizing total 
rebalancing cost (𝑇𝐶௥௕) which is calculated as stated in Eqs. (1), (1.1), and (1.2) (Celik et al., 2014). 
 

• 𝑇𝐶௥௕ is calculated by summing up station opening/closing/operating and task transportation costs. 
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• 𝑐𝑜𝑠𝑡𝑖 arise if certain tasks are assigned from their current positions to new positions (Celik et al., 2014).  
• 𝑐𝑜𝑠𝑡௢௣௘௡ happens due to the recruiting of new workers and the procurement of new equipment as the number of 

stations rises in the new line balance (Eq. (1.1)). 
• 𝑐𝑜𝑠𝑡௖௟௢௦௘ occurs because of equipment disposal and the dismissal of obsolete staff when the number of stations in 

the new line balance decreases (Eq. (1.2)). 
• 𝑐𝑜𝑠𝑡௥௨௡ is calculated by dividing the sum of operating expenses such as rent, equipment, labor, inventory costs by a 

period (days, months, production hours). Therefore, the value changes (the duration that the new line balance will 
operate. If 𝑚ା > 0 then the total operating cost is positive, and if 𝑚ି > 0, the total operating cost is negative. 

Gamberini et al. (2006, 2009) presented an objective called mean similarity factor (MSF), which is the similarity between the 
rebalanced AL and the initial AL. The second objective (Eq. (2)) in the current study is to minimize the MSF. To evaluate 
MSF, 𝑇𝐼𝐵௜, and 𝑇𝑁𝐵௜ are introduced in Eqs. (2.2) and (2.3) respectively. 𝑆𝐹௜, which is calculated using Eq. (2.1), that is 
obtained by dividing the number of tasks assigned to the same station as 𝑡𝑎𝑠𝑘 𝑖 in the initial and new AL, by to the number 
of tasks assigned to the same station in the initial AL. The third objective (Eq. (3)) is stated for the first time in the literature 
to maximize the similarity of the tasks performed by workers between the initial and new AL (WorkerMSF), which evaluates 
the degree of similarity between the initial and the new task assignment of each worker. The similarity factor of the generic 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤 (𝑊𝑜𝑟𝑘𝑒𝑟𝑆𝐹𝑤), which is calculated using Eq. (3.1), is obtained by dividing the number of tasks assigned to 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤 both in the initial and in the new AL, by the number of tasks assigned to the 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤 in the initial AL. For 
example, let us assume that 𝑤𝑜𝑟𝑘𝑒𝑟 1 is performing the tasks {1, 2, 3, 4} in 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 1 in the initial AL. After the rebalancing, 𝑤𝑜𝑟𝑘𝑒𝑟 1 is assigned to station 2 and starts performing the tasks {3, 4, 5, 6}. The tasks {3, 4} are performed by 𝑤𝑜𝑟𝑘𝑒𝑟 1 in 
both the initial and the new AL, therefore WorkerSF1  is equal to Cardinality(3,4) ∕ Cardinality(1,2,3,4) = 2 ∕ 4 = 0,5. After 
applying this procedure to all assigned workers, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 value is calculated by summing up the 𝑊𝑜𝑟𝑘𝑒𝑟𝑆𝐹 values 
divided by the number of stations in the rebalanced AL as stated in Eq. (3). In this study, ergonomic risk levels of stations are 
determined by using OCRA (Occhipinti, 1998) ergonomic risk assessment method (for more information, see Appendix; 
Akyol and Baykasoğlu, (Akyol & Baykasoğlu, 2019a). The fourth objective (Eq. (4)) is minimizing the mean absolute 
deviation of stations’ OCRA index values (madOCRA), which was offered to control and monitor the ergonomic risk level of 
the stations and to smooth the workload between workers in terms of ergonomic risks. To calculate madOCRA, the average 
of OCRA index values (avgOCRA) is needed, which is evaluated using Eq. (4.1). Task transportation cost is an essential part 
of the total rebalancing cost. Therefore, we also try to minimize the number of tasks that are transported for rebalancing, 𝑛௥௕, 
which is our fifth objective (Eq. (5)). Although two solutions can have the same MSF value, they can have a different number 
of reassigned tasks. The sixth objective (Eq. (6)) is maximizing LE, and the seventh objective (Eq. (7)) is minimizing the SX 
(Zacharia & Nearchou, 2016), which is a measure to distribute the work equally between the stations. 

3.4 Constraints  

Constraints of the mathematical model for the ALRBP with worker assignment can be stated as follows (Gamberini et al., 
2006; Miralles et al., 2008):  
 ෍ ෍𝑥𝑖𝑎𝑤  ୟ∈ௌ୵∈ௐ =  1, ∀𝑖 ∈ 𝑁, (8) ෍𝑦𝑎𝑤ୟ∈ௌ ≤  1, ∀w ∈ 𝑊, (9) 

෍ 𝑦𝑎𝑤୵∈ௐ ≤  1, ∀𝑎 ∈ 𝑆, (10) 

෍ ෍(𝑠 ∗ 𝑥𝑖𝑎𝑤) ୟ∈ௌ୵∈ௐ  ≤  ෍ ෍ቀ𝑠 ∗ 𝑥𝑗𝑎𝑤ቁ  ୟ∈ௌ୵∈ௐ ,    ∀𝑖, 𝑗 𝑖⁄ ∈ 𝐼𝑃𝑗, (11) 

෍൫𝑡𝑖𝑤 ∗ 𝑥𝑖𝑎𝑤൯௜∈ே ≤  𝑐, ∀𝑤 ∈ 𝑊, ∀𝑎 ∈ 𝑆, (12) 

෍𝑥𝑖𝑎𝑤௜∈ே ≤  (𝑚 ∗ 𝑦𝑎𝑤), ∀𝑤 ∈ 𝑊, ∀𝑎 ∈ 𝑆, (13) 

with  𝑦𝑎𝑤 ∈  ሼ0, 1ሽ, ∀𝑎 ∈ 𝑆, 𝑤 ∈ 𝑊,  𝑥𝑖𝑎𝑤 ,𝑥𝑗𝑎𝑤 ∈ ሼ0, 1ሽ, ∀𝑎 ∈ 𝑆, 𝑤 ∈ 𝑊, 𝑖, 𝑗 ∈ 𝑁  
Constraint (8) ensures that each 𝑡𝑎𝑠𝑘 𝑖 is assigned to a single 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤 and a single 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑎. Constraint sets (9) and (10) 
express that a worker can work at only one station, and there must only be one assigned worker in each station, respectively. 
The precedence relationships between task i and task j are specified in constraints set (11), in which task i is the predecessor 
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of task j. Constraint sets (12) and (13) guarantee that when cycle time c is not reached, any worker w assigned to the station 
a can process more than one task. Nevertheless, the proposed problem is an extension of the ALRBP with worker assignment 
because it includes ergonomic risk assessment. So, the OCRA index value (𝑂𝐶𝑅𝐴𝑎 ) calculations can be included in the model 
implicitly. Equation (14) demonstrates that risk analysis for all the stations is smoothed in accordance with the average OCRA 
index value (𝑎𝑣𝑔𝑂𝐶𝑅𝐴). 𝑂𝐶𝑅𝐴𝑎 + 𝑑𝑖ା − 𝑑𝑖 = 𝑎𝑣𝑔𝑂𝐶𝑅𝐴 (14) 

Note that the above constraints are given to define the proposed problem formally. Because of the complexity, the novel 
ErgoALWARBP cannot be solved by exact solution methods. A randomized constructive rule-based heuristic approach is 
developed to tackle the problem. 

4. The Proposed Algorithm for ErgoALWARBP 
 
In this study, task and worker selection rules which were described by Akyol and Baykasoğlu (2019b), are applied to pick 
appropriate tasks for workers. A randomized constructive rule-based heuristic approach is developed to find a feasible 
solution. Firstly, 39 tasks and four worker priority rules are set. Then, the heuristic prioritizes the tasks, and a task is chosen 
via roulette wheel selection. The heuristic reassigns tasks sequentially to the stations. Later, after applying worker selection 
rules, a worker among prioritized workers is selected using roulette wheel selection and reassigned to that station. When cycle 
time is exceeded, a new station is opened. In this way, the developed heuristic constructs a new solution step by step and 
includes rule-based prioritized randomness (for more information, see Akyol and Baykasoğlu, (2019b)). After obtaining a 
newly rebalanced AL, the new line is compared with the old one regarding the MSF of tasks and workers. 

4.1. The rule-based task selection algorithm 
 

In this study, 39 task priority rules (Akyol & Baykasoğlu, 2019b) are applied, and assignable tasks are prioritized by 
considering different task execution times depending on the operators. First, on lines 5 to 7, one point is added to each task 
that can be assigned to the station. Then, on lines 9 to 11, each task selection rule is called one by one. The rules loop list of 
assignable tasks and add point(s) to the appropriate one(s). These task selection rules are detailly described in Akyol and 
Baykasoğlu (2019b). Then, a task is chosen among assignable tasks such that the task with the higher point has a higher 
probability of selection on line 12. In the literature, this method is called roulette wheel selection. On line 13, the selected task 
by roulette wheel selection is returned. If there is only one assignable task to the station, the rules are not applied, and the task 
is directly returned on line 15. The overall procedure of the rule-based task selection method is outlined in Algorithm 1 as 
follows: 

Algorithm 1: The rule-based task selection algorithm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

METHOD: Rule-based task selection for the station 
INPUT: List of assignable tasks, workers with task processing times 
OUTPUT: Selected task 
 
FOR each task in the station’s assignable tasks list DO 
   Add 1 point to the task  
END FOR 
IF station’s assignable tasks count > 1 THEN 
   FOR each rule in 39 task rules DO 
      CALL rule //add point(s) to the appropriate task(s) 
   END FOR 
   SelectedTask ← CALL Task_Roulette_Wheel_Selection (list of assignable tasks) 
   RETURN SelectedTask 
ELSE IF assignable tasks count = 1 THEN 
   RETURN the only assignable task 
END IF   

 

4.2. The rule-based worker selection algorithm 
 

In this study, four rules for the selection of workers are applied (Akyol & Baykasoğlu, 2019b): 
 

• RND - Random priority 
• GNTE - Greatest no. of tasks executed 
• GNTEMT - Greatest no. of tasks executed in minimum time 
• MU - Maximum utilization 

First, on lines 5 to 7, one point is added to each worker that can be assigned to the station. If there is more than one assignable 
worker, then these four rules are called on lines 9 to 16. Each rule adds two points to the appropriate worker. By utilizing the 
above four rules, assignable workers are prioritized. Then, by applying the roulette wheel selection described in section 4.1, 
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a worker is chosen among assignable workers. On line 18, the selected worker by roulette wheel selection is returned. If there 
is only one assignable worker to the station, the rules are not applied, and the worker is directly returned on line 20. The rule-
based worker selection method is outlined in Algorithm 2 as follows: 

4.3. The developed preemptive goal programming algorithm for fitness evaluation 

There are several ways for evaluation of solutions, such as comparing cycle time (Fattahi & Samouei, 2016; Li, 2017; Liu et 
al., 2012; Sancı & Azizoğlu, 2017; Sikora et al., 2017; Zhang et al., 2018; Y. Zhang et al., 2018, 2020), total cost (Lai et al., 
2015; Serin et al., 2019; Zha & Yu, 2014), line efficiency (Altemeier et al., 2010; Belassiria et al., 2018; Rahman, 2010), 
workload balance (Grangeon et al., 2011; Lai et al., 2015; Mokhtari & Mozdgir, 2015; Oliveira et al., 2012) or similarity 
index (Zacharia & Nearchou, 2016).  
 

Algorithm 3: The preemptive goal programming algorithm (for Goal 1) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

METHOD: Return best solution with goal programming 
INPUT:  Feasible solutions, Goal’s objective order  
OUTPUT: The best solution 
 
INIT BestSolution 
FOR each solution in feasible solutions DO 
   //obj.1 Total cost 
   IF solution’s Total Cost < BestSolution’s Total Cost THEN   
      BestSolution ← solution 
   ELSE IF solution’s Total Cost = BestSolution’s Total Cost THEN 
      //obj.2 Mean similarity factor (MSF) 
      IF solution’s MSF > BestSolution’s MSF THEN 
         BestSolution ← solution 
      ELSE IF solution’s MSF = BestSolution’s MSF THEN      
         //obj.3 MSF Worker 
         IF solution’s WorkerMSF > BestSolution’s WorkerMSF THEN 
            BestSolution ← solution 
         ELSE IF solution’s WorkerMSF = BestSolution’s WorkerMSF THEN 
            //obj.4 Mean absolute deviation of OCRA index values 
            IF solution’s madOCRA < BestSolution’s madOCRA THEN 
               BestSolution ← solution 
            ELSE IF solution’s madOCRA = BestSolution’s madOCRA THEN 
               //obj.5 Re-assigned tasks count 
               IF solution’s MovedTasksCount < BestSolution’s MovedTasksCount THEN 
                  BestSolution ← solution 
               ELSE IF solution’s MovedTasksCount = BestSolution’s MovedTasksCount THEN 

Algorithm 2: The rule-based worker selection algorithm 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

METHOD: Rule-based worker selection for the station 
INPUT:  Station’s assigned tasks, list of assignable workers with task processing times 
OUTPUT: Selected worker for the station 
 
FOR each worker in the list of assignable workers DO 
   Add 1 point to the worker 
END FOR 
IF assignable workers count > 1 THEN 
   //rule-1 (RND) 
   Add 2 points to the randomly selected worker from the assignable workers list            
   //rule-2 (GNTE) 
   Add 2 points to the worker who is capable of processing max. number of tasks 
   //rule-3 (GNTEMT) 
   Add 2 points to the worker who can process max. the number of tasks in min. time 
   //rule-4 (MU) 
   Add 2 points to the worker who can execute this station’s tasks fastest   
   SelectedWorker ← CALL Worker_Roulette_Wheel_Selection (list of assignable workers) 
   RETURN SelectedWorker 
ELSEIF assignable workers count = 1 
   RETURN the only assignable worker 
END IF 



T. Çimen et al. / International Journal of Industrial Engineering Computations 13 (2022) 371

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

                  //obj.6 Line efficiency 
                  IF solution’s LE > BestSolution’s LE THEN 
                     BestSolution ← solution 
                  ELSE IF solution’s LE = BestSolution’s LE THEN 
                     //obj.7 Line smoothness index   
                     IF solution’s SX < BestSolution’s SX THEN 
                        BestSolution ← solution 
                     END IF //obj.7  
                  END IF //obj.6 
               END IF //obj.5 
            END IF //obj.4 
         END IF //obj.3 
      END IF //obj.2 
   END IF //obj.1 
END FOR 
RETURN BestSolution 

We made preferences among the seven objectives and put them in an initial order (Goal 1) as in Algorithm 3. The preemptive 
goal programming algorithm for Goal 1 is outlined in Algorithm 3, that the highest priority is finding the solution with the 
minimum total rebalancing cost. Firstly, we initialize the BestSolution variable on line 5. For the objectives that are trying to 
be minimized, the properties in the BestSolution are initialized with a very high number H. Likewise, for the objectives that 
are trying to be maximized, the properties in the BestSolution are initialized with a very low number L. By this way, the first 
feasible solution that is compared with the BestSolution is always better and is assigned to the BestSolution. By looping all 
feasible solutions on line 6, we compare solution’s total cost, MSF, MSF Worker, mean absolute deviation of OCRA index 
values, line efficiency, and line smoothness index values with the BestSolution’s appropariate values respectively on lines 7 
to 33. When the compared property of the solution is better than BestSolution’s value, the solution is assigned to the 
BestSolution. The calculation details of the relevant objectives were shared in section 3.3. 

The priority of the objectives may change according to current conditions. To fit those varying needs, the initial order of the 
objectives, which is defined in Algorithm 3, was changed using insert, remove, and shift operations. In this way, six more 
objective orders (goals) were generated inside our solution calculation method as outlined in Algorithm 4. 

Algorithm 4: Calculating the best solution for all goals (changing order of objective functions) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

METHOD: Calculate goal results 
INPUT:  Initial order of objective functions (list of obj. functions) 
OUTPUT: The best solution for each goal (list of best solutions) 
 
BestSolution ← CALL Algorithm_3 (Initial order of obj. functions, list of feasible solutions) 
Insert BestSolution into the list of best solutions 
 
FOR each objective in the list of obj. functions DO 
   firstObjective ← objective 
   Remove objective from the list of obj. functions 
   Shift the objectives before the removed objective to right 
   Insert firstObjective to the first position of the list of obj. functions 
  
   BestSolution ← CALL Algorithm_3(list of obj. functions, list of feasible solutions) 
   Insert BestSolution into the list of best solutions 
END FOR 
RETURN the list of best solutions 

 

The objective order of the seven goals are listed below: 
G1 – min. 𝑻𝑪𝒓𝒃:   𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑛௥௕ > 𝐿𝐸 > 𝑆𝑋 
G2 – max. MSF:   𝑀𝑆𝐹 > 𝑇𝐶௥௕ > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑛௥௕ > 𝐿𝐸 > 𝑆𝑋 
G3 – max. WorkerMSF:  𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑛௥௕ > 𝐿𝐸 > 𝑆𝑋 
G4 – min. madOCRA:  𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑛௥௕ > 𝐿𝐸 > 𝑆𝑋 
G5 – min. 𝒏𝒓𝒃:   𝑛௥௕ > 𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝐿𝐸 > 𝑆𝑋  
G6 – max. LE:   𝐿𝐸 > 𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑛௥௕ > 𝑆𝑋 
G7 – min. SX:   𝑆𝑋 > 𝑇𝐶௥௕ > 𝑀𝑆𝐹 > 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑆𝐹 > 𝑚𝑎𝑑𝑂𝐶𝑅𝐴 > 𝑛௥௕ > 𝐿𝐸 

The rule-based task and worker selection algorithms were described with an illustrative example in Akyol and Baykasoğlu 
(2019b). The proposed heuristic solution procedure for ErgoALWARBP is described with the flowchart that is shared in Fig.1.
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Fig.1 Flowchart of the proposed heuristic solution procedure 
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5. Computational Study 
 
We evaluated the rebalancing performance of our proposed heuristic with well-known test problems of Scholl (1993, 1999). 
Our problem set contains 25 test problems in which the number of tasks is between 7 and 297, and cycle times are between 7 
and 5853 seconds. In Table 1, the benchmark data family of the precedence graph, number of tasks, the cycle time of the AL 
before rebalancing (initial cycle time), and the minimal number of stations for the new cycle time (m*) are shown in the first 
four columns, respectively. The initial balance is generated using the COMSOAL (Computer Method of Sequencing 
Operations of Assembly Lines) heuristic that was developed by Arcus (1966). For each test problem, 500 feasible solutions 
(12500 solutions in total) are calculated using COMSOAL that randomly assigns tasks to stations considering precedence 
relations. Then, the solution with minimum cycle time and maximum line efficiency is returned as the initial solution for each 
problem. Changes in customer demand led to an increase (or decrease) in the initial cycle time, which caused the rebalancing 
need. The updated cycle time values used for rebalancing are shared in the “New cycle time” column in Table 1. Each data 
family's new cycle time values are randomly chosen from the benchmark dataset. In this way, the reassignment results can be 
compared with m*, which was calculated with exact algorithms and shared in the benchmark dataset. The developed heuristic 
runs for 1000 iterations for each test problem (25000 iterations in total). 

5.1. Conputational test results  

The best and average results found for each test problem are shared in Table 1. Although the suggested heuristic solution 
method calculates results for seven different objectives, the benchmark problems were only solved to minimize the number 
of stations. Therefore, we can only measure the performance of the results in terms of the number of stations, but the result 
set also contains CPU time, smoothness index, line efficiency, MSF, and the number of tasks moved for informational 
purposes.A rebalanced solution with a line efficiency that is greater than 99% is found for Barthold, Gunther, Heskiaoff, and 
Mansoor. 34.5% of the tasks are moved on average to find a rebalanced solution with a minimum number of task moves for 
each test problem. The proposed heuristic found the minimum number of stations in 84% (21 of 25) of the test problems. For 
Barthol2, Lutz2, Scholl, and Warnecke, which can be defined as large-size problems with the number of tasks 148, 89, 297, 
and 58 respectively, a solution with one more station than the optimum solution is found. In comparison with our 25 test 
problems from Sholl’s dataset (1993, 1999), Belassiria et al. (2018) used and solved nine of the test problems. Both algorithms 
reached the minimal number of stations m* for Hahn, Heskiaoff, Lutz1, and Mukherje, but our heuristic method found a better 
solution (fewer stations) than the hybrid genetic algorithm of Belassiria et al. (2018) for Barthold, Gunther, Lutz2, Scholl, and 
Warnecke. 
 

6. Industrial case study  
 
A real-world case study with a sample of actual operational data is implemented to show the effectiveness of the suggested 
method. The company has 126 locations worldwide, producing several different products for the automotive sector. The 
industrial case is presented at a wiring harness production plant of the company in Turkey, which manufactures cable networks 
for the most prominent automotive brands in the world. Several components are required to assemble automotive wiring 
harnesses, such as wires, connectors, tubes, terminals, tapes, etc. As customer needs differ widely, more than four thousand 
components are used for harness production in the current plant. 
 

6.1 Operational problem information 
 

The manufacturing consists of four main processes: cutting, sub-assembly, main assembly, and electrical testing. In this study, 
the main assembly part is considered for ALRBP. The car harnesses are divided into smaller parts such as engine bay (EB), 
floor, roof, doors, and interior panel (IP) to ease the harness's production, logistics, and installation into the car. A harness is 
assembled in the main assembly area on vertically positioned boards which are specially designed and produced for each 
harness. These production boards are named stations, and AL contains m identical stations. The studied assembly line is O-
shaped, and stations are moving with a constant speed that finishes its tour in C seconds. A worker is assigned to each station 
and positioned outside of the O-shape line and only works in the assigned station. This is contrary to U-shaped lines where 
workers are positioned inside the assembly line and can work in multiple stations. Therefore, the described line characteristics 
of the O-shaped line make it equal to a straight assembly line. Cars have optional features (options) such as several sensors, 
seat heating, sunroof, etc. These options are met by assembling additional parts to the harness, which is called different models 
of the harness. Sometimes, there are dozens of models of each harness which makes it impossible to build a separate assembly 
line for each model because of production space constraints and high assembly line initial building cost. To overcome this 
problem, the station is designed for the harness model, which has all options available, and all other models of the harness are 
assembled on the same assembly line. Although the production is multi-model, the manufacturing engineering department 
(ME) solves (re)balancing problem as it is a single model AL because they solve the problem for the harness model with the 
highest penetration (the harness model with the highest demand). The current line balance is broken because of several 
reasons, such as customer design change requests, material changes, ergonomic and production-related feedback from the 
production area, and changes in customer product demand. These changes may cause precedence diagram modifications, 
adding-removing tasks, changes in task processing times, and changes in cycle time. The proposed solution method and the 
software can rebalance the assembly line for all these changes, but in this study, its efficiency was tested by changing cycle 
times as it is the most common reason.
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Table 1  
Benchmark test problems and the results of the computational study 

__________________Test Problem__________________ __No. of Stations__ CPU time (ms) 
Smoothness 
__Index__ 

Line 
Efficiency __MSF__ 

No. of Tasks 
__Moved__ 

Precedence 
graph1 

No. of 
tasks 

initial cycle 
time (s) 

New cycle 
time (s) m* h-GA2 Min. Avg. Avg. Min. Avg. Min. Avg. Max. Avg. Max. Avg. Min. 

Arcus1 83 5408 5824 14 - 14 14 169 110 2584 1413 92.3 95 0.39 0.59 43.8 26 
Arcus2 111 6016 5755 27 - 27 28.7 185 127 4524 1680 91.1 96.8 0.38 0.55 75.2 54 
Barthold 148 513 564 10 11 10a 11 1303 817 511 3 90 99.9 0.27 0.46 104 70 
Barthol2 148 101 95 45 - 46 47.2 792 643 75.6 36 97 97 0.14 0.23 136.3 120 
Bowman 8 19 20 5 - 5 5 0.06 0 10.8 6.63 79.5 88 0.38 0.75 2.9 2 
Buxey 29 30 27 13 - 13 14.2 6.8 3 20.1 9 84.2 92 0.26 0.72 21.9 8 
Gunther 35 49 54 9 10 9a 10 13.4 8 24.6 14 89 99.4 0.28 0.63 20.6 11 
Hahn 53 3507 2806 6 6 6 6 52.8 37 1917 1327 83.2 85 0.60 0.92 19.7 2 
Heskiaoff 28 256 205 5 5 5 6 5.42 3 138 1 83.3 99 0.4 0.8 16.1 4 
Jackson 11 9 7 8 - 8 8.5 0.17 0 5.1 4 73 82 0.71 0.82 6 4 
Jaeschke 9 8 10 4 - 4 4.3 0.06 0 2.4 1 88.5 92.5 0.48 0.56 2.2 2 
Kilbridge 45 111 92 6 - 6 7 36.6 24 74.3 39 85.3 88 0.35 0.74 25.5 8 
Lutz1 32 1768 2020 8 8 8 11.9 8.51 4 1181 459 84.5 91 0.52 0.94 9.9 2 
Lutz2 89 21 20 25 27 26a 26.9 196 132 14.7 8 90.3 93 0.3 0.51 65.7 45 
Lutz3 89 79 83 21 - 21 22.7 169 116 76.4 31 87.2 94 0.45 0.8 66 52 
Mansoor 11 94 62 3 - 3 3.9 0.2 0 30.2 1 79.2 99 0.51 0.91 4.8 2 
Mertens 7 6 7 5 - 5 5.2 0.1 0 3.1 3 81.2 82 0.43 0.57 3.7 2 
Mitchell 21 18 15 8 - 8 8.8 2.13 1 13.3 6 80 87.5 0.47 0.9 8.8 2 
Mukherje 94 301 281 16 16 16 16 627 443 133 90 93.6 94.6 0.22 0.4 67.4 50 
Roszieg 25 14 18 8 - 8 8 3.67 2 10.9 5 86 91 0.61 0.96 10.4 2 
Sawyer 30 33 30 12 - 12 12.4 8.18 4 17.6 9 87.2 93 0.36 0.71 19.6 8 
Scholl 297 1422 1515 46 51 48a 49.2 17150 13456 1495 1207 93.5 95.8 0.22 0.29 236 211 
Tonge 70 185 176 21 - 21 22.7 115 86 151 55 91.6 93.5 0.34 0.68 40.2 16 
Warnecke 58 86 92 17 20 18a 19.2 90 64 87.3 33 87.7 94 0.31 0.65 37.1 23 
Wee-Mag 75 30 29 63 - 63 63.8 101 71 50.5 44 80.4 82 0.18 0.27 69.7 62 

1 benchmark data family of the precedence graph (Scholl, 1993), 2 results of the hybrid genetic algorithm of Belassiria et al.(2018), m*: the minimal number of stations for the new 
cycle time, a the proposed method found a better solution than h-GA (Belassiria et al., 2018) 
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6.2. Analysis of the current assembly line 
 

The IP harness assembly line was selected for our test case, which was balanced with a cycle time of 170 seconds. The selected 
model consists of 34 tasks, and the task precedence relationships are shared in Fig.2a. The diagram became very complicated 
when we showed all the relationships between tasks. To simplify the illustration, we combine the tasks into three groups and 
only show a relationship line between these groups. The first group contains tasks from 1 to 17. Each task in the first group is 
the predecessor of all tasks in the second group, which contains tasks from 18 to 29. Likewise, each task in the second group 
is the predecessor of all tasks in the third group, which contains tasks from 30 to 34. The task precedence relationship of task 
1 is shared in Fig.2b as an example. Task 1 is the predecessor of tasks 18 to 29. Tasks 30 to 34 are the successors of the tasks 
from 18 to 29. 

Nine workers are capable of working in the IP assembly line. The task processing times, shared in Table 2, differ from worker 
to worker. As some tasks need specific worker skills or training, they cannot be performed by some of the workers, which are 
stated with a dash in Table 2. The initial assignment of the assembly line is shared in Table 3. 

Transporting tasks between stations may cause station modifications. This expense differs widely according to the line and 
task specifications. Task transportation cost is negligible for eight of the tasks, which are set to 0 EUR. For the remaining 
tasks, task transportation costs range from 134 EUR to 1889 EUR, which are shared in Table 2. The station operating cost 
was calculated as 2000 EUR for the current operation plan for eight weeks, including worker salary. Opening a new station 
needs ordering new equipment and hiring additional workers, which costs 3000 EUR, and closing a station costs 500 EUR. 

The customer increased the demand for the harness, and cycle time is needed to be decreased from 170 seconds to 158 seconds 
to meet the new demand. There are seven objectives, which are described in section 3.3. The constraints of the problem are 
described in section 3.4. The software is set to stop after 500 iterations and run 10 times. 

 

 

 
Fig.2a Precedence relations of the assembly line Fig.2b Precedence diagram of task 1 

 

6.3. ErgoALWARBP decision support software: inputs, outputs, and solution environment 
 

The ErgoALWARBP software was developed with C# by Visual Studio 2015. The software can read the inputs from an Excel 
workbook that is filled in the pre-specified format. The five different input categories and their content are as follows: 

Initial data: Tasks (with names), workers, task precedence relations, the task processing time of each worker for each 
task (task-worker processing time matrix) (Table 2). 

Work/time study: Task details (sub-tasks) including operation type and sub-task processing time information. Twelve 
operation types were defined and analyzed for specifying posture and force values of each operation that are used 
in OCRA ergonomic calculations (for OCRA input parameters, see Baykasoglu et al. (Baykasoglu et al., 2017): 
114-115). 
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Kitting data: Technical move count variables and values of each task. These data are generated after a detailed analysis 
of technical drawings and assembly lines which are used in OCRA ergonomic calculations. 

Initial assignment: Assembly line stations, station task assignment, station worker assignment, station time, cycle time. 
New assembly line data: New cycle time, station operating/opening/closing costs, task transportation costs, operation 

duration (months), iteration, and run count (for calculations). 

The software generates two outputs which are: 
 
Task and worker assignment with ergonomic results of the case study assembly line (Table 3). 
Solutions with objective value results (Table 4). 

 
Table 2  
Task transportation costs and task performing times of the workers in the industrial case study 

Task number Task  
transportation cost 

Worker task times (seconds) 
w1 w2 w3 w4 w5 w6 w7 w8 w9 

1 668 - 20 23 22 25 20 24 26 21 
2 239 15 17 15 - 16 16 19 20 16 
3 443 14 16 14 19 15 17 13 18 - 
4 1592 28 28 25 27 35 34 - 26 23 
5 0 - 48 52 50 51 53 52 51 46 
6 639 70 63 60 64 62 - 63 69 67 
7 1537 8 8 - 11 7 10 5 9 10 
8 0 14 - 16 16 12 18 - 13 11 
9 0 31 38 30 35 38 - 31 - 39 
10 598 53 - 53 52 52 56 52 56 51 
11 720 21 25 19 20 - 20 22 20 21 
12 524 11 - 14 12 10 10 8 14 9 
13 392 12 12 10 14 15 10 - 11 - 
14 1889 52 53 54 51 54 50 55 49 50 
15 1307 42 40 38 37 40 40 - 38 47 
16 680 84 92 86 - 85 82 88 84 87 
17 0 75 77 - 77 76 79 74 73 82 
18 0 16 19 18 17 15 16 18 16 18 
19 1229 32 36 34 36 34 31 36 33 - 
20 629 46 47 50 50 49 52 45 - 52 
21 983 31 31 32 32 33 36 32 37 - 
22 632 32 - 29 30 30 29 29 23 37 
23 1052 11 7 - 9 9 7 10 9 10 
24 134 21 25 18 25 - 22 21 21 22 
25 821 52 53 58 62 51 57 - 65 57 
26 850 11 13 13 13 - 14 16 16 14 
27 0 - 6 6 5 - 5 4 4 5 
28 475 65 58 55 50 53 56 - 60 56 
29 473 7 11 10 8 12 10 12 - 10 
30 0 34 34 31 - 34 41 34 30 34 
31 971 19 17 15 15 17 - 17 17 21 
32 1079 40 44 48 - 44 48 44 48 36 
33 0 29 26 - 26 25 - 26 25 24 
34 1431 46 49 48 49 - 47 49 52 52 
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6.4. Industrial case study implementation, results, and discussion 
 

The software was run for 500 iterations on a Toshiba notebook with a 2.0 GHz AMD Turion Mobile TL-60 CPU. The station 
assignment details of the best solutions for each Goal are shared in Table 3. The solution names are given in the first column. 
In columns two and three, station numbers of the assembly line and assigned workers to each station are shared, respectively. 
In column four, the assigned tasks for each station are shared, which tasks are separated by commas. In columns five and six, 
each station's OCRA index and station time are shared, respectively. As an example of reading the results, there are seven 
stations in the initial assembly line, where worker 7(w7) was assigned to station 7(s7). The tasks 30, 31, 32, 33, 34 were 
assigned to s7, and w7 can process these tasks in 170 seconds (station time). The OCRA index for s7 is calculated as 10.99. In 
solution Goal-1, w7 will still operate in s7 and implement tasks 30, 32, 33, 34. So, while tasks 30, 32, 33, 34 will stay in s7, 
task 31 will be moved from s7 to s6 in the rebalanced AL. 

Table 3  
Initial assignment’s and new solutions’ station-task and station-worker assignments of the industrial case-study 

Solutions Station Assigned Worker Assigned Tasks 
OCRA 
Index 

Station 
Time 

Initial Assignment s1 w1 4, 8, 11, 12, 13, 14 9.66 138 
 s2 w2 2, 3, 7, 15, 17 10.55 158 
 s3 w3 1, 10, 16 9.99 162 
 s4 w4 5, 6, 9, 18 14.63 166 
 s5 w5 19, 20, 21, 22, 23 15.90 155 
 s6 w6 24, 25, 26, 27, 28, 29 17.13 164 
 s7 w7 30, 31, 32, 33, 34 10.99 170 
Solution Goal-1 (min. Cost) s1 w3 2, 9, 14, 13, 4, 11 11.20 153 
 s2 w5 15, 12, 16, 3, 7 11.83 157 
 s3 w4 10, 5, 1, 8 10.71 140 
 s4 w2 6, 17, 29, 23 11.08 158 
 s5 w1 21, 25, 20, 26, 18 24.65 156 
 s6 w8 22, 19, 28, 27, 24, 31 11.90 158 
 s7 w7 32, 33, 34, 30 10.74 153 
Goal-2 (max. MSF) s1 w6 10, 16, 1 10.25 158 
 s2 w7 17, 5, 9 11.37 157 
 s3 w1 12, 4, 13, 8, 14, 11, 2 9.49 153 
 s4 w2 6, 3, 15, 7, 21 13.71 158 
 s5 w4 22, 27, 29, 28, 18, 23, 26, 24 18.12 157 
 s6 w5 25, 19, 20, 31 17.74 151 
 s7 w8 33, 30, 34, 32 10.60 155 
Goal-3 (max. worker MSF) s1 w1 9, 4, 13, 11, 12, 3, 7, 8, 2 13.61 154 
 s2 w8 17, 16 7.41 157 
 s3 w3 6, 10, 1 10.68 136 
 s4 w4 15, 5, 14, 18 12.44 155 
 s5 w6 19, 22, 25, 27, 26, 24 20.57 158 
 s6 w2 21, 28, 29, 20, 23 13.14 154 
 s7 w7 34, 30, 32, 33 10.74 153 
 s8 w9 31 10.77 21 
Goal-4 (min. MAD of OCRA) s1 w8 5, 16, 8, 7 13.04 157 
 s2 w3 15, 6, 11, 9, 13 13.35 157 
 s3 w5 4, 12, 1, 2, 10, 3 9.18 153 
 s4 w1 14, 17, 26, 18 15.23 154 
 s5 w4 24, 28, 19, 23, 21, 27 13.65 157 
 s6 w9 22, 20, 29, 25 14.65 156 
 s7 w7 32, 34, 30, 33 10.74 153 
 s8 w2 31 13.31 17 
Goal-5 (min. nr. of tasks moved) s1 w3 13, 15, 9, 12, 3, 11, 1 10.78 148 
 s2 w1 7, 17, 10, 2 11.98 151 
 s3 w9 16, 4, 5 9.38 156 
 s4 w5 8, 6, 14, 23, 18 12.30 152 
 s5 w7 20, 19, 29, 27, 21, 22 15.52 158 
 s6 w6 28, 25, 24, 26 17.58 149 
 s7 w2 34, 32, 30, 31 12.65 144 
 s8 w4 33 1.83 26 
Goal-6 (max. line efficiency) s1 w9 14, 10, 5, 12 10.84 156 
Goal-7 (min. smoothness index) s2 w6 16, 4, 13, 1, 7 10.99 156 
 s3 w1 2, 11, 17, 9, 8 11.60 156 
 s4 w3 6, 3, 15, 24, 27, 18 15.62 154 
 s5 w2 21, 29, 28, 20, 23 13.14 154 
 s6 w4 25, 22, 19, 26, 31 18.62 156 
 s7 w7 30, 33, 34, 32 10.74 153 
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The same solution was found for min. LE (G6) and min. SX (G7). The SX values range between 4.12 and 25.44 (except for 
one solution with SX=33.08) for LE values higher than 95.75. These high-performance results are very close to each other, 
which is better than the initial solution. For lower efficiencies, the SX dropped around 100 and ranged widely between 75 and 
145, which became not dependent on LE values. The relation between SX and LE values of the 500 feasible solutions is shared 
in Fig.3. 
 

 
 

Fig. 3. Line efficiency & line smoothness index values of the feasible solutions 
 
 
Computational results of the best solutions for the seven goals, the average results, and the standard deviation values of all 
feasible solutions are shared in Table 4.  

In the best solution for Goal-1 (𝒎𝒊𝒏.𝑇𝐶௥௕), 15 tasks were transported, which had a 7471 EUR rebalancing cost. This cost is 
54% less than solution Goal-2 (max. MSF), 57% less than solution Goal-4 (𝑚𝑖𝑛.𝑚𝑎𝑑𝑂𝐶𝑅𝐴), 42% less than solution Goal-5 
(min. task movement), and 55% less than the average cost of all feasible solutions. Although it has better results in terms of 
the LE and SX in comparison with the initial assignment, there is a 13% increase in the OCRA result, which is the worst 
station ergonomics between the solutions. The distribution of solutions in terms of the total cost of rebalancing is shared in 
Fig.4. 

 

 
Fig.4 The distribution of the feasible solutions in terms of total rebalancing cost 
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Table 4  
Computational results of the industrial case study 

Solution CPU time 
(ms) 

No. of 
stations 

Cycle 
time (s) 

Total rebalancing 
cost (EUR) 

Task movement 
cost (EUR) 

No. of tasks 
moved MSF Worker 

MSF 
OCRA 
MAD 

Line 
efficiency 

Smoothness 
index 

Initial assignment - 7 170 - - - - - 2.74 93.53 38.85 

Goal1- min. rebalancing cost 209 7 158 7471 7471 15 0.31 0.18 3.10 97.20 19.47 

G2- max. MSF 288 7 158 16333 16333 25 0.56 0.32 2.99 98.46 9.22 

G3- max. worker MSF 207 8 158 17174 12383 16 0.44 0.43 2.52 86.08 139.00 
G4- min. MAD of OCRA 
indexes 239 8 157 17346 12346 20 0.28 0.12 1.47 87.90 140.15 

G5- min. no. of tasks moved 211 8 158 13022 8022 13 0.38 0.15 3.13 85.76 133.75 
G6- max. line efficiency 
G7- min. smoothness index 196 7 156 10553 10533 20 0.30 0.16 2.33 99.36 4.12 
Average of 500 feasible 
solutions 211.2 7.57 157.6 16879 6650 20.96 0.31 0.15 3.08 89.92 89.84 

Standard deviation 15.47 0.46 0.72 3044 2500 2.87 0.05 0.08 0.54 5.01 50.59 
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The solution with the best ergonomics (G4) has 46% better ergonomics than the initial solution. However, it had the worst 
rebalancing cost with 17346 EUR and got worse LE and SX compared to the initial assignment. Also, the rebalancing cost 
will become higher because of the operational cost (𝑐𝑜𝑠𝑡௥௨௡) of its additional station, if the planning period will be longer. 
This led the company not to choose this solution. 

Although it costs 3K EUR more than the min. cost solution, the company chose to implement the best solution for G6 and 
G7. The solution results are analyzed as below:  

With a 6% improvement, the LE is close to the optimum efficiency value of 100% with LE=99.36%. 
The SX is decreased by 89% to 4.12, close to optimum SX value 1.  
Although having 36% worse OCRA result than the solution with the best ergonomics (G4), the solution improves line 

ergonomics by 14.9% compared to the initial assignment. 
The solution has very close results to the minimum cost solution (G1) in terms of MSF (3% lower) and worker MSF 

(11% lower). 
 

After implementing the suggested method in the real-world assembly line and analyzing the solutions, we can conclude that 
it is crucial to decide the order of importance of the objectives (the goals) while choosing the best solution. The planning 
period and the number of stations of the rebalanced line are essential factors while calculating the total cost of rebalancing. 
The operating cost (𝑐𝑜𝑠𝑡௥௨௡) changes in direct relation with the planning period. As it is shared in Eq. 1, the change in the no. 
of stations is the multiplier of 𝑐𝑜𝑠𝑡௥௨௡. The total cost can change a lot in more extended planning periods if the number of 
stations is changed in the rebalanced AL. Also, the number of tasks moves has a low effect on total rebalancing cost if tasks 
with the low moving cost are selected for movement. Therefore, it is essential to define the planning period well if the cost 
has a high priority for the company. 

With the ErgoALWARBP solution method and software, several benefits are gained in the company for solving the AL 
rebalancing problem. The most valuable gains can be summarized as below: 

Method engineers were manually solving the line rebalancing problem before the ErgoALWARBP software. Therefore, 
the problem-solving speed and the solution quality varied by the experience level of the engineers. The dependency 
on the experience level of engineers and the risk of making calculation errors were eliminated with the help of our 
solution method and the decision support software. 

We considered seven objectives in our solution method, described in section 3.3. Method engineers can manually solve 
the rebalancing problem in 4-6 weeks/engineer according to the scope of the change request and their experience 
level, although they can only consider a smaller number of objectives and constraints simultaneously. In a 
frequently changing agile work environment, the customer may request several product changes during the solution 
implementation, which causes a lot of time and material waste. The ErgoALWARBP software can calculate and 
propose several effective solutions that meet different goals in just seconds. Thus, the software improved the team's 
agility for the customer change requests by increasing the solution speed at least ten thousand times, decreasing the 
rebalancing cost, and eliminating the cost of wastes. 

Manually calculating line ergonomics needs so much time and effort, which caused the team to ignore ergonomic 
criteria during the initial rebalancing. It was usually preferred to solve ergonomic problems according to feedback 
from the production area after solution implementation. With the help of ErgoALWARBP software, the team could 
find solutions with better ergonomics, considering all ergonomic criteria. This helped to decrease the costs that 
were related to additional ergonomic improvements and quickly improve the assembly line’s ergonomic 
conditions, which may cause musculoskeletal disorders. 

 
7. Conclusion 
 

In this study, a novel rebalancing problem about workers’ specific skills is studied under ergonomic aspects, the 
ErgoALWARBP. A formal definition of the problem is stated, which is multi-objective by nature. The objectives are 
maximizing the similarity of the assigned tasks to the stations, the similarity of performed tasks by the workers, and the line 
efficiency while minimizing the total cost of rebalancing, line smoothness index, ergonomic objective, and the number of 
relocated tasks. To deal with the novel ErgoALWARBP, a randomized constructive rule-based heuristic approach is 
developed, and a preemptive goal programming approach is applied. To evaluate the performance of the developed 
rebalancing method, it was tested on the well-known benchmark data. Experimental results showed the efficiency of the 
developed algorithm. Then, the solution method is applied by a company that manufactures automotive harness by using the 
developed decision support software. The software generated several solutions, and they were evaluated by the method 
engineers. The most fitting solution was chosen and implemented on the assembly line among the suggested alternatives. 
Specifically, the proposed systematic approach improves problem-solving speed, assembly line ergonomics, line efficiency, 
and line smoothness index, with less rebalancing cost. The developed ErgoALWARBP software improved the organization's 
agility for frequent changes, which may lead to the need for rebalancing, and decreased the dependency of the solution quality 
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to the engineer’s experience level. Future researches can extend the ErgoALWARBP and the heuristic solution method to 
solve U-type/two-sided line configurations, multi/mixed-model assembly lines, and stochastic worker availability/task times. 

 

Code and Data Availability 
 

The source codes of the C# windows application and data can be shared upon request. 
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Appendix 
 

OCRA index is calculated as in the following: 

𝑂𝐶𝑅𝐴 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 / 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (A.1) 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 60 (A.2) 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  = CF * PM * FM * RM * ARF * (RcM * DuM) (A.3) 

𝑎𝑣𝑔𝑂𝐶𝑅𝐴 =  𝑠𝑢𝑚 𝑜𝑓 𝑂𝐶𝑅𝐴 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠  (A.4) 

𝑚𝑎𝑑𝑂𝐶𝑅𝐴 =  ඨ(𝑎𝑣𝑔𝑂𝐶𝑅𝐴 − 𝑂𝐶𝑅𝐴𝑎)ଶ𝑚 − 1  (A.5) 

 

OCRA index is calculated for each station after the assignment of tasks and worker in that particular station has completed. 
Details of the OCRA index parameters can be examined from Akyol and Baykasoğlu (2019a) and Otto and Scholl (2011). 
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