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 In order to promote green and sustainable development of the transportation industry, an increasing 
number of logistics companies have begun to deploy electric vehicles (EVs) to provide urban 
distribution services. This paper studies a Half-Open Time-Dependent Multi-Depot Electric 
Vehicle Routing Problem Considering Battery Recharging and Swapping (HOTDMDEVRPBRS) 
in last-mile delivery. Based on the calculation functions of EV energy consumption, travel time, 
and carbon emissions under the time-dependent road network, a mixed integer programming model 
is formulated. The goal of the model is to minimize the economic cost and environmental cost of 
logistics companies. Given the complexity of the problem, this paper designs a multi-objective 
simulated annealing algorithm (SAA). Finally, this paper carries out comprehensive computational 
experiments to verify and evaluate the performance of the proposed model and method and 
examines the economic and environmental benefits brought by the Half-Open Joint Distribution 
Mode (HOJDM). According to the results, SAA shows good performance and provides a high-
quality solution. Meanwhile, the HOJDM significantly reduces the total cost and carbon emissions 
of logistics enterprises and provides valuable suggestions for enterprise managers and government 
decision-makers. 
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1. Introduction 

Nowadays, Green House Gas (GHG) emission has become a severe issue endangering human life. The transportation industry 
is one of the significant contributors to GHG emissions. In the United States of America and the European Union, the 
transportation industry generates 29% (USEPA, 2019), and 24% (GGES 2016) of GHG emissions, respectively. As a result, 
extensive research has started to shift toward greener transportation in both industry and academia. In this case, applying EVs 
to logistics distribution may be a promising solution (Huang et al., 2019). In addition to lowering air pollution, EVs also can 
ease traffic congestion and reduce noise in residential areas while decreasing fossil fuel consumption (Xiao et al., 2021). 
Various countries have issued relevant policies to promote the electrification of transportation. Italy will phase out diesel 
vehicles completely in Milan from 2027. Five cities in France provide free or discounted parking for EVs – Aix-en-Provence, 
Lyon, Marseille, Nice, and Paris. The Netherlands requires the 30–40 largest municipalities to introduce “zero-emission 
zones” for freight by 2025, meaning that only EVs will be permitted to drive through the zone. 

However, some challenges restrict the EVs’ application in city freight transportation, the most prominent of which is the 
limited mileage of EVs (Basso et al., 2019). Therefore, if EVs are applied to urban distribution, it is necessary to plan EVs’ 
battery energy supplement needs reasonably. Currently, the mainstream way for EVs to replenish energy is to charge at the 
charging station (CS). With the gradual improvement of energy replenishment infrastructure, the ways of replenishing energy 
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for EVs will be more diversified. EVs can not only go to the CS to charge but also to the battery swapping station (BSS) to 
replace the battery. Different ways of replenishing energy will affect the distribution cost and efficiency of logistics 
enterprises. In this regard, it is of great practical significance to study the electric vehicle routing problem (EVRP) considering 
both recharging and battery swapping operations. 

Moreover, in today’s fiercely competitive market, enterprises are under tremendous pressure to boost efficiency by reducing 
operational costs. Since distribution cost constitutes a significant portion of a company’s operational expenditures, one 
effective strategy to help achieve this goal is to make full use of multiple depots of logistics enterprises to carry out joint 
distribution (Gansterer & Hartl, 2018). In addition to evident economic benefits, the joint distribution also can reduce the 
energy consumption of EVs, with certain environmental benefits. Currently, the electricity source of EVs mainly depends on 
thermal power generation, so there are still some GHG emissions in the use of EVs (Teixeira and Sodré 2018). Reducing the 
energy consumption of EVs means reducing carbon emissions. However, studies have rarely applied both EV carbon 
emissions and joint distribution mode to EVRP. 

In the meantime, the traffic conditions of the urban road network have time-varying characteristics, and vehicles may travel 
at different speeds in different time periods. Speed is one of the main factors affecting travel time and EV energy consumption. 
Time-dependent speed makes it arduous to directly calculate travel time and EV energy consumption, leading to certain 
difficulties in EV distribution route planning (Zhang et al., 2020). If an EV runs out of power during delivery, the solution 
will be far more complex than a fuel vehicle (FV). Because FVs are usually equipped with backup fuel, but EV batteries are 
expensive (Andwari et al., 2017), general logistics companies cannot be equipped with backup batteries. This means that time-
dependent speed is a crucial factor for the route planning of EVs. 

Due to the necessity of reducing EV energy consumption and considering the significant benefits of the joint distribution, in 
this paper, we integrate practical factors such as multiple depots, half-open joint distribution mode (HOJDM), time-dependent 
speeds, hybrid energy replenishment mode (HERM) and EV carbon emissions into the EVRP. Aiming to minimize economic 
cost and environmental cost, we explore a more comprehensive Half-Open Time-Dependent Multi-Depot Electric Vehicle 
Routing Problem Considering Battery Recharging and Swapping (HOTDMDEVRPBRS). Moreover, in contrast to many 
studies in the literature that calculate electrical energy consumption only based on the travel distance, this paper considers the 
EV weight, speed, travel distance, acceleration, and other factors related to the energy consumption, and then designs the 
calculation methods of EV energy consumption, travel time and carbon emissions under the time-varying road network. 
Furthermore, other assumptions are regarded, including the times of recharging and battery swapping, customer demand and 
service time. Eventually, due to the high complexity of the problem, a multi-objective simulated annealing algorithm is 
devised to solve the problem. The main contributions of this study can be summarized as follows, 

 Simultaneously considering two ways of replenishing energy in the EVRP, which is forward-looking in line with 
future development, 

 EVRP research that takes time-dependent speed into account is more realistic, 
 Creating flexible energy replenishment plans to fulfil the actual distribution requirements of enterprises,  
 Providing an extensive computational experiment to evaluate the performance of the proposed model and approach 

and examine the economic and environmental benefits of HOJDM. 

The rest of this paper is organized as follows. In Section 2, the studies on the VRP related to recharging and battery swapping, 
HOJDM, carbon emissions and time-dependent speed are reviewed, and the innovation of this article is explained. Section 3 
provides a description of the problem. In Section 4, the Calculation method of EV energy consumption, travel time and carbon 
emissions under time-dependent speed is developed, and the mixed integer programming model of HOTDMDEVRPBRS is 
formulated. In Section 5, a simulated annealing algorithm based on multi-objective is designed. The validation and rationality 
of the proposed approach are investigated in Section 6. Meanwhile, we put forward reasonable operation suggestions for 
logistics enterprises. Finally, the conclusion and prospects for future research are provided in Section 7. 

2. Literature review 
The Vehicle Routing Problem (VRP), one of the most studied topics in logistics management, concerns finding optimal sets 
of routes to deliver packages from depots to customers according to an objective function like minimizing the total 
transportation distance or cost (Tao et al., 2021). Dantzig and Ramser (1959) initially introduced this issue. Since then, 
scholars have developed many extensions of the VRP to incorporate real-world assumptions and make more practical models. 
As one of the variants of VRP, EVRP was first proposed by Conrad et al. (2011). In this section, we focus on the research 
works that are most relevant to this paper. 
The charging strategy has always been one of the research hotspots of EVRP, aiming to solve the problem of EV distribution 
mileage limitation. Many scholars have conducted research on different charging strategies. Mauricio et al. (2020) studied 
EVRP with backhauls under full charging strategies, and designed an iterated local search algorithm to solve it. Zhou et al. 
(2021) studied a new variant of the EVRP that considers partial recharge. To solve the problem, they developed a hybrid 
metaheuristic by integrating a modified greedy algorithm with the variable neighborhood search. David et al. (2019) 
constructed an iterated local search metaheuristic framework and a variable neighborhood descent algorithm to solve EVRP 
under partial charging strategies, and proposed to make reasonable use of charging time, such as delivering packages to 
customers close to the CS by walking. Keskin et al. (2018) conducted a comparative experiment with three recharging 
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configurations which can be referred to as normal, fast and super-fast recharges in the process of EV distribution. Shen et al. 
(2021) assumed that each CS has three charging types (slow,  regular  and  fast  charging), and formulated EVRP mathematical 
models of multiple charging types with the goal of minimizing the total cost. Karakatič (2021) studied the multi-depot EVRP 
with nonlinear recharging times, and designed a two-layer genetic algorithm to solve the problem. With the development of 
science and technology, EVs can replenish energy by swapping the battery. Zhou et al. (2022) investigated the EVRP with 
battery swapping. The mathematical model aims to minimize the total distribution cost and maximize the average utilization 
of batteries simultaneously, and a multi-objective whale optimization algorithm is developed to solve the problem. Raeesi and 
Zografos (2020) presented an EVRP with synchronised mobile battery swapping. They assumed that a battery swapping van 
would replace the depleted battery on an EV with a fully charged one at a designated time and location. Jie et al. (2019) 
proposed a two-echelon capacitated electric vehicle routing problem with battery swapping stations and designed a hybrid 
algorithm that combines a column generation and an adaptive large neighborhood search to solve the problem. The above 
literature provides a theoretical basis and method reference for EVRP under different energy replenishment strategies. 
With the rapid development of urban logistics, many logistics companies have multiple depots. In the long-term logistics 
practice process, it is found that the independent distribution mode is arduous to share logistics resources, easily leading to 
roundabout transportation. The joint distribution mode can effectively reduce travel distance, decrease distribution cost and 
improve distribution efficiency. Therefore, the joint distribution mode has gradually become one of the hotspots in VRP 
research. Liu et al. (2020) studied the joint distribution mode of cold chain logistics companies and established an optimization 
model for the multi-depot vehicle routing problem (MDVRP) with the goal of minimizing total distribution cost and carbon 
emission cost. Brandão (2020) built an open MDVRP mathematical model for the joint distribution problem and designed an 
iterated local search algorithm to solve it. Wang et al. (2019) formulated an MDVRP model with shared transportation 
resources, and they designed a hybrid heuristic algorithm combining the saving algorithm, the sweep algorithm and the multi-
objective particle swarm optimization algorithm to solve the problem. Zhang et al. (2022) proposed a heterogeneous multi-
depot collaborative vehicle routing problem, considering the joint distribution of multi-category products, and developed a 
Benders-based branch-and-cut algorithm to solve the problem. In order to compare the differences between shared and non-
shared resources in multiple depots during the distribution process, Li et al. (2018) conducted a comparative study. Likewise, 
Behdin et al. (2022) made a comparative study on the joint distribution and non-joint distribution of EVs. The above literature 
provides a theoretical basis and method reference for EVRP under the HOJDM. 
Whether an EV is really clean depends on the cleanliness of its charge. EVs obtain electrical energy from the CS, and the 
electrical energy of the CS is provided by the power grid, which is converted from primary energy processing. In fact, most 
countries still supply electricity mainly through thermal power generation, so using EVs for urban distribution still has 
unavoidable carbon emissions. This issue has attracted the attention of a few scholars, who have considered carbon emissions 
in EVRP and conducted research from different perspectives. Zhu et al. (2020) addressed a multi-depot capacitated EVRP 
where client demand is composed of two-dimensional weighted items. Based on the data of Bloomberg New Energy Finance 
(BNEF), the carbon emissions of EVs and FVs in the distribution process are compared and analyzed. Li et al. (2020) thought 
that EV carbon emissions are related to energy consumption and put forward a measurement function of EV carbon emissions, 
which is applied to an EVRP considering battery life and battery swapping strategy. In the context of sharing economy, Li et 
al. (2020) studied the EVRP considering carbon taxes and time-of-use electricity prices and proposed an optimization model 
of the EVRP in view of sharing economy. Liao et al. (2019) studied the VRP with the consideration of carbon trading policies, 
and both the EV routing model and the traditional FV routing model are constructed to minimize the total costs. Finally, they 
concluded that carbon price plays an essential role in the transformation of logistics companies. The above literature provides 
a theoretical basis and method reference for the study of EVRP considering carbon emissions. 
The traffic conditions of the urban road network have time-varying characteristics, and vehicles may travel at different speeds 
during different time periods. The time-dependent speed has a great impact on the distribution time cost of urban logistics. 
Scholars have studied the time-dependent vehicle routing problem (TDVRP) from different perspectives. Sun et al. (2018) 
introduced the TDVRP with time windows and precedence constraints and proposed a tailored labeling algorithm to solve 
this problem. Poonthalir and Nadarajan (2018) built a bi-objective TDVRP model with the goal of minimizing both route cost 
and fuel consumption and solved it by particle swarm optimization with greedy mutation operator and time varying 
acceleration coefficient. Xu et al. (2019) built a TDVRP planning model with the goal of minimizing carbon emissions and 
maximizing customer satisfaction and designed an improved non-dominated sorting genetic algorithm to solve it. Gmira et 
al. (2021) considered that paths between any two customers at different times of the day might be different and proposed a 
new variant of TDVRP with time window, then designed a tabu search algorithm to solve it. Some scholars have also studied 
the time-dependent electric vehicle routing problem (TDEVRP). Lu et al. (2020) comprehensively considered the constraints 
of EV energy consumption, time windows, charging decisions, etc., and built a TDEVRP model with the goal of minimizing 
the total distribution cost. To solve the problem, they designed an iterated variable neighborhood search algorithm. Wang et 
al. (2020) studied TDEVRP with time windows and path flexibility. With the goal of minimizing the total travel distance and 
the electrical energy consumption, a mixed integer programming model was established, and an improved variable 
neighborhood search algorithm was designed to solve it. The above literature considers the time-varying characteristics of 
urban traffic conditions, which is more in line with the actual situation of urban logistics distribution, and provides a reference 
for the application of EVs to urban distribution. 
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The existing research has laid a good foundation for the in-depth study of EVRP in urban environments, but there are still 
research gaps that can be further explored: (1) Most of the existing literature stipulates that EVs only replenish energy in the 
CS during the distribution, but in fact, there are many ways to replenish energy for EVs. As the country with the largest 
number of EVs in the world, China clearly proposed “accelerate the construction of battery swapping infrastructure” in its 
“New Energy Vehicle Industry Development Plan (2021-2035)”, fully explaining that the EVRP considering recharging and 
battery swapping has broad application prospects. For a long time in the future, swapping batteries will become one of the 
mainstream energy supplementation methods for EVs. Although some scholars have studied EVRP based on battery swapping 
mode, EVRP research that simultaneously considers the hybrid energy replenishment mode of recharging and battery 
swapping is scarce. (2) Although much literature considers the time-varying characteristics of the urban road network, few 
studies integrate the time-dependent speed into EVRP. The time-dependent speed will affect EV travel time and energy 
consumption. If the distribution optimization scheme based on constant vehicle speed is applied to the actual traffic network, 
it will likely cause the EV to break down on the way of distribution, making it challenging to complete the task. (3) HOJDM 
can share logistics resources, shorten vehicle travel distance, and reduce energy consumption. At present, the electricity of 
many countries mainly relies on thermal power generation, so using EVs still has unavoidable carbon emissions. Reducing 
EV energy consumption means reducing carbon emissions. Therefore, the HOJDM will generate not only economic benefits 
but also environmental benefits. However, few EVRP studies comprehensively consider multiple depots, HOJDM and carbon 
emissions. (4) It takes a long time to charge, which affects the distribution efficiency. Therefore, most existing literature 
assumes that EVs are only charged once during distribution. However, the single-charge strategy limits the distance of EVs, 
and it is difficult to use EV capacity fully. By swapping the battery to replenish energy, each operation only takes a few 
minutes, which basically does not affect the total distribution time. Therefore, based on the energy replenishment strategy of 
single recharging and multiple battery swapping, when the task of EVs is heavy, this strategy can ensure the delivery timeliness 
and make full use of EV capacity; when the task of EVs is light, this strategy can also save distribution cost. This strategy is 
more in line with the actual needs of the enterprise. In summary, this paper studies HOTDMDEVRPBRS in last-mile delivery, 
considering factors such as multiple depots, HOJDM, customer coordinates, demand, EV capacity, carbon emissions, time-
dependent speed, HERM, single-recharging and multiple-battery-swapping strategies. We formulate a mathematical 
optimization model with the goal of minimizing economic cost and environmental cost, and a simulated annealing algorithm 
is designed to solve it. This paper offers a more reasonable and scientific EV distribution-charging/swapping route planning 
scheme for urban logistics and provides references for the green development of urban logistics. 

3. Description of the problem 
This research addresses the HOTDMDEVRPBRS for last-mile delivery. In contrast to most of the literature, we assume that 
EVs carrying packages depart from multiple depots, and they do not have to return to the original depots after completing all 
distribution tasks, but can park at any depot nearby. In the distribution process, when the electrical energy of EVs is insufficient 
to continue the distribution, the EV needs to go to the CS or BSS to replenish energy. After the energy replenishment is 
completed, EVs continue to deliver the remaining packages to customers. In this problem, the EV capacity, battery capacity, 
customer coordinates, demand, and service time are all known (Fig.1). 

 

Fig.1. Schematic of the HOTDMDEVRPBRS 

To clarify the application scope of the HOTDMDEVRPBRS, we make the following assumptions: (1) Each EV can be used 
at most once, each customer can be served only once, and each customer’s demand is less than the EV capacity; (2) Affected 
by the time-varying characteristics of the urban road network, EVs travel at different speeds in different time periods. (3) The 
influencing factors of EV energy consumption include EV self-weight, actual load, travel speed and travel distance; (4) The 
coordinates of the CS and the BSS are known, and EVs do not need to wait after entering the CS or BSS, can replenish energy 
directly; (5) During the distribution process, EVs can be charged at most once, the times of battery swapping is unlimited. 
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The CS adopts a partial charging strategy, and the charging rate is constant. The BSS adopts the strategy of swapping the fully 
charged battery, and the battery swapping time is fixed; (6) The EV has both economic cost and environmental cost. Economic 
cost includes fixed usage cost, travel time cost, charging cost, battery swapping cost, and customer service time cost. 
Environmental cost mainly is carbon emission cost. Given the aforementioned characteristics of the problem, the objective of 
the HOTDMDEVRPBRS is to minimize the sum of the economic cost and environmental cost of all EVs. 

4. Mathematical models 

4.1 EV energy consumption model 

Referring to the energy consumption calculation methods proposed by Bektaş et al. (2011) and Goeke et al. (2015), the average 
speed of EVs in a very short time period is taken as the travel speed of EVs in period R , so the energy consumption R

ijke  of 

EV k  traveling on arc ( , )i j  in period R  is: 

2( ) ( )R R R R
ijk ij ijk ijk ijke L l F v Fα β= + +   (1) 

where ijα  is a parameter related to the road section, sin cosij ij r ija g C gα θ θ= + + , a  represents EV acceleration, g  

represents the gravity constant, ijθ  represents the road angle, and rC  represents the rolling resistance coefficient. L  denotes 

the weight of an empty EV; l  denotes the actual load of an EV; R
ijkv  and R

ijkF  are the travel speed and distance of EV k  on 

arc ( , )i j  in period R , respectively. β  represents the coefficient related to EVs, 0.5 dC Aβ ρ= , dC  represents the 

traction coefficient, A  represents the windward area of the EV, and ρ  represents the air density. This paper's approach for 
calculating EV energy consumption can fully account for the influence of critical variables like EV speed, load, and travel 
distance, making EV energy consumption more accurate and consistent with its practical applications. 

4.2 EV travel time and energy consumption under the time-dependent speed 

Referring to the method proposed by Liu et al. (2020), a day is divided into multiple period sets T  according to a fixed time 
length U , 0 1{ , , ..., }LT T T T= , and 1[ , ]R RT T−  represents the R -th period. ijd  is the length of arc ( , )i j . Let R

ijkt  be the 

travel time of EV k  on arc ( , )i j  in period R . Let R
ijkd  be the distance that EV k still needs to travel on arc ( , )i j  after 

period R , and kR  is the time that EV k  can travel in period R . Assume that time l
ikt  at which EV k  leaves node i  is 

within period R , i.e., 1[ , ]l
ik R Rt T T−∈ , l

k R ikR T t= − . So the calculation steps of travel time ijkT  and energy consumption 

ijkE  required for EV k  from node i  to j  are as follows: 

Procedure 1: The calculation method of travel time and energy consumption of EV k  on arc ( , )i j  in the first period R . 
R R

ijk ijk kF v R= . If  R
ijk ijF d≥ , then /R R

ijk ij ijkt d v= ，
2( ) ( )R R

ijk ij ij ijk ije L l d v dα β= + + , go to Procedure 3; Otherwise, 
R R
ijk ij ijkd d F= − , R

ijk kt R= , 2( ) ( )R R R R
ijk ij ijk ijk ijke L l F v Fα β= + + , go to Procedure 2. 

Procedure 2: The calculation method of travel time and energy consumption of EV k  on arc ( , )i j  in each subsequent 

period. Step1: Let 1ξ = . Step2: R R
ijk ijkF v Uξ ξ+ += ⋅ , if 1R R

ijk ijkF dξ ξ+ + −< , then R
ijkt Uξ+ = , 1R R R

ijk ijk ijkd d Fξ ξ ξ+ + − += − , 
2( ) ( )R R R R

ijk ij ijk ijk ijke L l F v Fξ ξ ξ ξα β+ + + += + + , 1ξ ξ= + , go to Step2; Otherwise, 1 /R R R
ijk ijk ijkt d vξ ξ ξ+ + − += , 

1 2 1( ) ( )R R R R
ijk ij ij ijk ije L l d v dξ ξ ξ ξα β+ + − + + −= + + , go to Procedure 3. 

Procedure 3: Calculate the travel time and energy consumption of EV k  for the entire arc ( , )i j , R
ijk ijk

R T
T t

∈

=  , 

R
ijk ijk

R T
E e

∈

=  , and the calculation ends. 

4.3 EV carbon emission measurement function under the time-dependent speed 

The EV carbon emissions are related to the energy consumption on arc ( , )i j  and carbon emission factor h . Referring to the 
measurement method proposed by Li et al. (2020), the carbon emissions of EV k  traveling from node i  to j  is given as 
follows: 
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ijk ijkH h E= ⋅   (1) 

where the EV carbon emission factor h  is the carbon dioxide emission per unit of electrical energy consumption. This factor 
is related to the type of EVs and energy generation and is a constant in a specific logistics distribution. Here, according to the 
study by Feng et al. (2013) and Hickman et al. (1999), we set it to 0.69 /h kg kWh= . 

4.4 Notations and variables 

(1) Set 

C  denotes the set of customers; 1G  denotes the set of charging stations; 2G  denotes the set of battery swapping stations; 

M  is the set of depots; V  denotes the set of all nodes in the logistics system, 1 2=V C G G M   ; K  denotes the set 

of all EVs, {1,2,..., }K k= ; kC denotes the set of customers who still need to be served after EV k  has visited the charging 
station. 

(2) Parameter 

W  denotes the capacity of an EV; Q  denotes the battery capacity of an EV; ijd  denotes the distance between node i  and 

node j ; is  denotes the service time required by customer i ; iD  denotes the demand of customer i ; ikq  denotes the 

charging amount of EV k  at charging station i ; l
ikt  denotes the time when EV k  leaves node i ; a

ikt  denotes the time 

when EV k  arrives at node i ; l
ikS  denotes the remaining energy of EV k  when it leaves node i ; a

ikS  denotes the 

remaining energy of EV k  when it arrives at node i ; l
iku  denotes the load of EV k  when it leaves node i ; a

iku  denotes the 

load of EV k  when it arrives at node i ; ikσ  denotes the charging time of EV k  at charging station i ; ϕ  denotes the 

battery swapping time of EV k  at the battery swapping station, which is a fixed constant; 1c  denotes the travel cost of the 

EV in unit time; 2c  denotes the fixed usage cost to be paid for dispatching one EV; 3c  denotes the unit time cost of serving 

customers; 4c  denotes the charging cost per unit time; 5c  denotes the cost per battery swapping; 6c  denotes the carbon 

emission cost per unit energy consumption of EVs; η  denotes the charging efficiency of the EV; ep  denotes the power of the 
charging interface. 

(3) Decision variables 

ijkx  is a 0-1 variable, 1 if EV k  travels from node i  to j , 0 otherwise; ijkRy  is a 0-1 variable, 1 if EV k  travels from 

node i  to j  in period R , 0 otherwise; ikw  is a 0-1 variable, 1 if EV k  visits customer i , 0 otherwise; ikz  is a 0-1 

variable, 1 if EV k  visits charging station i , 0 otherwise; ikr  is a 0-1 variable, 1 if EV k  visits battery swapping station 
i , 0 otherwise. 

4.5 Cost analysis 

1 1 ijk ijk
i V j V k K

P c T x
∈ ∈ ∈

=   (3) 

2 2 ijk
i M j C k K

P c x
∈ ∈ ∈

=   (4) 

3 3 i ik
i C k K

P c s w
∈ ∈

=   (5) 

1

4 4 ik ik
i G k K

P c zσ
∈ ∈

=   (6) 

2

5 5 ik
i G k K

P c r
∈ ∈

=   (7) 

6 6 ijk ijk
i V j V k K

P c H x
∈ ∈ ∈

=   (8) 

1P  is the total travel time cost; 2P  is the total fixed usage cost of EVs; 3P  is the total customer service time cost; 4P  is the 

total charging cost; 5P  is the total battery swapping cost; 6P  is the total carbon emission cost. 
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4.6 HOTDMDEVRPBRS model 

According to the problem description, model assumption and above analysis, the mathematical model of 
HOTDMDEVRPBRS is described as follows: 

( )1 2 3 4 5 6minf P P P P P P= + + + + +  (9) 

1, ,ijk
i M j C

x k K i j
∈ ∈

≤ ∀ ∈ ≠   (10) 

1,ik
i C

w k K
∈

= ∀ ∈  (11) 

, { }\ ,ijk jlk
i V l V

x x j V M k K
∈ ∈

= ∀ ∈ ∀ ∈   (12) 

,ijk jlk
i M j C j C l M

x x k K
∈ ∈ ∈ ∈

= ∀ ∈   (13) 

,i ik
i C

D w W k K
∈

≤ ∀ ∈  (14) 

, ,l a
ik ik iu u D i C k K= − ∀ ∈ ∀ ∈  (15) 

, ,l
ikS Q i M k K= ∀ ∈ ∀ ∈  (16) 

, ,l a
ik ikS S i C k K= ∀ ∈ ∀ ∈  (17) 

, , ,R
ijk ijk ijkR

R T
E e y i j V k K

∈

= ∀ ∈ ∀ ∈  (18) 

( ) (1 ), , ,a l
jk ik ijk ijk ijkS S E x Q x i j V k K≤ − + − ∀ ∈ ∀ ∈  (19) 

1 2

1 2

 , ,
         ,  ,

ijk jlkl
ik

ijk

E E if j C l G G k K
S

E if j G G M k K
+ ∈ ∈ ∈

≥  ∈ ∈
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Objective function (9) minimizes the total cost, including the economic cost and environmental cost of using EVs. Constraint 
(10) ensures that each EV can be enabled at most once in the distribution task. Constraint (11) guarantees that each customer 
must be served by one EV only once. Constraint (12) guarantees the flow balance of customer location, CS, and BSS. 
Constraint (13) ensures that each EV can return to any nearby depot after completing its distribution task. Constraint (14) 
forces the EV capacity feasibility, i.e., the total demand of customers served by each EV cannot exceed its capacity. Constraint 
(15) controls the arrival loads and departure loads of EV k  at customer i . Constraint (16) stipulates that the battery of each 
EV is fully charged while the EV departs from the depot. Constraint (17) shows that the remaining energy of EV k  does not 
change when serving customer i . Constraint (18) denotes a formula for the energy consumption of EV k  traveling from 
node i to j . Constraint (19) ensures that the remaining energy of each EV arriving at node j  is the energy while it departs 

from node i  minus the energy consumption between arc ( , )i j . Constraint (20) is a requirement for the remaining energy 
when the EV leaves its current location. That is, if the next node is a customer node, the current energy of the EV must be 
sufficient to travel from the current location to the next customer location, and then from the next customer location traveling 
to the nearest CS or BSS; if the next node belongs to a CS or a BSS or a depot, the current energy of the EV must be sufficient 
to travel from the current node to the nearest CS or BSS or depot. Constraint (21) guarantees that the remaining energy of the 
EV must be nonnegative when it arrives at any node. Constraint (22) specifies the charging amount limit of the EV at the CS. 
Constraint (23) represents a formula for calculating the charging amount of EV k  at CS i . Constraint (24) determines the 
energy of EV k  when it leaves the BSS. Constraint (25) states that the time when EV k  departs from customer i  is equal to 
the time when it arrives at customer i  plus the customer service time. Constraint (26) represents a formula for calculating the 
total time of EV k  traveling from node i  to node j . The EV arrival time at node j  is the sum of the EV departure time 

from node i  and the travel time between arc ( , )i j , as given by constraint (27). Constraint (28) denotes the calculation 
formula of charging time of EV k at CS i . Constraint (29) indicates the time relationship between arriving and leaving any 
CS or BSS. In addition, the binary variables are specified by constraint (30). 

5 Algorithm design 

VRP has been proved to be an NP-hard problem, and it is usually challenging to find the optimal solution, so we can only use 
heuristic algorithms to obtain a satisfactory solution. The constraint condition of HOTDMDEVRPBRS is more complex than 
that of VRP, and it is more difficult to solve. Simulated annealing algorithm (SAA) is a general heuristic algorithm (Osman 
1993) [44], which was first proposed by Metropolis et al., in 1953. It uses the similarity between the annealing process of 
solid matter in physics and the general combinatorial optimization problem to realize simulated annealing, so as to provide an 
effective solution for problems with Non-deterministic Polynomial complexity and overcome the dependence on local and 
initial values in other optimization processes. It has the characteristics of strong robustness, flexible search, global search and 
easy to implement. Therefore, according to the characteristics of the problem and model, the SAA is used to solve the 
HOTDMDEVRPBRS (Fig.2). 
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Fig. 2. Flowchart of Simulated Annealing Algorithm 

The specific solving steps are as follows: 

Procedure 1: Parameter initialization. Let totalCost  be the optimal total cost, totalCost = +∞ . Let bestSol  be the 
optimal solution, sol  be the current solution, N  be the maximum number of EVs used, and C  be the number of customers. 
Let L  be the length of Markov chain, =50L . Let K  be the temperature decay coefficient, =0.98K . Let 0T  be the initial 

temperature, 0 =100T , and T  be the current temperature, 0T T= . maxIter  denotes the maximum iterations, 
=600maxIter . iter  denotes the current iterations, 1iter = . iter2  denotes the times of searches at the current 

temperature, 1iter2 = . 

Procedure 2: Coding. According to real number coding, the real number sequence of 1 ~ C + N 1−  is randomly generated 
as the current solution. 

Procedure 3: The construction of neighborhood solution. A neighborhood solution newSol  is constructed by performing 
neighborhood search on current solution sol  through the swap, insert, and flip operators. 

Procedure 4: Decoding. Find real number subscript splitLoc  whose value is greater than C  (the number of customers) in 
the solution sequence, then divide the solution sequence into multiple distribution routes p a th s  by splitLoc . 

Procedure 5: The allocation of depots and energy replenishment decisions. The specific process of depot allocation and 
energy replenishment decision for a single distribution route path  is as follows: Step 1: Initialization. Enter the initial route 
path  of the EV, and let newPath  be the distribution route after adding depots and energy replenishment infrastructure 

(CS and BSS). Step2: The allocation of depots. Using the greedy strategy, we select depot iM  closest to first customer 

firstpath  on the EV distribution route as the starting point, and select depot jM  closest to last customer endpath  on the EV 

distribution route as the return point, then [ , , ]i jnewPath M path M= . Step3: The energy replenishment decision of the 

EV. It is judged whether the EV satisfies the remaining energy condition for traveling from the current node i  to next node 
j  during the distribution process (Constraint 20). If it is satisfied, the EV travels to node j ; otherwise, the EV needs to select 

energy replenishing station G  closest to node i , and insert G  into newPath . 

Procedure 6: The calculation of target function value. Take the sum newSolcost  of the economic cost and environmental cost 

of each distribution route as the target value, if newSolcost totalCost≤ , then newSoltotalCost cost= , bestSol newSol=
. 

Procedure 7: Acceptance criteria for the new solution. Calculate the value of Δ , newSol solcost costΔ = − . If 0Δ ≤ , then 

receive the current solution, sol newSol= , sol newSolcost cost= ; otherwise, calculate the value of p , ( )p exp
T
Δ= − . 

If p rand≥ , then receive the current solution with a certain probability, sol newSol= , sol newSolcost cost= . 

Procedure 8: The judgment of algorithm termination. If iter maxIter> , the algorithm ends; otherwise, further judge 
whether iter2 L≤ , if iter2 L≤ , then 1iter2 iter2= + , go to Procedure 3; otherwise, 1iter iter= + , *T T K= , 

1iter2 = , go to Procedure 3. 

6 Computational experiments 

6.1 Experimental setup 

Currently, there is no standard test instance about HOTDMDEVRPBRS, and most literature generates test instances based on 
Solomon instances. For example, Schneider et al. (2014) used the Solomon instance as a benchmark instance, and generated 
21 charging stations (code S0-S20) in each benchmark instance to construct a new experimental instance. Therefore, in this 
paper, we use the test instance constructed by Schneider as the benchmark instance, and some CS nodes in the instance are 
converted into depot and BSS nodes, so the HOTDMDEVRPBRS test instance is built. In each test instance, there are 100 
customers, 6 depots, 7 charging stations and 8 battery swapping stations. The data of each test instance specifically includes 
depot coordinates, CS coordinates, BSS coordinates, customer coordinates, demand, and service time. 

In order to meet the requirements of the algorithm test in this paper, the following data are supplemented: (1) According to 
the update time of the traffic congestion index in Beijing, we set 15U =  minutes, and the whole day is divided into 96 
periods. (2) We set the earliest working time of the depot to be 6:00 in the morning, the morning and evening traffic peak time 
periods are 7:00-9:00 and 17:00-19:00, respectively. We set the speed 20R

ijkv =  during the congestion period. (3) Using the 
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remainder function mod( ,3)Rλ = , when λ  takes the value [1, 2, 0], it corresponds to the three time-dependent travel 

speeds [ (1- ), (1+2 ), (1-3 )]v v vϖ ϖ ϖ  of the EV in the ordinary period, where 0.1ϖ = , 60v = km/h. (4) The futures price 
of carbon emissions in Europe in 2021 has been fluctuating within the range of 50-90 Euros/ton, that is, 345-621 yuan/ton 
(converted at the exchange rate of EUR/RMB at 1:6.9). Therefore, this paper sets the unit carbon emission price 6c  of 
logistics enterprises to 500 yuan/ton, that is, 0.5 yuan/kg. (5) Referring to the data of Liu et al. (2020) and market price 
standards. The experimental parameter settings are shown in Table 1. 

Table 1 
The settings of model variables and algorithm parameters 

Parameters Value Parameters Value 

L  3000 kg W  1000 kg 
Q  55 kWh a  0 m/s2 
g  9.8 m/s2 ijθ  0° 

rC  0 dC  0.7 

A  6.710 m2 ρ  1.29 kg/m3 
η  90% ep  60 kW 
ϕ  10 min 1c  0.5 yuan/min 

2c  200 yuan/car 3c  0.3 yuan/min 

4c  0.5 yuan/min 5c  50 yuan/time 

L  50 maxIter  600 

K  0.98 0T  100 
 

The proposed SAA was implemented in MATLAB 2020a. All experiments were performed on a computer with an 11th Gen 
Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz processor and 16 GB RAM. 

6.2 Experimental results analysis 

6.2.1 Result analysis of HOTDMDEVRPBRS in different instances 

To verify the rationality and effectiveness of the HOTDMDEVRPBRS, the experiments were carried out with test instances 
of different customer coordinate distributions. The experimental results are shown in Table 2. IN represents the instance name, 
TC represents the total cost (unit: yuan), TT represents the total distribution time (unit: minute), FC represents the total fixed 
usage cost of EVs (unit: yuan), DC represents the travel time cost (unit: yuan) , AC represents the customer service time cost 
(unit: yuan), SC represents the battery swapping and charging cost of  EVs (unit: yuan), CC represents the carbon emission 
cost (unit: yuan), SS represents the times of charging and battery swapping, CN represents the number of EVs used, RT 
represents the program runtime (unit: seconds), and AVE represents the average value. 

Table 2 
The experimental results of HOTDMDEVRPBRS for different instances 

IN TC TT FC DC AC SC CC SS CN RT 
C101 1294.81 2070.13 400.00 475.39 300.00 59.68 59.74 2 2 126.58 
C102 1241.07 1803.74 400.00 391.87 300.00 100.00 49.20  2 2 123.82 
R101 1360.13 2186.73 400.00 533.49 300.00 59.88 66.76 3 2 136.87 
R102 1458.43 2197.78 400.00 558.62 300.00 130.27 69.54 3 2 130.06 
RC101 1432.22 2150.84 400.00 535.35 300.00 130.07 66.80  3 2 140.87 
RC102 1463.55 2203.43 400.00 563.27 300.00 128.45 71.83 3 2 145.75 
C201 1395.78 2163.65 400.00 546.73 300.00 80.10 68.95 2 2 124.59 
C202 1311.19 2016.17 400.00 472.76 300.00 80.32 58.11 2 2 120.77 
R201 1420.83 2216.68 400.00 543.67 300.00 109.67 67.49 3 2 129.82 
R202 1471.07 2222.70 400.00 571.72 300.00 129.63 69.72 3 2 130.64 
RC201 1546.95 2352.06 400.00 636.44 300.00 129.59 80.92 3 2 139.33 
RC202 1473.73 2219.87 400.00 571.37 300.00 128.56 73.80  3 2 140.16 
AVE 1405.82 2150.32 400.00 533.39 300.00 105.52 66.90 3 2 132.44 

 

It can be seen from the results in Table 2: (1) According to the values of TC, FC, DC, AC, SC and CC, the fixed usage cost, 
travel time cost, customer service time cost, battery charging and swapping cost and carbon emission cost of EVs account for 
28.45%, 37.94%, 7.51%, 21.34% and 4.76% of the total cost, respectively. It shows that the fixed usage cost of EVs, the travel 
time cost and the customer service time cost are the main factors that affect the total cost of logistics distribution. Logistics 
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enterprises should use large-capacity EVs for distribution as much as possible to reduce the number of EVs used; at the same 
time, enterprise managers must consider the influence of time-dependent speed on the travel time of EVs in the actual 
operation planning, avoid traffic congestion period as far as possible to carry out distribution, shorten the EV travel time and 
reduce the cost of logistics distribution. (2) According to the experimental results of TT, DC, SS, and CN, two EVs are enabled 
for distribution in each type of test instance, where two EVs in type C instances can complete the distribution task by 
respectively replenishing energy at most once on the way, but in type R and type RC instances, one of the EVs needs to 
replenish energy twice on the way to complete the distribution task. Because the customer coordinates of type C are relatively 
concentrated and the distance between customer locations is short, so the EVs can complete the distribution task as long as 
traveling a shorter distance; the customer coordinates of type R and type RC instances are relatively scattered and the distance 
between customer locations is long, so the EVs need to travel a longer distance to complete the distribution task. If the EVs 
are only allowed to replenish energy once during the distribution, more EVs will be enabled to carry out tasks, making it 
difficult to use the EV capacity fully, and the logistics cost will be increased. In actual logistics planning, the EV energy 
replenishment times should be arranged reasonably according to the EV capacity, customer coordinates and demand. (3) 
According to the value of RT, the algorithm’s runtime is 145.75 seconds at the maximum, 120.77 seconds at the minimum, 
and 132.44 seconds on average. It shows that the SAA in this paper can give a planning scheme that meets the decision-
making objective in a reasonable time, which is efficient, feasible and practical. 

 

Fig. 3. The planning schemes of HOTDMDEVRPBRS in different instances 

The planning schemes of HOTDMDEVRPBRS in instance C101, R101, R202 and RC101 are shown in Fig.3(a), 3(b), 3(c) 
and 3(d), respectively. 

It can be seen from Fig. 3: (1) The customer coordinates of the type C instance (Fig.3(a)) are centralized distribution, customers 
are concentrated in several areas, and adjacent customers in each area are served by the same EV, which has a short travel 
distance. (2) The customer coordinates of the type R instance (Fig.3(b) and Fig.3(c)) are random distribution, customers are 
randomly distributed in each area, and customers in similar locations are served by the same EV, which has a long travel 
distance. (3) The customer coordinates of the type RC instance (Fig.3(d)) are mixed distribution, customer distribution has 
the characteristics of a combination of centralized distribution and random distribution, and adjacent customers in each area 
are served by the same EV, which has a relatively long travel distance. (4) The distribution routes of each instance are clear, 
seldom circuitous and crossed. It shows that the algorithm in this paper can scientifically plan the joint distribution route of 
EVs according to various factors such as EV capacity, customer coordinates, demand, and the coordinates of CS and BSS, 
which is feasible and reasonable. 

6.2.2 Comparative analysis of different energy replenishment modes 

On the premise that the other parameters remain unchanged, a comparative experiment is carried out between pure battery 
swapping mode (PBSM) (all energy supplement facilities are only BSSs), pure charging mode (PCM) (all energy supplement 
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facilities are only CSs) and hybrid energy replenishment mode (HERM) (energy supplement facilities include both CSs and 
BSSs). The experimental results are shown in Table 3. 

Table 3 
Comparative results of different energy replenishment modes 

IN HERM PBSM PCM 
TC TT SC TC TT SC TC TT SC 

C103 1249.97 1904.67 80.43 1270.43 1855.93 100.00 1229.75 1954.28 59.92 
R103 1340.99 2072.43 80.40 1361.86 2024.78 100.00 1320.11 2120.20 60.63 
RC103 1606.00 2290.17 200.00 1606.00 2290.17 200.00 1486.77 2415.11 86.46 
C203 1318.49 1940.36 100.00 1318.49 1940.36 100.00 1278.38 2041.10 57.46 
R203 1368.48 2117.11 79.43 1390.13 2070.76 100.00 1348.51 2167.86 58.00 
RC203 1496.59 2347.87 110.86 1518.15 2216.03 150.00 1456.45 2361.59 91.29 
AVE 1396.75 2112.10 108.52 1410.84 2066.34 125.00 1353.33 2176.69 68.96 

 

It can be seen from the results in Table 3: (1) Considering the values of TC, TT and SC, in each test instance, the total 
distribution time based on the PBSM is generally less than that of other energy supplementation modes. The average total 
distribution time of the HERM and the PCM is 2.21% and 5.34% longer than that of the PBSM, respectively. However, the 
total cost and energy replenishment cost of the PBSM are higher than other energy replenishment modes. In terms of the total 
cost, the PBSM is 1.01% and 4.25% higher on average than the HERM and the PCM, respectively; in terms of energy 
replenishment cost, the PBSM is 15.19% and 81.26% higher on average than the HERM and the PCM, respectively. The total 
cost and energy replenishment cost of the PCM are both the lowest, but its total distribution time is the longest. It shows that 
the PBSM for EVs can effectively shorten the energy replenishment time, but it will result in higher energy replenishment 
cost, which is suitable for logistics distribution scenarios with high urgency of customer demand or strong timeliness of 
packages; using PCM can effectively reduce the energy replenishment cost, but requires a longer charging time, which is 
suitable for logistics distribution scenarios with weak timeliness requirements. Using the HERM has strong flexibility, EVs 
can swap the battery to replenish energy in a situation with tight time and heavy tasks and choose partial charging to replenish 
energy in a situation with low timeliness requirements and lighter tasks. (2) According to the experimental results of TC and 
TT, although both the total cost and total distribution time of the HERM cannot achieve the optimum, the average total cost 
of the HERM is only 3.11% more than that of the PCM. The average total distribution time of HERM is only 2.16% more 
than that of the PBSM. It shows that the HERM can balance both total distribution cost and distribution efficiency at the same 
time. 

6.2.3 Comparative analysis between HOJDM and closed distribution mode 

On the premise that the other parameters remain unchanged, multi-type instances are applied to compare the HOJDM with 
the closed distribution mode (CDM). The experimental results are shown in Table 4, where TD represents the total travel 
distance (unit: km), PU represents the total energy consumption (unit: kWh), TCSR represents the total cost saving ratio 
between HOJDM and CDM (unit: %), TTSR represents the total distribution time saving ratio between HOJDM and CDM 
(unit: %). CCSR represents the carbon emission saving ratio between HOJDM and CDM (unit: %), and the meaning of the 
remaining notations is shown in Table 2. 

Table 4 
Comparative results of HOJDM and CDM 

IN HOJDM CDM TCSR TTSR CCSR TC TT TD PU CC TC TT TD PU CC 
C104 1443.08 2252.17 856.07 208.7 72.00 1486.47 2328.79 917.88 223.42 77.08 3.01% 3.40% 7.05% 
R104 1442.26 2167.49 823.44 198.61 68.52 1477.44 2229.65 873.39 210.47 72.61 2.44% 2.87% 5.97% 
RC104 1550.51 2361.68 965.09 230.9 79.66 1606.94 2461.36 1045.47 250.06 86.27 3.64% 4.22% 8.30% 
C204 1331.68 2135.6 761.65 185.15 63.88 1409.24 2272.54 872.18 211.51 72.97 5.82% 6.41% 14.24% 
R204 1406.50 2192.07 793.34 189.75 65.46 1446.03 2261.92 849.48 203.08 70.06 2.81% 3.19% 7.03% 
RC204 1469.79 2215.35 859.64 209.02 72.11 1524.94 2312.6 938.45 227.94 78.64 3.75% 4.39% 9.05% 
AVE 1440.63 2220.73 843.21 203.69 70.27 1491.84 2311.14 916.14 221.08 76.27 3.55% 4.08% 8.54% 

 

It can be seen from the results in Table 4: (1) According to the values of TC and TT in each test instance, both the total cost 
and total distribution time of the HOJDM are less than that of the CDM. Among them, the total cost can be saved by 5.82% 
at the highest, 2.44% at the lowest, and 3.55% on average; the total distribution time can be saved by 6.41% at the highest, 
2.87% at the lowest, and 4.08% on average. This is because after completing the distribution task, the EV based on the HOJDM 
does not have to return to the original depot, but can choose to park in the nearest depot, shortening the EV travel time and 
reducing the distribution cost to a certain extent. Therefore, when an enterprise decides to set up a new depot, the collaboration 
between the depots should be considered. (2) According to the results of TD and PU, the travel distance and energy 
consumption of the HOJDM are significantly lower than that of the CDM, with an average saving of 8.65% and 8.54%, 
respectively. It shows that applying the HOJDM gives the planning scheme a greater space for route optimization, effectively 
shortening the EV travel distance and reducing the EV energy consumption, which is scientific, rational and feasible. 
Enterprises should promote the use of this model in the actual logistics distribution. (3) According to the result of CC, the 
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HOJDM significantly reduces the EV carbon emissions compared with the CDM, the highest carbon emission reduction is 
14.24%, the lowest carbon emission reduction is 5.97%, and the average carbon emission reduction is 8.54%. It shows that 
the HOJDM can effectively promote the energy saving and emission reduction of logistics distribution, which is of great 
significance for promoting the green development of urban logistics. Government decision-makers should encourage urban 
logistics enterprises to consider the possibility of joint distribution when building multiple depots. 

6.2.4 Comparative analysis on the times of energy replenishment 

On the premise that the other parameters remain unchanged, a comparative experiment is carried out between the multiple-
charging-and-swapping strategy (MCSS) and single-charging-and-swapping strategy (SCSS). The SCSS means that an EV 
can only be charged or swapped battery once on the road, while the MCSS allows an EV to be charged once and swapped 
battery unlimited. Several test instances of type C and type RC are applied to conduct experiments. The experimental results 
are shown in Table 5, where MTD represents the average travel distance of each EV (unit: km), MLD represents the average 
load of each EV (unit: kg), and the meanings of other notations are shown in Table 2. 

Table 5 
Comparative results of MCSS and SCSS 

IN MCSS SCSS TCSR 
TC MTD MLD CN TC MTD MLD CN 

R104 1407.52 387.60 729.00 2 1826.49 215.17 364.50 4 29.77% 
R105 1480.72 445.69 729.00 2 1805.07 208.69 364.50 4 21.91% 
R204 1495.11 444.68 729.00 2 1753.74 196.52 364.50 4 17.30% 
R205 1494.30 442.55 729.00 2 1791.25 206.31 364.50 4 19.87% 
RC104 1595.37 497.10 862.00 2 1719.39 189.35 431.00 4 7.77% 
RC105 1468.10 440.60 862.00 2 1855.89 212.65 431.00 4 26.41% 
RC204 1379.23 399.32 862.00 2 1923.08 239.49 431.00 4 39.43% 
RC205 1533.46 470.02 862.00 2 1845.91 224.57 431.00 4 20.38% 
AVE 1481.73 440.94 795.50 2 1815.10 211.59 397.75 4 22.50% 

 

It can be seen from the results in Table 5: (1) According to the values of TC and CN, in each test instance, the total cost of 
using MCSS is significantly lower than that of using SCSS, with a maximum saving of 39.43%, a minimum saving of 7.77%, 
and an average saving of 22.50%. Because the SCSS makes the working hours of the EV battery, the number of served 
customers and the distribution range limited, so it is necessary for logistics enterprises to enable more EVs to carry out 
distribution, increasing the EV fixed usage cost. (2) According to the values of MTD and MLD, in the test instances of type 
R and RC, using MCSS only needs to enable two EVs to complete the distribution task, and each EV serves a larger number 
of customers, travels a longer distance, which can effectively use the load capacity of each EV; while using SCSS requires 
four EVs to complete the distribution task, and each EV serves a relatively small number of customers, travels a relatively 
short distance. It is difficult to fully use EV load capacity, resulting in the waste of transportation capacity. The average travel 
distance and average load capacity of an EV under the MCSS are 108.39% and 100.00% higher than those under the SCSS, 
respectively. It shows that the MCSS can effectively expand the EV travel distance, improve the utilization rate of EV 
capacity, reduce the distribution cost, lift the distribution efficiency, and provide more optimization space for multi-depot EV 
half-open joint distribution route planning. 

6.2.5 Sensitivity analysis 

(1) Comparative experiment on different speeds of EVs 

The experiment is conducted for analysis by a test instance of type R with the random distribution of customer coordinates 
(R206). On the premise that the other parameters remain unchanged, the travel speed of the EV during the normal period 
varies within the range of [40, 80] at a step of 10 km/h, and the travel speed during the congestion period varies within the 
range of [10, 30] at a step of 5 km/h. The specific speed combination and experimental results are shown in Table 6, where 
VC represents the travel speed of the EV in the normal period (unit: km/h), VF represents the travel speed of the EV in the 
congestion period (unit: km/h), and the meanings of the other notations are shown in Table 2. 

Table 6 
Experimental results on different speeds of EV 

VC VF TC TT DC PU CC SS 
40 10 1542.31  2601.08  770.38  121.06  41.77  1 
50 15 1450.44  2307.23  618.40  150.24  51.83  2 
60 20 1370.77  2123.40  528.04  185.71  64.07  2 
70 25 1372.88  2088.85  480.34  241.91  83.46  3 
80 30 1474.72  2054.95 452.05 325.36 112.25  5 

 

It can be seen from the results in Table 6: (1) According to the value of TC, the total cost decreases with EV speed increasing 
from 40 km/h to 60 km/h, while when the speed is greater than 60 km/h, the total cost increases with the increase of speed. 
(2) According to the values of TT and DC, both the total distribution time and the travel time cost show a decreasing trend as 
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the EV speed increases, but when the EV speed increases from 40 km/h to 60 km/h, the total distribution time decreases by 
22.50%, the total travel time decreases by 45.89%; when the EV speed increases from 60 km/h to 80 km/h, the total distribution 
time only decreases by 3.33%, the total travel time cost only decreases by 16.8%. It shows that the benefits brought by the 
increase of EV speed to the total distribution time and the total travel time cost are gradually decreasing. (3) According to the 
values of PU and SS, both the energy consumption and the times of charging and battery swapping show an increasing trend 
with the increase of EV speed. This is because the increase in the EV speed during normal and congestion periods can 
effectively shorten the distribution time and significantly reduce the EV travel time cost. However, the increase in speed will 
also increase the EV energy consumption, making EVs need to replenish energy more times on the distribution routes, which 
increases the charging and battery swapping time and cost. (4) According to the value of CC, although the increase in EV 
speed brings about a cost reduction, the EV carbon emissions will also increase due to the increase in energy consumption. 
Meanwhile, when the EV speed increases from 40 km/h to 60 km/h, the EV carbon emissions increase by 53.39%, but when 
the EV speed increases from 60 km/h to 80 km/h, the EV carbon emissions increase by 75.20%, indicating that the increase 
in EV speed will lead to an accelerated increase in carbon emissions, which is not conducive to the green development of 
logistics distribution. Therefore, EVs traveling too fast or too slow are both not conducive to the economic and environmental 
development of logistics distribution. In actual distribution, EV travel speed should be kept at 60-70 km/h during normal 
periods and 20-25 km/h during congestion periods, which is helpful in reducing distribution cost and improving distribution 
efficiency. 

(2) Comparative experiment on different number of depots 

The experiment is conducted for analysis by a test instance of type R with the random distribution of customer coordinates 
(R106). On the premise that the other parameters remain unchanged, the number of depots varies within the range of [1, 7] at 
a step of 2. The experimental results are shown in Table 7, where m represents the number of depots, and the meanings of the 
other notations are shown in Table 2. 

Table 7 
Experimental results on different number of depots 

m TC TT DC PU CC 
1 1514.89 2298.98 609.20 218.50 75.38 
3 1486.65 2246.40 582.93 212.94 73.46 
5 1386.83 2236.20 557.13 199.21 68.73 
7 1318.76 2113.86 495.96 179.21 61.83 

 

It can be seen from the results in Table 7: (1) According to the result of TC, the total cost decreases continuously with the 
increase in the number of depots. When the number of depots is increased from 1 to 3, the total cost is reduced by 1.90%; 
when the number of depots is increased from 3 to 5, the total cost is reduced by 7.20%; when the number of depots is increased 
from 5 to 7, the total cost is reduced by 5.16%. It shows that although the increase in the number of depots reduces the 
operating cost of logistics companies, the benefits brought by it do not always show an upward trend. Meanwhile, this paper 
has not considered the cost of building and maintaining depots. Therefore, when a logistics enterprise plans to build a new 
depot, it should also comprehensively consider its business scale, the distribution of customer locations and the operation cost 
of the new depot, so as to avoid blind expansion of the depot. (2) According to the results of TT, DC, PU and CC, the total 
distribution time, travel time cost, EV energy consumption, and carbon emissions all decrease with the increase in the number 
of depots. Among them, the total distribution time is reduced by an average of 2.86%, the travel time cost is reduced by an 
average of 7.16%, and the energy consumption and carbon emissions are reduced by an average of 6.89%. This is because 
after increasing the number of depots, the depots where EVs choose to depart and return have more optimization space, thus 
effectively shortening the EV travel distance and travel time and reducing energy consumption. It shows that the multi-depot 
joint distribution is helpful for enterprises to reduce economic and environmental costs. 

(3) Comparative experiment on different carbon prices. 

Carbon prices in the current global trading market are not fixed and can rise or fall over time. In order to analyze the impact 
of carbon trading price on the enterprise and social environment, on the premise that the other parameters remain unchanged, 
the carbon price 6c  varies within the range of [0, 3] at a step of 0.5.  

Table 8 
Experimental results on different carbon prices 

C6 CC CM TC CCP 
0 0.00 131.41 1646.50 0.00% 
0.5 65.09 130.18 1712.78 3.80% 
1 127.14 127.14 1777.12 7.15% 
1.5 186.90 124.60 1849.84 10.10% 
2 240.32 120.16 1897.04 12.67% 
2.5 300.40 120.16 1963.40 15.30% 
3 360.48 120.16 2023.48 17.81% 
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The experiment is conducted for analysis by an instance of type R with the random distribution of customer coordinates 
(R106). The experimental results are shown in Table 8 and Fig.4, where CM represents the amount of carbon emission (unit: 
kg), and CCP represents the proportion of carbon emission cost in the total cost. 

 

Fig. 4. Changes in carbon emissions and total costs under different carbon prices 

Combining the results in Table 8 and Fig. 4, we can see that when the carbon price is between [0, 2], with the rise of carbon 
prices, the carbon emission of EVs gradually decreases from 131.41kg to 120.16kg, a decrease of 9.36%, the total cost of the 
enterprise at this time is on the rise, from 1646.50 yuan to 1897.04 yuan, an increase of 15.22%. When the carbon price is 
greater than 2 yuan/kg, even if the carbon price continues to increase, the carbon emissions of the enterprise basically remain 
unchanged. That is, due to the limitations of technology and optimization, the company can no longer continue to reduce 
emissions. It shows that the restraint effect of carbon prices on enterprises’ carbon emission behavior is limited, and too high 
or too low carbon price is not conducive to promoting logistics enterprises’ green development. In this instance, the carbon 
price in the range of [0.5,2] (unit: yuan/kg) is more reasonable. In this price range, logistics companies are more sensitive to 
the carbon price, and they will focus on the carbon emissions caused by the EV energy consumption when planning 
distribution routes to reduce the energy consumption as much as possible and control the cost. For government decision-
makers, reasonable control of carbon trading prices and gradual improvement of the carbon trading mechanism are important 
means to promote energy conservation, emission reduction and green sustainable development in logistics distribution. 

6.3 Comparative analysis of different algorithms 

In order to verify the effectiveness of SAA, a genetic algorithm (GA) for solving HOTDMDEVRPBRS is compiled for 
comparative analysis. In the GA, the population size is set to 50, the crossover probability is set to 0.9, the mutation probability 
is set to 0.05, the genetic generation gap is set to 0.9, and the times of iterations is set to 600. Multi-type instance experiments 
are conducted to compare SAA and GA, and the experimental results are shown in Table 9. 

Table 9 
Experimental results on different optimization algorithms 

IN SAA GA TCSR TTSR 
TC TT DC RT TC TT DC RT 

C107 1229.17  1868.64 400.15 125.40 1319.03  2111.79 498.03 140.04 7.31% 13.01% 
R107 1411.39  2112.37 541.19 119.44 1451.77  2265.35 573.67 158.69 2.86% 7.24% 
RC107 1505.98  2282.11 601.1 127.46 1668.36  2478.96 701.02 139.88 10.78% 8.63% 
C207 1424.59  2125.97 528.11 124.51 1480.43  2221.59 578.97 135.88 3.92% 4.50% 
R207 1443.30  2256.08 564.61 119.52 1515.14  2381.22 629.13 139.24 4.98% 5.55% 
RC207 1352.54  2174.43 529.02 125.17 1488.22  2334.09 605.91 136.43 10.03% 7.34% 
AVE 1402.16  2136.60 527.36 123.58 1487.16  2298.83 597.79 141.69 6.06% 7.59% 

 

It can be seen from the results in Table 9: (1) According to the values of TC, TT and RT, the total cost and total distribution 
time of each test instance solved by SAA are significantly less than those of GA, in which the maximum saving of total cost 
is 10.03%, the minimum saving is 2.86%, and the average saving is 6.06%; the maximum saving of total distribution time is 
13.01%, the minimum saving is 4.50%, and the average saving is 7.59%. Moreover, the average runtime of SAA is 14.65% 
lower than GA’s. It shows that SAA can solve the HOTDMDEVRPBRS quickly and efficiently, effectively reduce the 
distribution cost, shorten the distribution time, and improve distribution efficiency. (2) According to the value of DC, the 
average travel time cost of each instance solved by SAA is 13.36% less than that solved by GA. It shows that SAA can 
reasonably plan the multi-depot half-open joint distribution routes of EVs and effectively shorten the EV distribution distance, 
which is feasible, reasonable and practical. 
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Fig. 5. Planning scheme of the HOTDMDEVRPBRS under different optimization algorithms 

The planning scheme of the HOTDMDEVRPBRS for test instance R207 solved by SAA and GA is shown in Fig.5 (a) and 
Fig.5 (b), respectively. 

According to Fig. 5, it can be seen that: (1) The EV distribution routes solved by SAA in Fig.5 (a) are clear, seldom crossed 
and circuitous, while distribution routes solved by GA in Fig.5 (b) overlap, existing the problem of roundabout distribution. 
(2) The energy replenishment facilities selected by EVs in Fig.5 (a) are all near the EV distribution routes, and the EVs only 
need to travel a short distance to replenish electricity; some of the energy replenishment facilities selected by EVs in Fig. 5 
(b) are far away from the EV distribution routes, and the EVs need to travel a relatively long distance to replenish electricity, 
which delays the package delivery time of customers and reduces distribution efficiency. It shows that SAA can scientifically 
plan the distribution routes of HOTDMDEVRPBRS, shorten the travel distance and improve the distribution efficiency, which 
is reasonable, scientific and practical. 

7. Conclusions and prospects 

This paper studies HOTDMDEVRPBRS in last-mile delivery, the goal is to minimize the economic cost and environmental 
cost of logistics enterprises. Therefore, a mathematical optimization model is constructed and a multi-objective simulated 
annealing algorithm is designed according to the characteristics of the model. Extensive computational experiments are carried 
out with multi-type test instances, and the performance of the proposed model and method is evaluated. Finally, the 
experimental results show that: (1) The fixed usage cost and travel time cost of EVs are the main factors affecting the total 
operating cost of logistics enterprises. Large-capacity EVs should be used for distribution as much as possible to reduce the 
number of EVs used. At the same time, the influence of time-dependent speed on the travel time of EVs should be considered, 
and the distribution during the traffic congestion period should be avoided as far as possible, so as to shorten the EV travel 
time and reduce the logistics distribution cost. (2) By adopting the HOJDM, there is more optimization space for MDEVRP, 
which can effectively shorten the EV travel distance and reduce energy consumption and carbon emissions. Given the 
deteriorating urban environment, government decision-makers and logistics enterprise managers should vigorously popularize 
the HOJDM to promote the green sustainable development of urban distribution. (3) MCSS can effectively expand the travel 
distance of EVs, improve the utilization rate of EV capacity, reduce distribution cost and improve distribution efficiency. 
Logistics enterprises should actively collaborate with the charging and swapping station operators to establish a more rounded 
energy replenishment network to support the MCSS in the EV distribution task. (4) The EV travel speed and the number of 
depots will have a certain impact on logistics distribution. The increase in EV travel speed can significantly reduce the travel 
time cost, but it brings higher energy replenishment costs and carbon emissions, so logistics enterprises should require drivers 
to control the speed to maximize benefits when leasing EVs for distribution. The increasing number of depots has a certain 
optimization effect on reducing the total cost, total distribution time and EV travel time. However, when enterprises plan to 
increase a new depot, they also need to consider the construction cost and maintenance cost. They should comprehensively 
consider their business scale, the distribution of customer locations, the operating cost and other factors to avoid blind 
expansion of the depot. (5) Reasonable carbon prices can provide effective incentive signals for logistics enterprises to reduce 
carbon emissions. A too high or too low carbon price is not conducive to promoting the green development of logistics 
enterprises. If the carbon price is too low, it will dampen the enthusiasm of logistics enterprises to reduce emissions; if the 
carbon price is too high, it will also lead to a heavy burden on logistics enterprises. Therefore, the key for logistics enterprises 
is to correctly view the opportunities and challenges brought by carbon prices from the perspective of promoting the low-
carbon transformation of the industry. The level of carbon prices is a market signal, enterprises should comply with the general 
trend of green and low-carbon transformation, deploy strategies such as the HOJDM, and seize favorable opportunities in 
development. Designing a faster and more efficient algorithm and considering the charging queuing phenomenon in the 
process of EV distribution will be the focus of subsequent research. 



F. Lijun et al.  / International Journal of Industrial Engineering Computations 14 (2023) 145

Acknowledgments 

This research has been partially supported by grants from the National Natural Science Foundation of China (71972069 and 
71971080), the Natural Science Foundation of Hunan Province of China (2021JJ30195 and 2019JJ40147). 

References 

Andwari, A. M., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of Battery Electric Vehicle 
technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430. 

Basso, R., Kulcsár, B., Egardt, B., Lindroth, P., & Sanchez-Diaz, I. (2019). Energy consumption estimation integrated into the 
electric vehicle routing problem. Transportation Research Part D: Transport and Environment, 69, 141-167. 

Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45(8), 
1232-1250. 

Brandão, J. (2020). A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem. 
European Journal of Operational Research, 284(2), 559-571. 

Conrad, R. G., & Figliozzi, M. A. (2011, May). The recharging vehicle routing problem. In Proceedings of the 2011 industrial 
engineering research conference (Vol. 8). IISE Norcross, GA. 

Cortés-Murcia, D. L., Prodhon, C., & Afsar, H. M. (2019). The electric vehicle routing problem with time windows, partial 
recharges and satellite customers. Transportation Research Part E: Logistics and Transportation Review, 130, 184-206. 

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91. 
Feng, W., & Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of 

electric commercial vehicles: A case study from the USA market. Transportation Research Part C: Emerging 
Technologies, 26, 135-145. 

Gansterer, M., & Hartl, R. F. (2018). Collaborative vehicle routing: a survey. European Journal of Operational Research, 
268(1), 1-12. 

GGES (2016) Greenhouse gas emission statistics-emission inventories. European Commission, Brussels 
Gmira, M., Gendreau, M., Lodi, A., & Potvin, J. Y. (2021). Tabu search for the time-dependent vehicle routing problem with 

time windows on a road network. European Journal of Operational Research, 288(1), 129-140. 
Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of 

Operational Research, 245(1), 81-99. 
Granada-Echeverri, M., Cubides, L., & Bustamante, J. (2020). The electric vehicle routing problem with backhauls. 

International Journal of Industrial Engineering Computations, 11(1), 131-152. 
Hickman, J., Hassel, D., Joumard, R., Samaras, Z., & Sorenson, S. (1999). Methodology for calculating transport emissions 

and energy consumption. 
Huang, J., Liu, Y., Liu, M., Cao, M., & Yan, Q. (2019). Multi-objective optimization control of distributed electric drive 

vehicles based on optimal torque distribution. IEEE Access, 7, 16377-16394. 
Jie, W., Yang, J., Zhang, M., & Huang, Y. (2019). The two-echelon capacitated electric vehicle routing problem with battery 

swapping stations: Formulation and efficient methodology. European Journal of Operational Research, 272(3), 879-904. 
Karakatič, S. (2021). Optimizing nonlinear charging times of electric vehicle routing with genetic algorithm. Expert Systems 

with Applications, 164, 114039. 
Keskin, M., & Çatay, B. (2018). A matheuristic method for the electric vehicle routing problem with time windows and fast 

chargers. Computers & operations research, 100, 172-188. 
Li, J., Wang, F., & He, Y. (2020). Electric vehicle routing problem with battery swapping considering energy consumption 

and carbon emissions. Sustainability, 12(24), 10537. 
Li, J., Wang, R., Li, T., Lu, Z., & Pardalos, P. M. (2018). Benefit analysis of shared depot resources for multi-depot vehicle 

routing problem with fuel consumption. Transportation Research Part D: Transport and Environment, 59, 417-432. 
Li, Y., Lim, M. K., Tan, Y., Lee, Y., & Tseng, M. L. (2020). Sharing economy to improve routing for urban logistics distribution 

using electric vehicles. Resources, Conservation and Recycling, 153, 104585. 
Liao, W., Liu, L., & Fu, J. (2019). A comparative study on the routing problem of electric and fuel vehicles considering carbon 

trading. International Journal of Environmental Research and Public Health, 16(17), 3120. 
Liu, C., Kou, G., Zhou, X., Peng, Y., Sheng, H., & Alsaadi, F. E. (2020). Time-dependent vehicle routing problem with time 

windows of city logistics with a congestion avoidance approach. Knowledge-Based Systems, 188, 104813. 
Liu, G., Hu, J., Yang, Y., Xia, S., & Lim, M. K. (2020). Vehicle routing problem in cold Chain logistics: A joint distribution 

model with carbon trading mechanisms. Resources, Conservation and Recycling, 156, 104715. 
Lu, J., Chen, Y., Hao, J. K., & He, R. (2020). The time-dependent electric vehicle routing problem: Model and solution. Expert 

Systems with Applications, 161, 113593. 
Mao, H., Shi, J., Zhou, Y., & Zhang, G. (2020). The electric vehicle routing problem with time windows and multiple 

recharging options. IEEE Access, 8, 114864-114875. 
Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of 

operations research, 41(4), 421-451. 
Poonthalir, G., & Nadarajan, R. (2018). A fuel efficient green vehicle routing problem with varying speed constraint (F-

GVRP). Expert Systems with Applications, 100, 131-144. 
Raeesi, R., & Zografos, K. G. (2020). The electric vehicle routing problem with time windows and synchronised mobile 



  

 

146

battery swapping. Transportation Research Part B: Methodological, 140, 101-129. 
Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging 

stations. Transportation science, 48(4), 500-520.  
Sun, P., Veelenturf, L. P., Dabia, S., & Van Woensel, T. (2018). The time-dependent capacitated profitable tour problem with 

time windows and precedence constraints. European Journal of Operational Research, 264(3), 1058-1073. 
Tao, N., Shishasha, S., Peng, Z., & Tao, G. (2021). Disruption management decision model for VRPSDP under changes of 

customer distribution demand. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2053-2063. 
Teixeira, A. C. R., & Sodré, J. R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy 

consumption and CO2 emissions. Transportation Research Part D: Transport and Environment, 59, 375-384. 
USEPA (2019) United States environmental protection agency: sources of greenhouse gas emissions. 

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Accessed 1 Aug 2022 
Vahedi-Nouri, B., Arbabi, H., Jolai, F., Tavakkoli-Moghaddam, R., & Bozorgi-Amiri, A. (2022). Bi-objective collaborative 

electric vehicle routing problem: mathematical modeling and matheuristic approach. Journal of Ambient Intelligence and 
Humanized Computing, 1-21. 

Wang, L., Gao, S., Wang, K., Li, T., Li, L., & Chen, Z. (2020). Time-dependent electric vehicle routing problem with time 
windows and path flexibility. Journal of Advanced Transportation, 2020. 

Wang, Y., Assogba, K., Fan, J., Xu, M., Liu, Y., & Wang, H. (2019). Multi-depot green vehicle routing problem with shared 
transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 
232, 12-29. 

Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new 
comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 
151, 111567. 

Xu, Z., Elomri, A., Pokharel, S., & Mutlu, F. (2019). A model for capacitated green vehicle routing problem with the time-
varying vehicle speed and soft time windows. Computers & Industrial Engineering, 137, 106011. 

Yindong, S. H. E. N., Liwen, P. E. N. G., & Jingpeng, L. I. (2021). An improved estimation of distribution algorithm for multi-
compartment electric vehicle routing problem. Journal of Systems Engineering and Electronics, 32(2), 365-379. 

Zhang, Q., Wang, Z., Huang, M., Yu, Y., & Fang, S. C. (2022). Heterogeneous multi-depot collaborative vehicle routing 
problem. Transportation Research Part B: Methodological, 160, 1-20. 

Zhang, R., Guo, J., & Wang, J. (2020). A time-dependent electric vehicle routing problem with congestion tolls. IEEE 
Transactions on Engineering Management. 

Zhou, B., & Zhao, Z. (2022). Multi-objective optimization of electric vehicle routing problem with battery swap and mixed 
time windows. Neural Computing and Applications, 1-24. 

Zhou, Y., Huang, J., Shi, J., Wang, R., & Huang, K. (2021). The electric vehicle routing problem with partial recharge and 
vehicle recycling. Complex & Intelligent Systems, 7(3), 1445-1458. 

Zhu, X., Yan, R., Huang, Z., Wei, W., Yang, J., & Kudratova, S. (2020). Logistic optimization for multi depots loading 
capacitated electric vehicle routing problem from low carbon perspective. IEEE Access, 8, 31934-31947. 

 
   

  

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 

  


