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 The maximum tardiness reflects the worst level of service associated with customer needs; thus, 
the principle that seru production reduces the maximum tardiness is investigated, and a model to 
minimize the maximum tardiness of the seru production system is established. In order to obtain 
the exact solution, the non-linear seru production model with minimizing the maximum tardiness 
is split into a seru formation model and a linear seru scheduling model. We propose an efficient 
cooperative algorithm using a genetic algorithm and an innovative reinforcement learning 
algorithm (CAGARL) for large-scale problems. Specifically, the GA is designed for the seru 
formation problem. Moreover, the QL-seru algorithm (QLSA) is designed for the seru scheduling 
problem by combining the features of meta-heuristics and reinforcement learning. In the QLSA, 
we design an innovative QL-seru table and two state trimming rules to save computational time. 
After extensive experiments, compared with the previous algorithm, CAGARL improved by an 
average of 56.6%. Finally, several managerial insights on reducing maximum tardiness are 
proposed. 
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1. Introduction 

 
Nowadays, the production environment is complex and dynamic, and seru production emerges as the times require. A seru 
production system comprises one or more serus(Yu et al., 2018). By refactoring the workers, the seru production system can 
achieve better performance than assembly lines (Liu et al., 2012; Yu et al., 2018). Seru production has many outstanding 
advantages (Liu et al., 2014, 2010): high flexibility, mass production efficiency, and environmental friendliness for sustainable 
manufacturing. Moreover, implementing the seru production system can reduce the makespan, setup time, required workers, 
costs, and shop space (Yılmaz, 2020a; Yu et al., 2018; Zhang et al., 2022). Seru production has been studied by several 
scholars. They specialized in reducing makespan, total labor hours, training cost, and manpower (Liu et al., 2013, 2021a, 
2021b; Sun et al., 2020; Ying and Tsai, 2017; Yu et al., 2012; Zhan et al., 2021). Stecke et al. (2012) described the history of 
seru and defined the various types of seru. Seru and TPS are compared. Yu et al. (2012) studied the bi-objective seru 
production model with total throughput time and labor hours. Lian et al. (2018) solved the problem of assigning multi-skilled 
workers. In order to minimize the total cost of training, Liu et al. (2013) established a multi-objective model. Yılmaz (2020b) 
investigated the workforce scheduling problem of seru production. Yu et al. (2017) developed several line-hybrid seru system 
models with makespan and total labor hours. A dynamic multi-objective algorithm is proposed by Liu et al. (2021a) for the 
rotating seru production problem. Liu et al. (2021b) studied makespan and workload imbalance for a hybrid seru production 
system. Fu et al. (2022) studied four dynamic seru production decision processes and a phased intelligent algorithm for solving 
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the four processes. Unlike the literature (Fu et al., 2022), this paper proposes to study the problem of seru formation and seru 
scheduling under minimizing the maximum tardiness, which has not been studied yet. In contrast, Fu et al. (2022) studied the 
problem of re-optimizing a given seru system after a change in the product information. The two problems have different 
decision processes, and different algorithms are proposed for the different problems. Maximum tardiness is a crucial indicator 
of performance in meeting customer due dates in various manufacturing and service businesses (Allahverdi, 2004; Bai et al. 
2021; Chen et al. 2021). The maximum tardiness reflects the worst level of service associated with customer needs (Aydilek 
et al., 2022; Pundoor and Chen, 2005). Avoiding customer dissatisfaction as much as possible is the goal of the production 
manager (Rostami et al. 2015). Therefore, reducing the maximum tardiness can improve the level of service. 
 
Many studies have been done to minimize the maximum tardiness of a given production system. Guinet and Solomon (1996) 
investigated the minimization of maximum tardiness or maximum completion time in hybrid flow shop scheduling and used 
a set of list algorithms to deal with the problem. Chakravarthy and Rajendran (1999) dealt with minimizing the weighted sum 
of the maximum tardiness and makespan in a flow shop and proposed using heuristic algorithms using simulated annealing 
technology to solve it. Sbihi and Varnier (2008) studied the maximum tardiness by a B&B algorithm in single-machine 
scheduling with multiple maintenance periods. Ruiz and Allahverdi (2009) investigated the weighted sum of makespan and 
maximum tardiness of the flow shop workshop scheduling and proposed a GA to solve it. An Adaptive GA and a PSA are 
proposed by Assarzadegan and Rasti-Barzoki (2016) for minimization of the sum of the due date assignment costs, maximum 
tardiness, and distribution costs on a single machine. Chen et al. (2021) investigated the minimization of total late work and 
maximum tardiness in single-machine bicriteria scheduling. As a key performance indicator, maximum tardiness has not yet 
been investigated in seru production. We state that seru production can reduce the maximum tardiness based on extensive 
tests. Reinforcement learning (RL) has been extensively applied in scheduling (Ren et al. 2021). Ying-Zi and Ming-Yang 
(2005) proposed using the Q-learning algorithm to select composite scheduling rules, relative to single scheduling rules or 
random compounding to get better results. Aydin and Öztemel (2000) studied a dynamic scheduling system based on 
intelligent agents to select the most suitable scheduling rules in real time through the improved Q-learning algorithm. Wei and 
Zhao (2004) proposed using reinforcement learning for scheduling rule selection that considers machine and job selection to 
solve dynamic job shop problems. Li et al. (2021) combined the characteristics of GA and Q-learning to propose a GA based 
on Q-learning (QGA) for the problem of workshop scheduling. Chen et al.(2020) studied a self-learning GA (SLGA), which 
used GA as the basic optimization method and intelligently adjusted its key parameters using reinforcement learning. Wang 
et al. (2020) studied a dual Q-learning method to improve the adaptability of assembly plant scheduling problems to 
environmental changes through independent learning. Shahrabi et al. (2017) used Q-learning algorithms to adjust the 
parameters of variable neighborhood search algorithms in dynamic job shop scheduling. Using the dual Q-learning algorithm, 
Arviv et al. (2016) proposed a new reinforcement learning collaboration algorithm for complex two-robot collaborative flow 
workshop scheduling. 
 
Most of the previous algorithms for the seru scheduling problem are meta-heuristic algorithms, which are fast(Tang et al., 
2018), but their search patterns are relatively fixed and rigid(Ni et al., 2021). However, reinforcement learning provides a 
more purposeful search of the solution space. Therefore, we design an innovative reinforcement learning algorithm (QL-seru 
algorithm) by combining the features of the meta-heuristic algorithm and the reinforcement learning algorithm to solve the 
seru scheduling problem. 
 
Our contributions are as follows: 
 

 We establish a seru production model with minimizing the maximum tardiness. 
 The non-linear seru production model minimizing the maximum tardiness is split into a seru formation model and 

a linear seru scheduling model. Then the exact solution of small-scale problems can be solved by CPLEX. 
 A cooperative algorithm using a GA and an innovative QL-seru algorithm is proposed for larger-scale problems. 

The best seru formations obtained by GA are used as the environment in reinforcement learning. 
 The QL-seru algorithm is proposed for the seru scheduling problem. Moreover, two state trimming rules are 

proposed. 
 Several managerial insights are made on reducing the maximum tardiness. 

 
The remainder of this research is organized as follows. Section 2 proposes the model of the seru production system with 
minimizing the maximum tardiness. Moreover, we decompose the non-linear model into a seru formation model and a linear 
seru scheduling model. Section 3 develops the CAGARL. We design the GA and QL-seru algorithm in detail. Section 4 
performs extensive experiments and discusses. Section 5 gives the conclusion and further research. 
 
2. Model 

2.1. Problem description 
 
We consider minimizing the maximum tardiness problem of a rotating seru production system, as shown in Fig. 1. There are 
Z workers and M batches. Because of the different skill levels of different workers, a batch in different serus has different 
processing times. So, to improve the performance of the seru production system, better seru formation (i.e., the number of 
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serus and worker allocation.) and better seru scheduling (i.e., batch scheduling) are required (Fu et al., 2022; Wu et al., 2021). 
 

Work 2 Work 5

Work 1 Work 3 Work 4

Batch 1

3

3

1 2

45

1 2

45

Batch 4

Batch 3Batch 2

seru scheduling seru formation

 
Fig. 1. Example of seru production system with 5 workers and 4 batches 

 
The objective of the problem is to minimize the maximum tardiness. The tardiness of each batch is determined by the 
completion time and due date of each batch. Seru formation is shown in Fig. 1 as an example. The result of seru scheduling 
is shown in Fig. 2. As seen from Fig. 2, the tardiness of batch 3 is 0, and the tardiness of batches 1, 2, and 3 are 50, 170, and 
20, respectively. So, the maximum tardiness of this seru production system is 170. 
 

Batch 3 Batch 2

Batch 1 Batch 4Seru 1
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200 400 600 800

Due date of 
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Due date of 
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790720450340
 

Fig. 2. The result of seru scheduling 
Seru production problem contains two NP-hard subproblems (Sun et al., 2020; Yılmaz, 2020a). The seru formation is an 
example of an unordered set partition. Each of the M batches can be assigned to any of the J serus, so the complexity of the 
seru scheduling is JM. Therefore, the complexity of the seru system, which contains the seru formation and the seru scheduling 
to minimize the maximum tardiness, is such as Eq. (1) as shown. 
 

1
( , )

J
M

j
P Z J J

=

× (1) 

 
where P (Z, J) is the count of solutions of Z workers assigned to J serus. 

2.2. Assumptions 
 
We assume the following assumptions based on the literature (Kaku et al., 2009; Liu et al., 2021b; Yu et al., 2013) to model 
the problem explicitly. 
 

1. The batches and types of products are given in advance. 
2. The tasks required for each product are the same. Skip a task if it is not required for a product type. 
3. Each worker can complete all tasks in a seru, different from the assembly line (each worker operates only one task). 
4. The assembly tasks within each seru are equivalent to the ones within the assembly line. The number of tasks is Z. 
5. A batch can only be processed in a seru. 
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2.3. Non-linear Model 
 

Object function: 

1
min  (0, )max

M

m m m
m

FCB FC d
=

+ −                      (2) 

subject to  

1
1 ,

Z

ij
i

L Z j
=

≤ ≤ ∀                           
(3) 

1
1,

J

ij
j

L i
=

= ∀                              
(4) 

1 1
1,

J M

mjk
j k

Y m
= =

= ∀                           
(5) 

 

Eq. (2) states the objective of minimizing the maximum tardiness. Eq. (3) guarantees the number of workers in each seru. Eq. 
(4) guarantees each worker only in one seru. Eq. (5) guarantees that each product batch is only processed in one seru. Eq. (3) 
and Eq. (4) are the constraints related to seru formation, and Eq. (5) is the constraint related to seru scheduling. The meaning 
of notations for the above-stated model are present as follow. These can be found in the literatures(Fu et al., 2022; Sun et al., 
2020, 2019; Yu et al., 2014). 

Indices  
i Index of workers (i = 1, 2, . . ., Z). 

j Index of serus (j = 1, 2, . . ., J). 

n Index of product types (n = 1, 2, . . ., N). 

m Index of product batches (m = 1, 2, . . ., M). 

k Index of the order of product batches in a seru (k = 1, 2, . . ., M). 

 

Decision variables 

1, if worker in the seru
0,otherwiseij

i j
L 

= 


. 

1, if product batch is processed in seru in sequence
Y

0,otherwisemjk

m j k
= 


. 

Variable 

CZi : Coefficient of variation of worker i’s expanded task time (Sun et al., 2020; Yu et al., 2014). 

( )1 ,
,1,

i i i

i
i

Z Z
CZ iZ

ϕ η η
η

 + − >= ∀ ≤


                
 

(6) 

where, ηi is the upper limit on the number of tasks of worker i in a seru, and φi is the coefficient of influencing level for 
worker i completing multiple tasks within a seru. 

TCm: Task time of the batch m per task in a seru. 

1 1 1 1

1 1 1

N J M
mn n ni i ij mjkn i j k

j

Z

m Z J M
i mjki j k

V T CZ L Y
TC

L Y

β
= = = =

= = =

=
   

  
 

 

(7) 
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where, Vmn is 1, if the production type of batch m is n; 0, otherwise. Tn is the cycle time of product type n in the original 
assembly line. βni is the skill level of worker i for each task of product type n. 

FCm: processing time of batch m in a seru. 

1 1 1

m m
m Z J M

ij mjki j k

B TC Z
FC

L Y
= = =

=
  

                      
(8) 

where, Bm is the size of batch m. 

FCBm: starting time of product batch m in a seru. 

1

1 1 1 0

M J M k

m s mjk sjk
s j k k

FCB FC Y Y
−

′= = = =

=                            
(9) 

2.4. Exact solution 
 

As shown in Fig. 3, the nonlinear seru production model with minimizing the maximum tardiness is split into a seru formation 
model and a linear seru scheduling model. 

Seru formation 1

......

Seru formation s

Seru formation U
...... Linear 

model of 
seru 

scheduling

Solution 1

Solution s

Solution U

......
......

CPLEX

Seru formation Seru scheduling

Optimal 
solution

 

Fig. 3. The process of solving the exact solution 
 

For seru formation, we use an unordered set partition model to exhaust each seru formation solution. Eq.1 shows that there 
are F(Z) different seru formations. For seru scheduling, the linear model is proposed as follows: 

Parameter: 
 
Fmj: Processing time for batch m in seru j. 
E: A very large actual number 

 
Decision variables: 

Cjk: Completion time of the thk batch in seru j. 
MT: The maximum tardiness 
Therefore, the seru scheduling model is as follows. 

 
Objective function： 
 

min MT (10) 
subject to  

( )1 , 1, 2,..., , 1, 2,..., 1,...,jk m mjkMT c d Y E j J m M k M≥ − − − ∀ = = =，  (11) 

1 1
1, 1, 2,...,

J M

mjk
j k

Y m M
= =

= ∀ =     
(12) 
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1
1, 1, 2,..., , 1, 2,...,

M

mjk
m

Y j J k M
=

≤ ∀ = = 
(13) 

1 1
1

, 1, 2, ...,
M

j m j m j
m

c Y F j J
=

= ∀ =              
 

(14) 

( 1)
1

, 1, 2,..., , 2,...,
M

jk j k mjk mj
m

c c Y F j J k M−
=

≥ + ∀ = =          
(15) 

0MT ≥  (16) 
 
Eq. (10) is the objective of minimizing the maximum tardiness. Eq. (11) indicates that the maximum tardiness cannot be less 
than the tardiness of each batch. Eq. (12) suggests that one batch can only be processed in one seru. Eq. (13) indicates that a 
seru can only process a maximum of one batch simultaneously. Eq. (14) gives the completion time of the first batch processed 
in each seru. Eq. (15) indicates that the kth batch cannot be processed until the (k-1) th batch is complete. Eq. (16) suggests that 
maximum tardiness is non-negative. For large-scale problems, the model cannot be solved by CPLEX. So, a cooperative 
algorithm using a GA and an innovative reinforcement learning algorithm (CAGARL) is proposed. 
 
3. Cooperative algorithm using a GA and an innovative reinforcement learning algorithm 

3.1. Cooperative mechanism 
 
It is a very effective cooperative algorithm for dealing with the enormous scope of problems with complex decisions (Ren et 
al., 2019; Shang et al., 2014; Sun et al., 2020; Tang, 2017). Seru production consists of two decision processes: seru formation 
and seru scheduling. Therefore, cooperative algorithms are utilized to solve the seru production problem. GA is used to solve 
the seru formation problem. Most of the previous algorithms for the seru scheduling problem are meta-heuristic algorithms, 
which are fast (Tang et al., 2018), but their search patterns are relatively fixed and rigid (Ni et al., 2021). However, 
reinforcement learning provides a more purposeful search of the solution space by learning from previous experience. 
Therefore, we design an innovative reinforcement learning algorithm (QL-seru algorithm) by combining the features of the 
meta-heuristic algorithm and the reinforcement learning algorithm to solve the seru scheduling problem. Moreover, GA and 
QL-seru algorithm collaborate. The cooperative mechanism of the QL-seru algorithm and GA is shown in Fig. 4.  
 

Using GA to evolve Seru 
formation population

Using QL-seru 
algorithm to train  
seru scheduling 

Better seru formation Better seru 
scheduling

╙
╚

╛
╜

╙ : Obtain better seru formation; 
╚ : Provide current better seru formation as the environment in QL-seru algorithm; 
╛ : Obtain better seru scheduling;
╜ : Provide current better seru scheduling  to assist GA to evolve seru formation population;  

Fig. 4. Cooperative mechanism of QL-seru algorithm and GA 

3.2. GA for seru formation 
 
The seru formation is solved by the GA combining local search to obtain a better solution(Berahhou et al., 2022). 
 
3.2.1. Solution expression of seru formation 
 
In order to represent the seru formation, the sequence encoding means proposed by Yu et al. (2012) are used. Suppose there 
are Z workers, the solution can be shown by a vector that contains Z workers and Z-1 separators, and elements with numbers 
greater than Z indicate separators. Therefore, Z-1 separators can split up to Z serus at most. 
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3.2.2. Selection, crossover, mutation and neighbor strategy 
 
Selection strategy: adopts the binary tournament selection (Beyer and Deb, 2001). 
Mutation operation: two gene interchanges. 
Crossover operation: the order crossover (Davis, 1985). 
Neighbor strategy: exchange two unique elements (Sun et al., 2019). 

3.3. QL-seru algorithm for seru scheduling 
 
The seru scheduling is solved by the QL-seru algorithm combining local search. 
 
3.3.1. QL-seru algorithm 
 
We propose an innovative QL-seru algorithm (QLSA) for the seru scheduling problem by combining the meta-heuristic and 
reinforcement learning algorithm features. We set the states in reinforcement learning in the way encoded in the meta-heuristic 
algorithm, and each state represents a seru scheduling. The new states are generated using the exploration and development 
approach in reinforcement learning. Given that the generated seru formation is frequently the same, especially in the 
convergence phase or when the number of iterations is relatively large (the number of repetitions is shown in Table 8), repeated 
training of the same formation is meaningless. It consumes a significant amount of computational time. Consequently, we 
store historical data (QL-seru table) to avoid repeated training, i.e., the stored states will not be trained. In addition, for a new 
state, if the state is worse than the stored average objective, then the state will be discarded. In the QLSA, at each time step t, 
at is the current action, and the st is the current state. rt+1 is the reward. The q-value update function is expressed as Eq. (17). 
 

1( , ) (1 ) ( , ) ( max ( , ))t t t t t a A
Q s a Q s a r Q s aα α γ+ ′∈

′ ′← − + +          (17) 

 
In Eq. (17), α is the learning rate, γ is the discount rate. 
 
3.3.2. State definition 
 
In order to combine the features of the reinforcement learning algorithm and the meta-heuristic algorithm, the state is designed 
as the code of seru scheduling under the current best seru formation. We set the state to a vector of M+Z-1 dimension, one 
vector for each state. In the vectors, numbers less than or equal to M represent batches, and numbers greater than M represent 
separators. The state is shown in Fig. 5.  
 

2 8 4 3 1 7 5 9 6
 

Fig. 5. An example of a state 
 
As shown in Fig. 5, this state represents a seru system with 4 workers and 5 batches. This state indicates that 5 batches are 
divided into 3 groups. Then assign each batch group to each seru in turn, and if the number of seru is less than the number of 
batch groups, process the remaining batch groups on the finished serus. The initial state s0 is the state encoding for the best 
scheduling of the previous round of cooperatives. 
 
3.3.3. Action definition 
 

Since seru scheduling is NP-hard, to reduce the action space, we set the action to move the elements in the scheduling encoding 
left and right. 
 
There are 2*(M+Z-1)-2 actions in the action space. Select an element from the state-coded M-Z-1 element and move left or 
right. For the first element, you can only move to the right. For the last element, you can only move to the left. So, there are 
a total of 2*(M-Z-1)-2. 
 
For example, if the current state is Fig. 5, we take action ‘2-1’, i.e., the element moves to the right. When one of these actions 
is taken, a new state code is obtained, and the new state is reached. After taking action ‘2-1’, get the state encoding as shown 
in Fig. 6. This state indicates that 5 batches are divided into 3 groups. Group 1 includes batch 2 and batch 4. Group 2 includes 
batch 3 and batch 1. Group 3 includes batch 5. 
 

2 4 8 3 1 7 5 9 6
 

 Fig. 6. New state after taking action ‘2-1’ 
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3.3.4. Reward method 
 
To obtain solutions of seru production more intuitively. We set the maximum tardiness that is calculated by the current state 
(seru scheduling) and the current environment (seru formation) as the reward, as shown in Eq. (18). The agent is not directed 
on what to perform. Instead, it tries to find out which actions will produce higher returns, which can clearly yield positive 
returns (Chen et al., 2020). The best reward corresponds to a better solution for seru scheduling. 
 

- ( )t tr f s=                                 (18) 

 
where f(st)is the maximum tardiness obtained by the current state. 
 
3.3.5. Action selection strategy 
 
In order to balance development and exploration, the ε-greedy strategy is used to select the action. g0 is a random number 
between 0 and 1, and ε is the greedy rate. When ε> g0, the action with the maximum q-value is taken, on the contrary, randomly, 
as shown in Eq. (19)(Chen et al., 2020; Fu et al., 2022). 
 

0

0

max ( , ) , 
( , )

,              
ta

t t
rand

Q s a g
s a

a g

ε
π

ε

>= 
≤

                      
 

(19) 

 
where ( , )t ts aπ is a select policy for the action at state st. 
 
3.3.6. QL-seru table 
 
After obtaining the current better seru formation by GA, we use the current better seru formation as the environment for the 
reinforcement learning algorithm when solving the seru scheduling. Based on the feature that the seru formation will be 
repeatedly generated, an innovative QL-seru table for saving computational time using historical data is proposed. 
 
In the QL-seru table, we store the last p seru formations, the trained states of the p formations, and the average objective of 
the trained states of each p formations. If the newly produced seru formation (nsf) is in the stored p formations, we use the 
following two methods to avoid repeated or unnecessary training. The two state trimming rules are as follows: 
 
State trimming rules 1 (Repeat state skipping method): The states will not be trained for the stored states of nsf. 
State trimming rules 2 (Poor state rejection method): For the newly obtained states of nsf, if the objective corresponding 
to the current state is worse than the stored average objective, the state will not be trained. 
 
After training the current seru formation as the environment, if the current seru formation is in the QL-seru table, we will 
update the trained state of the current seru formation as the environment. If not, we will add the seru formation, the trained 
states of the formation, and the corresponding average objective into the QL-seru table. 
 
3.3.7. Procedure of the QLSA 
 
The flowchart of the QL-seru algorithm is shown in Fig. 7. Situation 1 represents that the current seru formation does not 
exist in the QL-seru table, and situation 2 represents that the current seru formation exists in the QL-seru table. 
 

We give an example of situation 2 in the QL-seru algorithm. 
Suppose that there are 3 workers, 2 batches, and the current best formation is {{1,3},{2}}. 
Step 1. Current state st = {3,2,4,1} (Batch 2 is processed in seru 1, and batch 1 is assigned to seru 2.). 
Step 2. Choose the action at=’3-1’ (The third element of the state code is shifted right.). 
Step 3. Obtain the next state st+1= {3,2,1,4} (Batches 2 and 1 are processed in seru 1 in order) and the reward (maximum 

tardiness). 
Step 4. Determines if state st+1 meets the state trimming rules. If yes, apply the trimming rules and proceed to the next 

round of training. Otherwise, update the Q table and current better seru scheduling, then proceed to the next training round. 
 
The execution flow of the entire QLSA is described in Algorithm 1. 
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Algorithm 1: QLSA 

Input: Max_Epochs(maximum number of iterations), BF (current best formation), QL-seru table. 

Output: BS (best scheduling). 

(1) Initialize. 

    q-table, state, action, nest state, nest action (correspond to Q-table, current state, current action, next state and next 
action in reinforcement learning, respectively). 

  q-table, state_0 

  Q_marker (a flag to determine whether the current formation is stored in the QL-seru table) 

  AO (average objective) ← 0 

  best_reward (The best reward under the current formation) ←The initial value is calculated by the initial state and the 
current formation. 

(2) if (BF in QL-seru table) then 

        Read the QL-seru table 

        Q_marker ← 1 

        AO ← Read the average objective of the current best formation, which is stored in the QL-seru table 

  end if 

(3) while (i< Max_Epochs) do 

  (3-1) Choose the action (at). 

  (3-2) Obtain the next state (st+1). 

  (3-3) if (Q_marker==1) then 

         if (st+1 in QL-seru table) then 

            continue 

         end if 

      end if 

  (3-4) Get the reward ← the current maximum tardiness (seru formation: BF; seru scheduling: st+1). 

  (3-5) if (Q_marker==1) then 

         if (reward >AO) then 

            continue 

         end if 

      end if 

  (3-4) Find the maximum q-value for at taken in the st+1. 

  (3-5) Update the q-table by the bellman equation. 

  (3-6) if (reward< best_reward) then 

      best_reward ← reward 

      best_scheduling ← st+1 

      end if 

  (3-7) st ← st+1 

  end while 

(4) Update the QL-seru table. 

(5) Local search to find out if there is better scheduling. 

Output BS. 



  

 

74 

 

Whether the 
current formation is in the 

QL-seru table？

iterations > Max 
iterations

Choose at

Whether st+1meets the 
state trimming rules

Update the Q-
table and better 
seru scheduling

Update the QL-seru 
table and obtain 

better seru scheduling

Obtain st+1 and 
reward

N Y

N N

N Y

Y
Y

start

Environment(current 
seru formation) and 
initialization state s0

End

Public arrow

Situation 1

Situation 2

 
Fig. 7. Flowchart of QL-seru algorithm 

 
4. Experimental results 
 
All experiments were implemented on a personal computer (Intel Core (TM) i7-8700 processor at 3.20 GHz, Windows 10, 
and 8.0 GB of RAM). CAGARL was written in C#. 4.1. Test data 
 
There are five different product types. Tn=1.8, ηi=20. The data for εi, βni, and batches are as follow. 
 
Table 1 
Coefficient of influencing level for worker i completing multiple tasks within a seru (φi) 

worker 1 2 3 4 5 6 7 8 9 10 

iε 0.18            0.19 0.2 0.21 0.2 0.2 0.2 0.22   0.19   0.19 

worker 11 12 13 14 15 16 17 18 19 20 

iε 0.18                  0.23 0.24 0.22 0.16 0.24 0.18 0.18 0.21 0.18 
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Table 2 
The data of worker’s level of skill (βni) 

Product/Worker 1 2 3 4 5 6 7 8 9 10 
1 0.92 0.95 0.99 1.13 0.96 1.21 1.04 0.98 0.97 0.92 
2 0.96 0.97 1.01 1.27 1.22 1.1 1.07 1.02 1.03 0.96 
3 1.24 1.09 1.15 0.92 0.91 1.01 1.24 1.1 1.12 1.24 
4 1.09 1.12 1.09 1.12 1.1 1.15 1.07 1.11 1.19 1.09 
5 1.2 1.18 1.21 1.25 1.18 1.23 1.14 1.2 1.26 1.2 

Product/Worker 11 12 13 14 15 16 17 18 19 20 
1 0.95 0.98 0.99 1.01 1.04 0.99 1.04 0.93 0.96 1.08 
2 1.04 1.07 0.95 1.1 1.1 0.97 1.01 1.06 0.98 1.04 
3 1.03 1.07 1.11 1.05 1.05 1.08 1.11 1.07 1.12 1.09 
4 1.14 1.15 1.17 1.13 1.15 1.11 1.15 1.13 1.14 1.11 
5 1.19 1.15 1.1 1.18 1.11 1.22 1.24 1.14 1.21 1.13 

 
Table 3 
The data of Batches 

Batch number 1 2 3 4 5 6 7 8 9 
Product type 3 5 3 4 1 4 1 2 2 

)mB( Batch size 55 53 54 49 49 55 54 48 48 
Due date 184 228 366 422 588 551 807 780 973 

Batch number 10 11 12 13 14 15 16 17 18 
Product type 3 2 4 3 4 5 5 1 4 

)mB( Batch size 48 46 58 48 52 48 51 54 57 
Due date 1,078 1,100 1,294 1,392 1,400 1,599 1,601 1,710 1,802 

Batch number 19 20 21 22 23 24 25   
Product type 2 5 1 3 4 5 2   

)mB( Batch size 54 49 53 46 45 46 45   
Due date 1,998 2,107 2,199 2,209 2,311 2,410 2,510   

 

4.2. Parameter settings 
 

The number of iterations of the cooperative algorithm is 100. For GA, the population size is 200, the crossover rate is 0.9, and 
the mutation rate is 0.1, respectively. And for the QLSA, α=0.01, γ=0.9, ε=0.1, Max_Epochs=35000. Moreover, the number 
of search neighbors in the local search is 75. For the comparison algorithm (Sun et al. (2019)), we compare the results at the 
same running time. 

4.3. Performances of the CAGARL 
 
A more significant number of experiments have been conducted to evaluate CAGARL. In addition, ASMT is defined as 
evaluating how much the maximum tardiness has been reduced by the seru production in comparison to the assembly line, as 
shown in Eq. (20). To evaluate the algorithm, we use the cooperative coevolution algorithm proposed by Sun et al. (2019) to 
compare. The gap between the CAGARL and the exact or comparative algorithm is referred to as Eq. (21) and Eq. (22). 
 

_ - _=
_

MT Line MT CAGARLASMT
MT Line

                      
(20) 

_ - _1
_

MT CAGARL MT ExactGAP
MT Exact

=  
(21) 

_ - _2
_

MT Sun MT CAGARLGAP
MT CAGARL

=                             
(22) 

MT_Line: the maximum tardiness of the assembly line. MT_CAGARL: the maximum of the seru production system solved by 
CAGARL. MT_Sun: the maximum of the seru production system solved by the algorithm proposed by Sun. MT_Exact: the 
maximum of the seru production system solved by exact solution. 

To ensure the fairness of the experiments, we use the same mathematical model and parameters in the comparison experiments. 
CAGARL and the comparison algorithm use the same running time to compare. The solution of the maximum tardiness for 
the assembly line (The formula for calculating the maximum tardiness of the assembly line is shown in Eqs. (23-26). To 
minimize the maximum tardiness of the assembly line, EDD rule is used to process the batches.), the solution of minimizing 
the maximum tardiness of the seru system solved by the exact algorithm, CAGARL and sun’s algorithm are shown in Table 
4. Table 5 shows the values of GAP1, GAP2, and ASMT. Table 6 shows the running time of the exact algorithm and CAGARL 
(sun’s algorithm with the same time as CAGARL). 
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TLm: the task time of batch m; FLm: the processing time of batch m; fm: the complete time of batch m; 
 
Table 4 
Solution of the assembly line, exact algorithm, comparison algorithm, and CAGARL 

Worker/Batch 5 6 7 10 15 20 25 

5 

MT_Line 70 141 141 156 260 337 424 
MT_Exact 0 25 25 25 - - - 
MT_Sun 0 25 36 155 489 744 1092 

MT_CAGARL 0 25 25 25 25 55 96 

6 

MT_Line 81 163 163 189 310 407 519 
MT_Exact 0 8 8 8 - - - 
MT_Sun 0 27 89 214 443 729 819 

MT_CAGARL 0 8 8 8 27 27 121 

8 

MT_Line 98 187 187 221 366 479 618 
MT_Exact 2 29 - -  - - 
MT_Sun 2 34 58 189 428 705 1099 

MT_CAGARL 2 29 29 29 29 34 209 

10 

MT_Line 120 217 217 258 435 574 750 
MT_Exact - - - - - - - 
MT_Sun 3 33 59 149 325 731 1011 

MT_CAGARL 3 22 33 33 33 33 211 

15 

MT_Line 160 275 275 335 570 749 994 
MT_Exact - - - - - - - 
MT_Sun 1 30 30 221 376 700 1081 

MT_CAGARL 1 30 30 30 30 108 67 

20 

MT_Line 200 334 334 431 706 933 1239 
MT_Exact - - - - - - - 
MT_Sun 2 36 58 183 424 1128 1496 

MT_CAGARL 2 31 58 126 197 208 385 
 
 
 
Table 5 
Performance comparison 

Worker/Batch 5 6 7 10 15 20 25 

5 
GAP1 0 0 0 - - - - 
GAP2 0 0 0.31 0.84 0.95 0.93 0.91 
ASMT 1.00 0.82 0.82 0.84 0.90 0.84 0.77 

6 
GAP1 0 0 0 - - - - 
GAP2 0 0.70 0.91 0.96 0.94 0.96 0.85 
ASMT 1.00 0.95 0.95 0.96 0.91 0.93 0.77 

8 
GAP1 0 0 0 - - - - 
GAP2 0 0.15 0.50 0.85 0.93 0.95 0.81 
ASMT 0.98 0.84 0.84 0.87 0.92 0.93 0.66 

10 
GAP1 0 0 0 - - - - 
GAP2 0 0.33 0.44 0.78 0.90 0.95 0.79 
ASMT 0.98 0.90 0.85 0.87 0.92 0.94 0.72 

15 
GAP1 - - - - - - - 
GAP2 0 0 0 0.86 0.92 0.85 0.94 
ASMT 0.99 0.89 0.89 0.91 0.95 0.86 0.93 

20 
GAP1 - - - - - - - 
GAP2 0 0.14 0 0.31 0.54 0.82 0.74 
ASMT 0.99 0.91 0.83 0.71 0.72 0.78 0.69 

 
 
As seen from Table 4 and Table 5, implementing the seru production system can significantly reduce the maximum tardiness. 
Compared to the exact algorithm, CAGARL can solve the problem on a larger scale. CAGARL can obtain the same solution 
as the exact algorithm. For large-scale problems, CAGARL can obtain better solutions than SUN’S. 
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Table 6 
Running time of the exact algorithm and CAGARL 

Worker/Batch 5 6 7 10 15 20 25 

5 EXACT 13 16 20 321 - - - 
CAGARL 28 40 45 61 88 116 143 

6 EXACT 47 58 74 497 - - - 
CAGARL 20 40 46 61 91 126 156 

8 EXACT 1033 1435 - - - - - 
CAGARL 41 46 52 66 95 144 177 

10 EXACT - - - - - - - 
CAGARL 48 56 64 87 108 164 207 

15 EXACT - - - - - - - 
CAGARL 36 71 72 109 158 203 245 

20 EXACT - - - - - - - 
CAGARL 81 89 83 122 147 195 204 

 

 
Fig. 8. The running time of the exact algorithm and CAGARL at instances with 5 workers (a) and 6 workers (b) 

 
As can be seen from Table 6 and Fig. 8, the exact algorithm only can solve small-scale problems. Compared to the exact 
algorithm, as the size becomes more extensive, the runtime variation of CAGARL is relatively smooth. The calculation time 
of CAGARL can meet the actual needs of production. 

4.4. Performances of QL-seru 
 
Combining the characteristics of seru production, the QL-seru table is proposed to save computation time innovatively. With 
all parameters being the same, Table 7 shows the running time of CAGARL and the algorithm without the QL-seru table. In 
Table 7,  T1 is the running time of CAGARL (with the QL-seru table), and T2 is the running time of the algorithm without 
the QL-seru table (Q-learning). MRT is the gap between T1 and T2. MRT is calculated as shown in Eq. (27). 
 

T2 - T1
T2

MRT =                                
(27) 

 
Table 7 
T1 and T2 

Worker/Batch 5 6 7 10 15 20 25 

5 
T1 28 40 45 61 88 116 143 
T2 61 59 76 120 159 177 207 

MRT 0.54  0.32  0.41  0.49  0.45  0.34  0.31  

6 
T1 20 40 46 61 91 126 156 
T2 40 49 82 127 153 180 240 

MRT 0.50  0.18  0.44  0.52  0.41  0.30  0.35  

8 
T1 41 46 52 66 95 144 177 
T2 39 55 87 130 184 192 228 

MRT -0.05  0.16  0.40  0.49  0.48  0.25  0.22  

10 
T1 48 56 64 87 108 164 207 
T2 89 78 104 135 194 206 253 

MRT 0.46  0.28  0.38  0.36  0.44  0.20  0.18  

15 
T1 36 71 72 109 158 203 245 
T2 59 86 114 145 174 213 239 

MRT 0.39  0.17  0.37  0.25  0.09  0.05  -0.03  

20 
T1 81 89 83 122 147 195 204 
T2 88 112 134 153 185 217 247 

MRT 0.08  0.21  0.38  0.20  0.21  0.10  0.17  
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As shown in Table 7, T1 is almost always smaller than T2, indicating that our innovative QLSA can significantly reduce the 
computation time. Table 8 shows the number of generated duplicate environments when the cooperative algorithm is iterated 
100 times, i.e., when the QLSA algorithm is used to update the seru scheduling 50 times. 
 
Table 8 
The number of repetitive environments generated 

Worker/Batch 5 6 7 10 15 20 25 
5 49 50 50 50 50 50 50 
6 48 49 47 47 41 49 48 
8 48 47 45 48 45 49 49 
10 45 46 48 48 46 47 47 
15 44 37 46 43 40 32 39 
20 34 26 27 24 22 17 22 

 
Table 8 shows that when using QLSA update seru scheduling 50 times, the environment repeat generation may even reach 50 
times when the number of workers is small. 

4.5. Benefits of minimizing the maximum tardiness 
 
The lower bound of delay and the worst-case satisfaction can be improved by minimizing the maximum tardiness. We compare 
optimizing the maximum tardiness with the result of optimizing the makespan (Using the EDD rule again in the same seru to 
reduce the maximum tardiness without changing the makespan). Then the total tardiness, the number of tardy batches, 
makespan, and maximum tardiness under two optimization objectives are calculated and compared, shown in Table 9 and Fig. 
9. 
 
Table 9 
Performance comparisons of the seru system when maximum tardiness and makespan are the objectives for the instances with 
6 product batches 

M Z  O_MT  O_Cmax  
TT NDB Cmax MT  TT NDB Cmax MT 

 
 
 

6 

5  25 1 613 25  365 2 609 344  
6 19 4 591 8 557 5 588 165 
8 64 4 592 29 79 4 590 38 
10 59 6 598 22 55 4 592 25 
15 31 2 617 30 453 5 598 175 
20 33 2 619 31 686 5 618 34 

O_MT: optimize the maximum tardiness; O_Cmax: optimize the makespan; MT: maximum tardiness; Cmax: makespan; TT: total tardiness; NDB: the number 
of tardy batches. 

 
Fig. 1. Performance comparisons of the seru system when maximum tardiness and makespan are the objectives for the 

instances with 6 product batches 
 
From Table 9 and Fig. 9. compared with the makespan, using maximum tardiness as the optimization objective for seru 



G. Fu et al.  / International Journal of Industrial Engineering Computations 14 (2023) 79

systems can significantly reduce the maximum tardiness, total tardiness, and the number of tardy batches for seru systems. 
Moreover, it is clear from Fig. 9(c) that the makespan is not much worse when optimizing the maximum tardiness than the 
makespan. 

4.6. Discussion and insights 
 
4.6.1 Discussion 
 
(1) Seru production can reduce maximum tardiness by an average of 87% compared to the assembly line. As a result, seru 
production can better meet the needs of customers. 
 
(2) CAGARL can obtain better maximum tardiness than SUN’S. The algorithm can solve large-scale problems and achieve 
the same optimal solution as the exact algorithm in small-scale problems. 
 
(3) Compared to optimizing the makespan, optimizing the maximum tardiness can obtain better total tardiness, number of 
tardy batches, and maximum tardiness, while the makespan does not increase much. 
 
4.6.2 Insights 
 
Insight 1. We should construct a system with one or two seru to minimize the maximum tardiness of the seru system. 
 
Table 10 
The best solution 

M Z Solution 

 
 
 
 
6 

5 [(1-5)]-‘1-4 6 5’ 
6 [(1,2,3),(6,4,5)]-‘2 4 5/1 3 6’ 
8 [(4,6,5,2),(3,8,7,1)]-‘1 3 6/2 4 5’ 
10 [(10,2,4-6),(1,3,7-9)]-‘1 3 6/2 4 5’ 
15 [(1-15)]-‘1-4 6 5’ 
20 [(1-20)]-‘1-4 6 5’ 

 

10 

 

5 [(1-5)]-‘1-4 6 5 8 7 9 10’ 
6 [(6,4,5),(3,2,1)]-‘1 3 6 7 10/2 4 5 8 9’ 
8 [(1,3,7,8),(2,4,5,6)]-‘2 4 5 7 9/1 3 6 8 10’ 
10 [(1-10)]-‘1-4 6 5 8 7 10 9’ 
15 [(1-15)]-‘1-4 6 5 7-10’ 
20 [(13,16,19,6,8),(10,11,12,14,15,18,4,5),(1,17,2,20,3,7,9)-‘4 8 10/1 3 5 9/2 6 7’] 

 
[(1,2,3),(6,4,5)] denotes seru formation. ‘2 4 5/1 3 6’ denotes seru scheduling. 
 
As can be seen from Table 10, the best solutions are mostly for one or two seru cases. Therefore, to make the maximum 
tardiness smaller, we can construct one or two seru. 

Insight 2. To minimize the maximum tardiness of the seru system, 
1 2

1 1 1

1 2
1 1 1 1 1 1

Z Z Z

i i iJ
i i i

M M M M M M

m k m k mJk
m k m k m k

x x x

y y y

= = =

= = = = = =

≈ ≈ ≈
  

  
 . 

 
As shown in Table 10, for the 6 workers and 6 batches, in the solutions obtained, there are 3 workers and 3 batches in each 
seru, and the ratio of the number of workers to the number of batches in each seru is the same as 1. Moreover, for 8 workers 
and 6 batches, each seru has 4 workers and 3 batches in the solutions obtained. Even many cases only form a seru. 
 
Insight 3. The maximum tardiness may remain unchanged when batch size increases. 
 
The maximum tardiness may remain unchanged when the batch size increases. As shown in Fig. 10 and Table 4, when the 
number of workers is 6, the maximum tardiness for the instances with 6 product batches, 7 product batches, and 10 product 
batches is all obtained in batch 6. So, we can consider producing more batches, and the maximum tardiness will not change. 
 
5. Conclusions 
 
This article investigates how to minimize maximum tardiness as much as possible. The paper’s contribution is as follows. 
Firstly, we propose a seru production model that minimizes the maximum tardiness. Secondly, in this paper, the non-linear 
seru production model with minimizing the maximum tardiness is split into a seru formation model and a linear seru 
scheduling model. Moreover, the optimal solution is obtained using an exact algorithm. Thirdly, a cooperative algorithm is 
proposed to deal with larger-scale problems. The GA is designed for the seru formation problem in the cooperative algorithm, 
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and the QL-seru algorithm is used to deal with the seru scheduling problem. We have innovatively designed the Q-seru table 
and proposed two state trimming rules to save computational time. Finally, we conducted many experiments to demonstrate 
the advantages of CAGARL and discussed significantly reducing the maximum tardiness by implementing the seru system. 
 
There are still some issues that need to be investigated. Firstly, consider the setup time for the batch. Secondly, consider 
reducing delay costs by implementing the seru production system in the future. Finally, the application of deep reinforcement 
learning in the seru system deserves further study. 
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