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 In practical scheduling problems, some factors such as depreciation cost, green costs like the 
amount of energy consumption or carbon emission, other resources consumption, raw material cost, 
etc., are not explicitly related to the machine processing times. Most of these factors can be 
generally considered as machine costs. Considering the machine cost as another objective alongside 
the other classical time-driven decision objectives can be an attractive work in scheduling 
problems. However, this subject has not been discussed thoroughly in the literature for the case the 
machines have fixed processing costs. This paper investigates a general unrelated parallel machine 
scheduling problem with the machine processing cost. In this problem, it is assumed that processing 
a job on a machine incurs a particular cost in addition to processing time. The considered objectives 
are the makespan and the total cost, which are minimized simultaneously to obtain Pareto optimal 
solutions. The efficacy of the mathematical programming approach to solve the considered problem 
is evaluated rigorously in this paper. In this respect, a multiobjective solution procedure is proposed 
to generate a set of appropriate Pareto solutions for the decision-maker based on the mathematical 
programming approach. In this procedure, the ϵ-constraint method is first used to convert the bi-
objective optimization problem into single-objective problems by transferring the makespan to the 
set of constraints. Then, the single-objective problems are solved using the CPLEX software. 
Moreover, some strategies are also used to reduce the solution time of the problem. At the end of 
the paper, comprehensive numerical experiments are conducted to evaluate the performance of the 
proposed multiobjective solution procedure. A vast range of problem sizes is selected for the test 
problems, up to 50 machines and 500 jobs. Furthermore, some rigorous analyses are performed to 
significantly restrict the patterns of generating processing time and cost parameters for the problem 
instances. The experimental results demonstrate the mathematical programming solution 
approach's efficacy in solving the problem. It is observed that even for large-scale problems, a 
diverse set of uniformly distributed Pareto solutions can be generated in a reasonable time with the 
gaps from the optimality less than 0.03 most of the time. 
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1. Introduction 

Scheduling, in simple words, is the assignment of resources to activities over time. Scheduling problems are defined in 
machine environments such as single machines, parallel machines, flow shops, and job shops with different time-driven 
objectives, mostly related to job completion times (Pinedo, 2016). These objectives include minimizing the makespan, 
minimizing the total completion time, total tardiness minimization, minimizing the number of tardy jobs, etc. In real-world 
environments, however, there exist some other decision criteria for the scheduling problems such as depreciation cost, the 
amount of energy consumed, water or other natural resources consumption, the extent of required material, defection/quality 
cost, etc., that are not explicitly related to the processing times and can be considered as the machine costs. Although 
sometimes the word “cost” is used to name time-driven objectives such as the earliness/tardiness cost, they are different from 
the intended machine cost, which is not a function of the processing times. Leung et al. (2012) and Lee et al. (2014) pointed 
out that the time-driven criteria are mostly the customer’s objectives because they are interested in their orders' early or on-
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time completion times. Meanwhile, Leung et al. (2012) and Lee et al. (2014) mentioned that  the machine cost is a type of the 
service provider’s objectives since it expresses production costs. Furthermore, the machine cost is also a useful concept to 
model sustainability-oriented costs of the production processes, such as energy consumption and carbon emission. From this 
point of view, the machine cost can be considered a green cost used in establishing green scheduling problems (Safarzadeh & 
Niaki, 2019). 
 
In the scheduling literature, the machine cost mentioned above can be generally categorized into four classes: 1) machine 
activation cost, 2) controllable processing cost, 3) fixed processing cost, and 4) time-dependent processing cost. The first class 
is related to the fixed cost of using a machine. This type of machine cost, in turn, can be classified into two sub-classes. In the 
first one, the cost is considered for the presence of the machine in the schedule, so the machine selection is also considered as 
a part of the scheduling problem. However, in the second sub-class, an activation cost is incurred when a machine in the 
scheduling horizon goes from an idle or turn-off state to an active state to process a job. Both types of the first class of machine 
cost are addressed several times in the scheduling literature. For the first sub-class, for example, see Dósa and Tan (2010), 
Xie et al. (2015), Li et al. (2018), Wang and Alidaee (2018), and Kong et al. (2020). Moreover, for the second sub-class, the 
research works such as Liang et al. (2015), Che et al. (2017), Nasiri et al. (2018), and Meng et al. (2019) can be mentioned. 
 
In the second class of the machine cost, the time of processing a job on a machine can be controlled through its processing 
cost, where shorter processing times are normally associated with selecting higher processing costs. Many authors such as 
Ding et al. (2016), Karhi and Shabtay (2018), Wu and Che (2019), Zhang et al. (2020), and Wei et al. (2022) discussed this 
type of job processing. 
 
In the third class of machine cost, processing a job on a machine is followed by a fixed specific cost  .However, the system's 
overall cost may vary according to the selected schedule, as the jobs can be performed in multiple routes, generally due to the 
presence of parallel resources with different costs. Indeed, this type of job processing flexibility permits the presence of the 
processing cost in the problem as a decision factor. Several researchers considered this type of processing cost in the literature 
(e.g., Leung et al., 2012; Yeh et al., 2015; Mokhtari & Hasani, 2017; Kononov et al., 2019; Hasani & Hosseini, 2020). 
Nonetheless, the literature on the fixed processing cost, which is also the context of the current study, is significantly scarcer 
than the machine activation cost and controllable processing cost. However, this type of machine cost may occur in many real 
cases in which there exist multiple parallel resources with different rates of cost for operation. 
 
The fourth class of machine cost is a newer type discussed in the scheduling literature. In this type of machine cost, the 
machine’s processing cost depends on the time the machine is used; hence, it is usually called the time-of-use (TOU) cost. 
This type of machine cost is typically utilized in establishing green scheduling problems, including TOU electricity tariffs 
(e.g., Zeng et al., 2018; Wang et al., 2020; Karimi et al., 2021; Heydar et al., 2021; Pan et al., 2022). 
 
It is evident that when the machine cost criterion is considered in a scheduling problem, a multi-criteria decision-making 
problem is normally established since at least a time criterion is taken into account in almost each scheduling problem. In 
some studies, a single decision criterion is held in the objective function, and the others are passed to the constraints set being 
limited by an upper/lower bound. Nevertheless, in most studies, both the machine cost criterion and a time-driven criterion 
are present in the problem as the problem aims to set a multiobjective optimization problem.  
 
The parallel machine scheduling problem is the simplest type that embeds the required flexibility for the third type of the 
machine cost aforementioned, i.e., the fixed processing cost. That is why most of the works that have considered this type of 
cost are established for this environment. In the parallel machine scheduling problem, there are some single-operation jobs to 
be processed by several parallel machines. This problem is generally classified into three types: identical, uniform, and 
unrelated parallel machine scheduling, where identical and uniform are special cases of unrelated environments (Pinedo, 
2016). In an unrelated parallel machine scheduling problem, the processing time of a job on a machine is independent of the 
other processing times. Similarly, it can be assumed in this type of problem that assigning a job to a machine incurs a fixed 
processing cost that is independent of the other processing costs or times. This enables one to consider the fixed processing 
cost for the problem as well. The studies addressing the fixed processing cost in a parallel machine scheduling problem are 
reviewed in detail in the next section. 
 
Mathematical programming is a well-known approach to model and solve scheduling problems. Although most of the 
scheduling problems are NP-hard, many are solvable using this approach, at least for a considerable segment of practical sizes. 
Moreover, the efficiency of using mathematical programming to solve scheduling problems is increasing due to improving 
solution techniques and the development of computer technologies (Ku & Beck, 2016). A significant advantage of 
mathematical programming is its ability to prove solution optimality. Furthermore, if the problem is not optimally solved, at 
least an upper bound for the optimal gap of the output solution can be reported by the solver. This value may be small enough 
such that the resulting solution can be used to approximate the optimal solution. Many researchers have utilized mathematical 
programming as the major solution approach to analyze scheduling problems in the past two decades. For example, Pan and 
Chen (2005) examined mixed-integer linear programming (MILP) formulations for a reentrant job shop scheduling problem. 
Ziaee and Sadjadi (2007) studied a flow shop scheduling problem with different objectives and constraints. They used 
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mathematical programming to model and solve the problems. Keha et al. (2009) evaluated different types of mathematical 
models to solve single-machine scheduling problems. Unlu and Mason (2010) compared MILP formulations to solve parallel 
machine scheduling problems. Naderi et al. (2014) proposed four MILP models for the problem of hybrid flow shop 
scheduling and compared their performance. Ku and Beck (2016) examined the performance of traditional MILP models for 
classical job shop scheduling problems. Similar research works have also been conducted for flexible job shop scheduling 
(Özgüven et al., 2010; Demir & Kürşat İşleyen, 2013) and flexible job shop scheduling with parallel batch processing 
machines (Ham, 2017). Moreover, Meng et al. (2019) proposed six MILP models for an energy-aware flexible job shop 
scheduling problem and analyzed their performances through numerical experiments.  
 
This paper addresses an unrelated parallel machine scheduling problem with fixed  processing costs. The parallel machines 
are unrelated, so the time and cost parameters are arbitrary to define a general problem. The considered objectives of the 
problem are the makespan and the total cost, which are minimized simultaneously. This study aims to rigorously analyze the 
efficacy of the mathematical programming approach to solve the addressed practical problem. In this regard, a multiobjective 
solution procedure is proposed to extract or estimate a uniformly distributed set of Pareto optimal solutions to the problem in 
a reasonable time. In this procedure, the constraint method is first utilized to transfer the makespan objective into the 
constraints set. Then, the mathematical programming approach is utilized to solve the induced single-objective problems. To 
reduce the solution time, two strategies that allow a small gap from the optimality are applied to solve the single-objective as 
well as to transfer the solutions between successive single-objective problems. The efficiency of the proposed mathematical 
programming solution procedure in solving the bi-objective problem is demonstrated through a comprehensive set of 
numerical experiments. The experiments are performed on a broad range of problem sizes up to 50 machines and 500 jobs. 
Meanwhile, a concrete analysis is carried out in the experiments to significantly simplify and restrict the candidate uniform 
distributions for generating time and cost parameters.  
 
According to the literature review presented in the next section and to the best of the authors’ knowledge, the only works that 
investigated the described problem in the literature are the ones in Leung et al. (2012), Lee et al. (2014), and Kononov et al. 
(2019). However, in these works, the structure of the problem objectives and the approach taken to solve the problem are 
different from the one proposed in the current paper. In other words, none of the above three articles have considered the 
makespan and the total processing cost to be optimized concurrently. Moreover, the performance of the mathematical 
programming approach has not been evaluated in solving their problems.  
 
The remainder of the paper is outlined as follows. Section 2 presents a related literature review for the considered problem. 
In Section 3, the problem is defined formally, and its mathematical formulation is given. Section 4 explains the multiobjective 
solution procedure to obtain the Pareto solutions. Section 5 is devoted to examining the efficacy of the proposed solution 
approach through comprehensive numerical experiments. Finally, Section 6 concludes the paper, where some directions are 
suggested for conducting future research. 
 
2. Literature review  
 
The previous section discussed four types of machine costs in the scheduling problems, i.e., machine activation, controllable 
processing, fixed processing, and time-dependent processing costs. This section reviews the research related to the parallel 
machine scheduling problem with fixed processing costs, which is the context of this study. Note that the studies in the 
literature are checked carefully to ignore the ones considering other types of machine costs. That is why some studies on 
parallel machine scheduling in the literature evaluating machine costs are not mentioned. Moreover, the relation of our 
research to the reviewed papers is discussed at the end of the section. Several researchers have addressed the fixed processing 
cost in the parallel machine scheduling problem in the literature. Kolahan & Kayvanfar (2009) analyzed a multiobjective 
unrelated parallel machine scheduling problem in which a total weighted sum of the machining costs, the earliness-tardiness 
penalties, and the makespan was minimized. They utilized a simulated annealing (SA) algorithm to solve the problem. Leung 
et al. (2012) addressed a bi-objective scheduling problem in an unrelated parallel machine environment. They assumed that 
performing a job on a machine is followed by a cost called the machine assignment cost. Their research objectives were to 
minimize the total cost and either the makespan or the total completion time. The authors considered two minimization 
strategies for the objectives: hierarchically and weighted sum. They analyzed the complexity of the problem for each. Ji et al. 
(2013) studied a green uniform parallel machine scheduling problem in which each machine has a processing speed and a 
resource consumption rate. In this problem, the makespan is restricted by an upper bound, and the total resource consumption, 
i.e., the total cost, is minimized as the objective function. The authors proved the NP-hardness of the problem and developed 
a heuristic method and a particle swarm optimization (PSO) algorithm to solve it. Lee et al. (2014) addressed an unrelated 
parallel machine scheduling problem with job processing costs. They considered two customer-driven objectives, i.e., the 
makespan and the total completion time, alongside two service-provider-related objectives, i.e., the total cost and the 
maximum machine cost. They proposed some heuristic algorithms for the two hierarchically-based problems: minimizing the 
maximum machine cost after minimizing the total completion time and minimizing the total cost after minimizing the 
makespan. Furthermore, Kononov et al. (2019) discussed extensions of the problems considered by Lee et al. (2014) and 
analyzed some approximation algorithms for the problems addressed. Yeh et al. (2015) investigated a problem similar to the 
problem in Ji et al. (2013) and compared the performances of three meta-heuristic algorithms, i.e., genetic algorithm (GA), 
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PSO, and simplified swarm optimization (SSO), by conducting some numerical experiments. Li et al. (2016) considered a 
type of green parallel machine scheduling problem in which the machines are similar concerning their processing times but 
have different cost rates, where the total processing cost should not exceed a threshold. They analyzed two problems through 
heuristic algorithms in which either the makespan or the total completion time is minimized. They evaluated the heuristics’ 
performances compared to the one of an exact method in some numerical experiments. Liu et al. (2016) investigated a uniform 
parallel machine scheduling problem with the possibility of outsourcing. Their work aimed to minimize the total cost, i.e., the 
sum of the total resource consumption and the total outsourcing cost. They considered an upper bound for the maximum 
tardiness of the entire job. The authors showed that the preemption case is polynomially solvable. Furthermore, they proposed 
a branch and bound algorithm to solve the non-preemption case exactly, along with a hybrid meta-heuristic to solve it 
approximately. Li et al. (2018) considered a uniform parallel machine scheduling problem in non-preemptive and preemptive 
cases. The problem objective was to minimize the makespan while a given budget limited the total machine cost. They 
proposed approximation algorithms to analyze the problems. Safarzadeh & Niaki (2019) investigated a uniform parallel 
machine scheduling problem in green scheduling. They proposed that the machines have specific green cost rates in addition 
to processing time rates or speeds. Moreover, the problem objective was simultaneously minimizing the makespan and total 
green cost. The authors applied the 𝜖-constraint approach to estimate Pareto optimal solutions through a heuristic approach. 
 
According to the above relevant literature review, one can observe that most of the papers mentioned above address identical 
or uniform parallel machine environments. However, we consider the unrelated parallel machine environment to analyze a 
more general problem. In fact, among the papers reviewed in this section, Kolahan and Kayvanfar (2009), Leung et al. (2012), 
Lee et al. (2014), and Kononov et al. (2019) considered an unrelated parallel machine scheduling problem. Nevertheless, the 
objective function in the former article differs from our study's. Meanwhile, although the three latter papers address the 
decision objectives of the makespan and total machine cost, which are considered in our problem as well, they utilized the 
lexicographic or hierarchical approach to optimize them. Moreover, none of the four mentioned papers has examined the 
performance of the mathematical programming approach to solve the addressed problems. 
 

3. Problem statement and modeling  
 

In this section, the problem is first defined formally. Then, the mathematical formulation of the problem in the form of a 
mixed-integer linear programming (MILP) model is presented. 
 

3.1.   Problem statement                                                    
 

The problem under investigation is an extension of the unrelated parallel machine scheduling problem. In the considered 
problem, there exist 𝑛 jobs to be processed on 𝑚 machines. Each job must be operated by one of these machines without 
preemption. Besides, each machine affords to process at most one job at a time. All the jobs and the machines are ready at the 
beginning of the scheduling horizon with no sequence-dependent setup times or costs. Processing a job 𝑗 on a machine 𝑖 takes 𝑝௜௝ units of time and incurs a cost of 𝑐௜௝ units. In addition, there are no predefined relations between the values of time or cost 
parameters, implying that the machines are unrelated. The question is how to assign the jobs to the machines to minimize the 
total cost (𝑇𝐶) and the completion time of all jobs, i.e., makespan (𝐶௠௔௫), simultaneously. 
 

3.2. Mathematical formulation 

Having defined the decision variables as  𝑥௜௝     :   A binary variable equals 1 if job 𝑗 is assigned to machine 𝑖; 0 otherwise. 𝐶௠௔௫ :   A real variable denoting the makespan, 

the bi-objective mathematical formulation of the problem is easily derived as 𝑚𝑖𝑛 𝐶௠௔௫ (1) 

𝑚𝑖𝑛෍෍𝑐௜௝𝑥௜௝௡
௝ୀଵ

௠
௜ୀଵ  

(2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

෍𝑝௜௝𝑥௜௝௡
௝ୀଵ ≤  𝐶௠௔௫      ;        ∀𝑖   (3) 

෍𝑥௜௝௠
௜ୀଵ = 1             ;               ∀𝑗 (4) 

𝐶௠௔௫ ≥ 0   ,   𝑥௜௝ ∈ ሼ0,1ሽ     ∀𝑖, 𝑗 (5) 
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The objectives to minimize the makespan and the total cost are stated in Expressions 1 and 2, respectively. Constraint 3 ensures 
that the makespan is greater than or equal to the total processing time of the jobs on any machine. Constraint 4 guarantees that 
each job is assigned exactly to one machine. Finally, the domains of the decision variables are defined in Constraints 5. 
 
4. Solving the problem 
 
Generally, several approaches have been proposed in the literature to solve multiobjective optimization problems. The most 
common are lexicographic ordering, weighted sum, and Pareto efficient methods (Branke et al., 2008). In the lexicographic 
ordering or the hierarchical optimization approach, the objectives are first ranked regarding their priorities, and then the 
problem is solved hierarchically concerning these ranks. The weighted sum is another approach in which all the objectives are 
aggregated with predefined weights to obtain a single objective function. These weights are set based on the objectives' scales 
and their importance degree. Finding Pareto efficient solutions is the last and the most comprehensive approach. A Pareto 
solution is a solution for which the value of an objective function cannot be improved unless the value of at least one of the 
other objectives is weakened. The Pareto solutions form a set of non-dominated answers allow a trade-off of one objective 
against the other (Ho et al., 2018). Fig. 1 illustrates the Pareto solutions to a minimization problem in red and green circles. 
Note that each solution of the two previous approaches is also a Pareto solution. In fact, it is sufficient to check only the Pareto 
solutions for rational decision-makers who adopt any decision-making approach. Pareto solutions provide diverse choices for 
the decision-maker with different trade-offs between the problem objectives. The final decision can be made by observing 
these solutions and regarding the other preferences and conditions (Branke et al., 2008). 
 
There exist two approaches to obtaining the Pareto solutions to an optimization problem: (1) weighting the objectives and (2) 
the 𝜖-constraint method (Branke et al., 2008). In the former, the objectives are first aggregated with variable weights. Then, 
the problem is solved for any specific values of the weights to obtain a Pareto solution for the original problem. Hence, some 
Pareto solutions can be attained by varying the weights’ values and solving the problems. The weakness of this method is that 
when the Pareto front is non-convex (in a minimization problem), some of the Pareto solutions cannot be identified. For 
example, in Fig. 1, the red points are not attainable by choosing any values of the weights because they are on a concave part 
of the Pareto front. In the 𝜖-constraint method, however, this shortcoming is eliminated, where each Pareto solution can 
theoretically be obtained. In this approach, all the objectives but one is transferred to a set of constraints by setting an upper 
(lower) bound parameter for each if it is minimized (maximized). When specific values are assigned to these bounds, a single-
objective optimization problem is specified. On the feasibility condition, its optimal solution is a Pareto solution for the 
original multiobjective optimization problem. The literature has proven that all of the existent Pareto solutions can be 
identified by varying the values of the bounds in this approach (Coello et al., 2007). 
 

 
 

Fig. 1. An example of Pareto solutions on a non-convex Pareto front 
 
 For a bi-objective minimization problem with the objective functions  𝑓ଵ  and  𝑓ଶ  at hand, two types of single-objective 
optimization problems can be generated using the 𝜖-constraint method. They are depicted as follows: 
 ቐ Min 𝑓ଵ   ,   Min 𝑓ଶሼ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑆𝑒𝑡 ሽ        ⇒           ቐ  Min𝑓ଵ   𝑓ଶ ≤ 𝑈ሼ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑆𝑒𝑡 ሽ         or         ቐ  Min𝑓ଶ𝑓ଵ ≤ 𝑈ሼ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑆𝑒𝑡 ሽ 
 
For each type of the above single-objective problem, when the parameter 𝑈 is varied in a proper domain, all of the Pareto 
solutions are attainable. It is worth mentioning that in this paper, the term Pareto and its related expressions are also used 
interchangeably for the approximated cases. 
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4.1. The MILP solution procedure 
 
The 𝜖-constraint method is utilized in this paper to obtain or estimate a diverse set of Pareto solutions to the bi-objective 
minimization problem shown as a MILP model in (1)-(5). The makespan objective is transferred to the set of constraints to 
this aim. After limiting  𝐶௠௔௫  by an upper bound 𝑇 , a single-objective optimization problem is obtained as shown in 
Expressions (6)-(9). A mathematical programming solver can solve this problem. The only decision variable in this 
formulation is 𝑥௜௝ with the previous definition.  
 𝑚𝑖𝑛෍෍𝑐௜௝𝑥௜௝௡

௝ୀଵ
௠
௜ୀଵ  

(6) 

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍𝑝௜௝𝑥௜௝௡
௝ୀଵ ≤  𝑇       ;           ∀𝑖 (7) 

෍𝑥௜௝௠
௜ୀଵ = 1             ;            ∀𝑗 (8) 

𝑥௜௝ ∈ ሼ0,1ሽ            ;             ∀𝑖, 𝑗 (9) 
 
In this model, no explicit representation of 𝐶௠௔௫ is needed, since 𝑇 in Constraint 7 is equivalent to the considered upper bound 
for 𝐶௠௔௫. Note that for each specific value of 𝑇, a single-objective optimization problem is defined, and on the feasibility 
condition, its optimal solution will be a Pareto solution for the bi-objective optimization problem at hand. In this case, the 
total cost objective of the bi-objective model has the same value as the objective value of the single-objective problem. 
Furthermore, the makespan objective that is less than or equal to 𝑇 can be calculated using the 𝑥௜௝ values. As the number of 
single-objective optimization problems depends on the chosen values of 𝑇 and hence can be infinite, only a finite number of 
such problems are solved to obtain a diverse set of Pareto solutions. Accordingly, it is required to generate a vector 𝑻, which 
contains proper values of 𝑇, to specify the single-objective problems to be solved. To this end, first, the two extreme problems 
attained from the original problem are solved, each of which retains one of the objective functions while ignoring the other 
one, to acquire the two extreme Pareto solutions. The extreme problems are named 𝐸ଵ and 𝐸ଶ whose objective functions are 
respectively the total cost (𝑇𝐶) and the makespan (𝐶௠௔௫). The values of the makespan in the optimal solutions of these 
problems yield respectively an upper and a lower bound for the 𝑻 elements, which are called 𝑇ாభ and 𝑇ாమ here. Moreover, the 
single-objective problem corresponding to the 𝑖th element of 𝑻 is called the intermediate problem 𝑃௜. Problem 𝐸ଵ is easily 
solved by assigning each job to the machine with the least corresponding processing cost. To find the optimal solution of  𝐸ଶ, 
the bi-objective MILP model is solved by ignoring the total cost objective function. As the diagram of the Pareto front is 
normally like a decreasing convex function (see Figure 2, for instance), the elements in 𝑻 are selected so that the differences 
between the successive elements are small at first and then become larger gradually. This helps Pareto solutions to distribute 
more uniformly along the Pareto front. To this end, the recurrence relation (10), which is suggested based on extensive 
numerical simulation experiments, is used to generate 𝑻 with 𝑘 elements. In this relation, 𝑇଴ is initialized by the value of  𝑇ாమ, 
based on which the other elements are found recursively. The experimental results obtained in the next section show that this 
approach of setting the values for 𝑇 results in affording the uniformity of the Pareto frontier. 
 𝑇௜ =  𝑖ଶ∑ 𝑗ଶ௞ାଵ௝ୀଵ ൫𝑇ாభ − 𝑇ாమ൯ +  𝑇௜ିଵ       ;         𝑖 = 1, … ,𝑘 + 1 

(10) 

 
4.2. Reducing the solution time 
 
Two strategies are taken in this section to reduce the required time for obtaining Pareto fronts. In the first strategy, the single-
objective optimization problems are solved successively so that the output solution of the previous problem can be set as a 
feasible solution for the next one. Since the elements in 𝑻 are arranged in an ascending order based on their indices, the 
feasible region of the 𝑃௜ problem is a subset of the 𝑃௜ାଵ’s feasible region, and hence, each solution of the former is feasible 
for the latter. In addition, the solution of 𝐸ଶ, whose makespan is used as a lower bound to generate the elements of  𝑻, is also 
feasible for 𝑃ଵ. Accordingly, to apply the first strategy, which is called the warm-start solution thereafter, first 𝐸ଶ and then 
the 𝑃௜ problems are solved in the ascending order of their indices to pass the solution of each problem to the next one as a 
feasible initial solution. The experimental results in the next section demonstrate the significant efficacy of such a solution 
approach in reducing the total required solution time.  As the second strategy to reduce the solution time, a small error is 
allowed in obtaining the optimal solutions to the single-objective problems. Indeed, the solver of a MILP model, provided 
that a feasible solution is found, always relates an optimal gap defined as  ஻௘௦௧ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ ି ௅௢௪௘௥ ஻௢௨௡ௗ஻௘௦௧ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘  for the current best 
solution during a run. This quantity presents an upper bound for the relative gap between the best-obtained solution from the 
optimality. The solver declares an acceptable optimal gap in solving the problems. If the value of the optimal gap is less than 
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the declared value, the solution procedure is terminated. In the current research, the considered allowable values for the 
optimal gaps vary between 0.005 to 0.03 depending on the size and complexity of the problem. Note that this declared gap is 
an upper bound for the real gap as it may have a lower (or even zero) value. Once again, in the numerical experiments that 
follow in the next section, it is observed that this negligence technique significantly reduces the required solution time.  
 
5. Computational results                                                        
 
In this section, the performance of the proposed MILP solution procedure is evaluated through extensive numerical 
experiments. To this end, a broad set of test problems to be solved is generated by a rigorous analysis that restricts and selects 
the generation patterns. Then, the generated problem instances are solved by defining small allowed optimal gaps, based on 
which the solution times are examined. We use the ILOG CPLEX 12.6 to solve the MILP problems. In this regard, the models 
are coded in Visual Studio 2017 via Concert Technology and C#.NET programming. The characteristics of the computer 
system used to run the experiments are CPU 3.6 GHz Core i3, 8 GB RAM, and operating system of Windows 10. However, 
as the employed Visual Studio is a 32-bit-based application, at most, 4 GB RAM was most usable for the experiments. 
Moreover, the required memory became larger than the available RAM several times in some instances. Hence, we used the 
capabilities of the CPLEX in compressing and transferring a part of the branching tree’s data to the node files in the hard disk. 
We refer the readers to the CPLEX 12.6.0 Manual on how to manage the out-of-memory problem.  
 
 
5.1. Data generation 
 
A numerical instance to be specified requires determining the number of jobs (𝑛), the number of unrelated parallel machines 
(𝑚), the processing times (𝑝௜௝), and the processing costs (𝑐௜௝). Here, the dimension of a problem is defined in terms of 𝑛 and 𝑚, which vary up to 500 jobs and 50 machines in Table 1.  
 
Table 1  
Selected dimensions for the test problems 

m  n  
size 1 size 2 size 3 size 4 size 5 

5  30 100 150 200 300 
10  50 100 150 250 300 
15  80 130 180 250 300 
20  80 100 150 200 300 
30  100 150 200 250 350 
40  150 200 250 300 400 
50  200 250 300 400 500 

 
Continuous uniform probability distributions, common in the literature, are used to generate the processing times and costs. 
Such a distribution is shown here by Uni[𝑎  𝑏], where 𝑎 and 𝑏 are respectively the lower and the upper bounds of the time or 
the cost. The following two propositions are used to normalize and subsequently restrict the candidate distributions. 
 
Proposition 1.  In the solution procedure stated in Section 4, suppose that all the optimal allowable gaps are set to zero, i.e., 
the single-objective optimization problems are solved to optimality. In this case, multiplying the entire processing times by a 
fixed positive value 𝛼 does not change the obtained Pareto solutions. This is also true for the processing costs when multiplied 
by a positive value 𝛽. Moreover, when a real value 𝑐 is added to all the processing costs, provided that all of them stay non-
negative, the Pareto solutions remain unchanged. Note that by a solution, we mean the way of assigning the jobs to the 
machines, not the values of times or costs that are dependent on the scale of the parameters. 
 
Proof. Multiplying the entire processing times by 𝛼 clearly holds the extreme solutions unchanged while 𝑇ாభ and  𝑇ாమ are 
scaled by the multiplier 𝛼. Subsequently, the 𝑻 vector is also scaled in the same way according to Relation (10). As in each 
intermediate problem, the parameter 𝑇 and all of the processing times are multiplied by 𝛼, the optimal solution and the optimal 
total cost remain unchanged, where the makespan is multiplied by 𝛼. Hence, the statement of the Proposition for processing 
times is proven. 
 
If the processing costs are all multiplied by 𝛽 and then added by 𝑐, the extreme solutions and the vector 𝑻 remain unchanged. 
Moreover, the makespan and all the time characteristics do not alter in each given problem schedule. However, the total cost 
is multiplied by 𝛽 and added by the constant value 𝑛𝑐. This implies that in solving each intermediate problem with the total 
cost objective, the ranking of the feasible solutions is not changed, and consequently, the optimal solution is kept unchanged. 
Accordingly, all the generated Pareto solutions remain unchanged; hence, the Proposition's statement for the processing costs 
is also proven. ⧠ 
 
Proposition 2. Suppose that some non-negative values are allowed for the optimal gaps in the solution procedure explained 
in Section 4. Let the relation for the optimal gap is redefined temporarily as ஻௘௦௧ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ ି ை௣௧௜௠௔௟ ை௕௝௘௖௧௜௩௘ ௩௔௟௨௘஻௘௦௧ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ , i.e., the 
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lower bound is substituted by the optimal objective value. Then, multiplying all the processing times or the processing costs 
by a positive constant value does not change the Pareto solutions obtained. However, shifting the processing costs by adding 
a negative (positive) value 𝑐 may change the solutions without degrading (upgrading) their quality (a solution has higher 
quality if it is closer to the Pareto optimal front.) 
 
Proof. Define the relative objective of a solution in a single-objective optimization problem as ௌ௢௟௨௧௜௢௡ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ ି ை௣௧௜௠௔௟ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ௌ௢௟௨௧௜௢௡ ை௕௝௘௖௧௜௩௘ ௏௔௟௨௘ . Consider the case of multiplying the time or cost parameters by a specified 
positive value. Obviously, the extreme problem 𝐸ଵ is not changed, as it is always solved optimally through the utilized simple 
assignment. In the extreme problem 𝐸ଶ, the solutions’ relative objectives remain unchanged since both the solution objective 
value and the optimal objective value are scaled similarly. Thus, having a fixed optimal allowable gap, the set of solutions 
that have relative objectives less than this gap remains unchanged, and hence the output solution of  𝐸ଶ does not change. Like 
Proposition 1, the time or cost parameters are scaled in the intermediate problems. Moreover, likewise the extreme problem 𝐸ଶ, 
the relative objective values of the solutions in the intermediate problems are not modified, subsequently, the solutions do not 
alter. Accordingly, the statement related to multiplying the time or cost parameters by positive values is proven. 
 
If the cost parameters are added by 𝑐, provided that the parameters remain non-negative, then the extreme solution 𝐸ଶ does 
not change because this problem does not consider the processing costs. Moreover, in the extreme problem 𝐸ଵ, the ranking of 
the processing costs is the same as before, so each job is assigned to the former machine and hence the extreme solution 
remains unchanged. Accordingly, 𝑇ாభand 𝑇ாమ , and subsequently, the 𝑻 vector is unchanged. However, in the intermediate 
problems, the objective values of the solutions are added by 𝑛𝑐. Therefore, in the relative objective expressions, the numerator 
is unchanged, while the denominator is added by 𝑛𝑐. If 𝑐 is positive, the values of the relative objectives are reduced. Hence, 
for a fixed optimal allowable gap, the solutions that have not been accepted previously may now be selected as the output of 
the solution procedure. If 𝑐 is negative, the statement is reversed, and the former solutions may now be refused. In conclusion, 
the solutions may be changed in both cases, but in the former case (when 𝑐 is positive), the quality of the solutions may be 
degraded. In contrast, in the latter (when 𝑐 is negative), the selected solutions may be more qualified. Accordingly, the proof 
of the Proposition is completed. ⧠ 
 
Note that the lower bound was substituted by the optimal objective value in the definition of the optimal gap to prove 
Proposition 2 rigorously. However, the utilized proof is also practically valid for the original definition of the optimal gap. 
This is because while the problem is being solved, the lower bound is very close to the optimal objective value according to 
the chosen small optimal gaps. 
 
Now the propositions are used to select the uniform distributions to generate time and cost parameters. As the optimal 
allowable gap is exploited to solve the MILP problems, the results obtained by Proposition 2 are utilized here. However, 
Proposition 1 can be useful if all the MILP problems are solved to optimality. According to Proposition 2, it is possible to 
multiply the domain of time or cost distributions by a positive value without affecting the essence of the generated problem 
instances. This is similar to the case that all the related random generated parameters are multiplied by a positive value, which 
does not change the resulting Pareto solutions regarding Propositions 2. Thus, a Uni[𝛼  100] distribution in which 𝛼 is a value 
to be determined is used to generate processing times. Here, three candidate values of 1, 10, and 50 are chosen for 𝛼 to produce 
high, moderate, and low variance processing time problems, respectively. 
 
The above argument is also valid for the processing cost distribution; moreover, there is an extra simplification. Suppose the 
domain of this distribution, and subsequently its generated quantities, are shifted by a constant value such that the lower bound 
of the domain becomes zero. In this case, the extreme solutions are not changed, and the intermediate Pareto solutions may 
be improved according to Proposition 2. Therefore, selecting a uniform distribution with the lower bound of zero and an 
arbitrary positive upper bound is sufficient to generate random processing costs. Here, the Uni[0  100] distribution is used to 
generate processing costs involved in the problem instances. 

 
5.2. Experiments and results 
 
According to the adopted procedure in Section 4, to solve a problem instance, it is required to determine the desired number 
of Pareto solutions (𝑁), the optimal allowable gap for the extreme problem 𝐸ଶ (gap 1), and the optimal allowable gaps for the 
intermediate problems 𝑃௜ (gap 2). We set 𝑁 = 20 for all problem instances, considering the extreme solutions. However, the 
number of resulting solutions may be slightly lower since some single-objective problems may have identical solutions. The 
optimal allowable gaps are selected in the interval 0.005 to 0.03 to have a reasonable solution time using preliminary 
experiments. Combining the problems in Table 1 with the three selected values for 𝛼, the problem classes are defined, based 
on which ten instances are generated randomly for each class to be solved with the specified optimal gaps. 
 
The results obtained from the main experiment are reported in Tables 2-5, in which each row is devoted to the instances of a 
problem class. In these tables, 𝑔𝑎𝑝1 and 𝑔𝑎𝑝2 correspond to the considered optimal allowable gaps for solving the extreme 
problem 𝐸ଶ and each of the intermediate problems 𝑃௜, 𝑖 = 1, … ,18, respectively. To control the solution time, a time limit of 
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600 seconds is set to solve each of the single-objective problems, i.e., the extreme or the intermediate problems. If the run 
time exceeds this time limit, then the solution of the single-objective problem is terminated, and the time limit is recorded as 
the solution time. Moreover, 𝐴𝑆𝑇1 and 𝐴𝑆𝑇2 represent the average solution time of the extreme problem and the average 
total solution time of the entire intermediate problems, respectively. Besides, 𝐴𝑇𝑆𝑇 is the average total solution time of the 
MILP solution procedure, which is the aggregate of the two previous indicators. Meanwhile, 𝑀𝑆𝑇1  and 𝑀𝑆𝑇2  are 
respectively the maximum solution time of the extreme problem and the maximum total solution time of the entire 
intermediate problems among the problem instances. Furthermore, 𝑀𝑇𝑆𝑇 and 𝑆𝐷𝑆𝑇 are respectively the maximum and the 
standard deviation of total solution time of the MILP solution procedure among the problem instances, and 𝑁ഥ denotes the 
average number of the resulted Pareto solutions. In these tables, the total number of solution terminations by the time limit in 
solving the problem instances is reported by 𝐹𝑎𝑖𝑙#. This indicator is a doublet in which the first element corresponds to the 
extreme problem, and the second one is for the intermediate problems. Accordingly, the values of these terms are out of 10 
and 180, respectively. Similarly, the doublet 𝐹𝐺𝑎𝑝 reports the average optimal gaps of the time-limit-exceeded instances. The 
first and the second terms correspond respectively to the extreme and the intermediate problems. Additionally, 𝐹𝑀𝑎𝑥 
represents the largest index in the vector  𝑻 that the solution time of its corresponding intermediate problem has exceeded the 
time limit at least for one instance. As explained later, this indicator shows that in which part of the Pareto front, the solution 
time mostly exceeds the time limit. 
 
Tables 2-5 show that, in general, the MILP solution procedure has efficiently earned the Pareto solutions with the defined 
optimal gaps. According to the values of 𝑀𝑇𝑆𝑇, the total solution time is lower than 2 hours for every problem instance, and 
in most cases, the assigned gaps are attained. However, as denoted by the 𝐹𝑎𝑖𝑙# indicator, in some rare single-objective 
problems, the time limit of 600s is exceeded. However, the resulted gaps are still close to the assigned gaps regarding the 
values of the 𝐹𝐺𝑎𝑝 indicator. Moreover, concerning the problem types, it is observed that the problems with lower variances 
of the processing time are harder to solve. Another finding is that increasing the number of jobs in a problem does not 
necessarily increase the solution time. Accordingly, some critical jobs result in the most challenging problem cases for a 
certain number of machines. Furthermore, regarding the 𝐹𝑀𝑎𝑥 indicator, it is evident that the first intermediate problems are 
mostly subject to exceeding the time limits. It will be discussed later that these problems are much harder to solve than the 
other intermediate problems. 
 

Fig. 2 - Pareto solutions generated for some problem instances 
 
In addition to the above numerical results, the estimated Pareto solutions for some problem instances are displayed in Fig. 2 
to give an insight into the solutions attained by the proposed solution procedure. In this figure, the uniformity of the solutions 
along with the Pareto fronts is evident, implying the effectiveness of using Eq. (10). Some additional experiments are also 
conducted to evaluate the impact of the solution time reduction strategies. As explained in Section 4.2, the warm start solution 
and the optimal gap declaration are the utilized strategies to solve the problems in shorter times. Accordingly, the MILP 
solution procedure was applied in some instances of two extra cases, i.e., with smaller optimal gaps and without the warm 
start approach. The results are presented in Table 6. In this table, five randomly generated instances are solved for each 
problem class. Some previously introduced indicators are used to compare the three solution strategies, i.e., ordinary, shorter 
optimal gap, and no warm start solutions. Besides, another indicator (𝑁𝑜𝐹𝑒#) is presented for the latter to show the number 
of intermediate problems for which a feasible solution cannot be found within the time limit. Note that the indicator 𝐹𝑎𝑖𝑙# 
for the no warm start approach is a single number representing the number of intermediate problems for which the solution 
time passed the time limit or a feasible solution was not found. In addition, the total solution times of the solution approaches, 
denoted by 𝐴𝑇𝑆𝑇 in Tables 2-5, are compared. In this regard, the relative total solution times of the two latter approaches with 
respect to the former are reported by the indicators 𝑅𝑒𝑙𝑆𝐺 and 𝑅𝑒𝑙𝑁𝑊, respectively. Based on these indicators, as well as the 
total time limit fails (𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑖𝑙#), it is evident that both strategies have had remarkable effects in decreasing the solution 
time. It is concluded that when the gaps are reduced a little in the optimal allowable gap strategy, the solution time of the 
procedure may be increased much. Moreover, if the warm start solution is not used, even a feasible solution may not be found 
at all for some intermediate problems. Meanwhile, the solution times of some others may exceed the time limit because of the 
initial search for a feasible solution or not having an initial qualified solution.
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Table 2  
Experimental results of applying the MILP solution procedure for the problem instances with 5 and 10 machines 𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑆𝐷𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑚𝑎𝑥  𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑆𝐷𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑚𝑎𝑥 

5 30 1 0.005 0.005 1.5 12.7 14.2 8.3 13.8 19.7 2.2 17.7
  

  10 50 1 0.005 0.005 1.0 14.9 15.9 1.3 17.4 18.5 1.6 19.6    
10 0.7 13.1 13.8 1.0 15.3 16.3 1.2 17.5

  
    10   1.2 14.7 15.9 2.0 16.5 17.7 1.3 19.2    

50 0.7 12.4 13.1 0.9 14.2 14.9 1.2 17.7
  

    50   1.1 14.4 15.5 1.7 16.3 17.5 1.3 18.8                  
                  

100 1 0.005 0.005 1.0 15.3 16.4 1.8 16.4 17.1 0.6 19.5
  

   100 1 0.005 0.01 1.6 17.6 19.3 3.9 20.8 23.0 2.2 19.6    
10 0.9 17.3 18.1 1.1 20.4 21.2 1.6 19.4

  
    10   4.3 25.0 29.3 15.8 48.1 63.9 12.9 19.1    

50 0.7 32.5 33.2 1.2 62.9 64.2 13.4 18.8
  

    50   1.4 67.2 68.7 2.0 118.4 119.8 26.1 18.1                  
                  

150 1 0.005 0.005 0.9 15.5 16.4 1.6 17.9 18.4 1.3 19.9
  

   150 1 0.005 0.01 2.4 27.0 29.4 4.0 61.0 63.3 13.1 19.5    
10 0.7 17.1 17.8 1.0 20.9 21.7 2.5 19.7

  
    10   7.3 47.2 54.5 14.9 82.6 90.7 18.1 19.3    

50 0.5 82.3 82.8 1.1 167.5 168.0 42.0 19.1
  

    50   61.5 462.6 524.1 600.1 1149.9 1312.7 471.9 17.9                  
                  

200 1 0.005 0.01 0.6 9.8 10.4 1.6 11.4 12.5 1.2 19.7
  

   250 1 0.005 0.01 4.9 46.8 51.7 15.0 75.8 79.3 18.4 19.6    
10 0.5 10.7 11.2 0.8 12.9 13.7 1.4 19.6

  
    10   3.4 231.6 235.0 8.4 675.2 678.2 219.0 19.4    

50 0.4 25.8 26.2 0.6 71.3 71.7 16.9 18.0
  

    50   2.9 1005.0 1007.8 9.6 2478.0 2481.2 646.1 17.9 (0,2) (-,0.012) 2               
                  

300 1 0.005 0.01 0.5 8.4 8.9 0.8 9.4 10.0 1.0 19.8
  

   300 1 0.005 0.01 2.0 56.9 58.9 6.1 109.8 111.3 33.6 19.5    
10 0.4 8.5 8.9 0.5 10.0 10.4 0.9 19.5

  
    10   1.6 315.1 316.8 3.3 692.2 694.8 199.0 19.4 (0,1) (-,0.012) 1 

50 0.4 10.5 10.9 0.4 12.5 13.0 1.4 18.3
  

    50   1.9 1134.4 1136.3 3.6 2120.5 2124.0 726.8 17.6 (0,6) (-,0.013) 3              
                  

 
 
Table 3  
Experimental results of applying the MILP solution  procedure for the problem instances with 15 and 20 machines 𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑆𝐷𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑀𝑎𝑥  𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑆𝐷𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑀𝑎𝑥 

15 80 1 0.005 0.01 1.9 13.6 15.4 3.1 15.1 17.5 1.3 19.8
  

  20 80 1 0.005 0.01 1.9 11.5 13.3 3.8 13.0 16.8 1.6 19.9    
10 3.6 16.3 19.8 8.4 20.2 28.5 3.6 19.0

  
    10   3.0 14.6 17.6 4.2 18.2 21.0 1.8 19.1    

50 26.4 45.7 72.0 198.0 76.8 224.0 55.3 18.8
  

    50   5.9 17.2 23.0 15.8 21.4 37.1 5.8 19.2                  
                  

80 10 0.005 0.01 26.4 45.7 72.0 0.0 0.0 4.9 986.1 18.8
  

   100 1 0.005 0.01 3.6 14.1 17.8 9.7 16.7 23.8 3.5 19.6    
10 26.7 33.3 60.0 62.0 62.0 118.7 31.8 18.4

  
    10   16.2 23.1 39.2 28.4 29.3 50.7 10.9 19.5    

50 600.2 483.8 1084.0 600.9 1490.8 2091.0 407.7 17.0 (10,0) (0.011,-)     50   9.2 32.3 41.6 15.4 45.6 60.3 10.4 18.8                  
                  

180 1 0.005 0.02 23.3 23.1 46.5 34.9 47.7 82.6 17.7 18.7
  

   150 1 0.01 0.02 26.0 21.8 47.8 56.7 54.3 98.8 29.2 18.9    
10 297.8 168.2 465.9 600.0 402.6 885.5 273.3 18.6

  
    10   154.3 120.9 275.2 600.1 389.1 989.2 320.0 18.6 (1,0) (0.012,-)  

50 4.1 230.5 234.7 16.1 740.3 742.9 191.4 17.7
  

    50   481.2 911.1 1392.3 600.2 1879.0 2479.1 602.9 17.4 (8,2) (0.024,0.025) 4               
                  

250 1 0.005 0.02 270.8 70.7 341.5 600.1 305.4 905.4 308.2 18.9 (1,0) (0.006,-)    200 1 0.01 0.02 64.5 32.9 97.4 268.1 77.6 293.6 75.5 18.5    
10 237.9 609.1 846.9 600.1 1007.7 1534.9 393.2 18.5

  
    10   90.7 214.1 304.8 328.5 390.6 719.1 177.5 18.5    

50 185.5 2120.5 2306.0 600.2 3471.3 4071.5 943.9 17.1 (0,11) (-,0.033) 5    50   2.9 368.7 371.5 4.6 756.0 760.1 178.5 16.8                  
                  

300 1 0.005 0.02 310.4 113.4 423.9 600.1 349.7 949.8 334.1 18.9
  

   300 1 0.01 0.02 47.7 112.5 160.2 136.9 215.2 283.4 92.0 19.0    
10 122.7 467.5 590.2 600.1 763.7 1306.6 360.1 18.6 (0,4) (-,0.023) 1    10   14.5 777.7 792.2 30.6 1267.1 1296.8 379.0 18.5 (0,7) (-,0.024) 2 
50 123.7 376.6 500.4 600.2 823.4 1064.2 340.4 17.3 (1,0) (0.006,-)     50   2.4 535.0 537.4 5.2 992.5 996.1 216.2 16.8                 
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Table 4  
Experimental results of applying the MILP solution procedure for the problem instances with 30 and 40 machines 𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑉𝑇𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑀𝑎𝑥  𝑚 𝑛 𝛼 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑉𝑇𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑀𝑎𝑥 

30 100 1 0.01 0.02 2.4 9.4 11.8 5.9 10.3 15.9 2.2 19.2 
  

  40 150 1 0.02 0.03 16.7 10.1 26.8 85.0 10.9 95.9 27.8 18.9    
10 5.1 12.2 17.3 12.6 14.0 24.6 2.7 18.8 

  
    10   31.5 22.9 54.4 75.2 31.0 99.8 29.6 18.5    

50 5.2 28.4 33.5 8.8 63.0 66.7 12.8 17.5 
  

    50   188.3 313.6 501.9 600.2 565.6 1165.8 309.8 17.7 (2,0) (0.029,-)                
                  

150 1 0.02 0.02 16.2 15.3 31.6 51.0 18.0 68.3 16.6 18.8 
  

   200 1 0.02 0.03 93.2 22.4 115.6 260.3 36.5 287.7 72.1 18.7    
10 60.5 64.5 125.0 139.1 186.7 281.0 79.6 18.9 

  
    10   157.1 85.7 242.8 600.2 141.6 741.8 245.7 18.0 (2,0) (0.028,-)  

50 1.4 59.7 61.1 5.0 99.6 101.2 22.0 18.2 
  

    50   3.1 129.9 133.0 12.9 300.5 305.9 83.7 17.5                  
                  

200 1 0.02 0.03 51.0 20.9 71.9 110.7 48.2 132.1 32.0 18.6 
  

   250 1 0.02 0.03 230.1 55.6 285.7 600.2 172.6 772.8 299.9 18.7 (3,0) (0.025,-)  
10 56.1 161.2 217.3 214.3 320.8 535.2 132.8 18.1 

  
    10   268.7 686.4 955.1 600.2 1209.3 1679.2 492.5 17.7 (1,3) (0.024,0.048) 1 

50 332.2 2280.6 2612.8 600.2 3274.1 3874.3 735.2 16.4 (4,18) (0.024,0.043) 6    50   205.7 1405.9 1611.7 601.0 1982.7 2229.2 453.9 16.9 (3,1) (0.037,0.033) 5               
                  

250 1 0.02 0.03 101.6 52.2 153.9 506.7 118.2 557.9 144.0 18.5 
  

   300 1 0.03 0.03 21.6 73.5 95.1 75.2 142.5 217.8 57.2 18.3    
10 24.2 408.9 433.2 49.1 761.8 773.4 243.5 18.4 

  
    10   20.5 855.2 875.7 38.2 1234.6 1266.2 225.4 17.9    

50 428.6 2043.3 2471.9 600.3 2767.8 3368.1 629.1 16.1 (7,12) (0.037,0.041) 6    50   540.8 4460.2 5001.0 601.0 5027.3 5628.3 366.2 16.3 (8,60) (0.036,0.05) 8               
                  

350 1 0.02 0.03 48.7 80.8 129.5 307.3 206.1 358.4 109.7 18.3 
  

   400 1 0.03 0.03 6.9 151.7 158.5 9.4 254.8 262.1 66.1 18.3    
10 12.6 688.8 701.4 24.5 1225.0 1233.6 347.8 18.0 (0,3) (-,0.036) 1    10   8.7 1359.0 1367.6 13.9 1860.0 1864.6 294.4 17.7 (0,2) (-,0.033) 2 
50 42.9 4113.2 4156.1 152.5 5100.8 5124.9 514.2 16.2 (0,53) (-,0.058) 6    50   0.5 1389.2 1389.7 0.6 1877.6 1878.0 245.6 15.9                                   

 
 
 
Table 5  
Experimental results of applying the MILP solution procedure for the problem instances with 50 machines 𝑚 𝑛 𝑎𝑙𝑝ℎ𝑎 𝑔𝑎𝑝1 𝑔𝑎𝑝2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐴𝑇𝑆𝑇 𝑀𝑆𝑇1 𝑀𝑆𝑇2 𝑀𝑇𝑆𝑇 𝑆𝐷𝑆𝑇 𝑁ഥ 𝐹𝑎𝑖𝑙# 𝐹𝐺𝑎𝑝 𝐹𝑀𝑎𝑥 

50 200 1 0.02 0.03 153.7 15.0 168.7 600.2 20.9 619.1 236.7 18.5 (2,0) (0.026,-)  
10 22.0 53.2 75.2 109.3 123.0 174.7 47.8 18.5 

  
 

50 63.0 86.1 149.0 600.2 151.9 691.5 193.0 16.9 (1,0) (0.028,-)                
 

250 1 0.03 0.03 234.7 30.5 265.3 600.4 76.7 677.0 264.7 18.1 (2,0) (0.033,-)  
10 30.1 222.9 252.9 87.2 358.5 409.7 93.9 18.2 

  
 

50 0.5 333.4 333.9 1.2 608.2 608.6 156.0 16.6 
  

               
 

 

300 1 0.03 0.03 313.8 102.7 416.5 600.2 202.6 732.3 247.2 18.2 (1,0) (0.031,-)  
10 100.7 858.0 958.7 315.9 1725.3 1743.2 392.3 17.9 (0,1) (-,0.036) 3 
50 0.5 915.0 915.5 0.7 1126.9 1127.3 175.9 16.0 

  
               
 

400 1 0.03 0.03 49.5 123.2 172.7 159.6 249.4 333.6 84.1 18.1 
  

 
10 39.2 1799.6 1838.8 69.6 2595.1 2638.1 365.5 17.9 (0,7) (-,0.037) 3 
50 0.7 1889.5 1890.2 2.0 2548.3 2548.9 322.4 16.2 (0,1) (-,0.031) 9               

 
500 1 0.03 0.03 13.7 198.9 212.6 35.6 313.5 327.8 62.5 18.4 

  
 

10 19.4 2008.0 2027.5 23.1 2330.9 2351.6 328.5 17.6 (0,15) (-,0.039) 3 
50 0.9 2862.5 2863.3 2.7 3479.7 3480.4 418.7 16.0 (0,5) (-,0.036) 9 
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Table 6   
Results for the evaluation of the solution reduction time strategies in the MILP solution approach 𝑚 𝑛 𝛼 Ordinary Solution  Shorter Gap Solution  No Warm Start  Rel. Solution Time 𝑔𝑎𝑝 1 𝑔𝑎𝑝 2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐹𝑎𝑖𝑙#  𝑔𝑎𝑝 1 𝑔𝑎𝑝 2 𝐴𝑆𝑇1 𝐴𝑆𝑇2 𝐹𝑎𝑖𝑙#  𝐴𝑆𝑇2 𝑁𝑜𝐹𝑒# 𝐹𝑎𝑖𝑙#  𝑅𝑒𝑙𝑆𝐺 𝑅𝑒𝑙𝑁𝑊 

5 100 1 0.005 0.005 1.03 13.12 
 

 0 0 2.29 17.45 
 

 4.22    1.4 0.4   
10 

  
0.81 14.57 

 
 

  
1.07 21.58 

 
 7.50    1.5 0.5   

50 
  

0.82 28.46 
 

 
  

6.83 48.57 
 

 269.64 2 2  1.9 9.2 
10 150 1 0.005 0.01 6.71 17.93 

 
 0 0.005 6.51 28.23 

 
 382.41 1 3  1.4 15.8   

10 
  

13.68 61.03 
 

 
  

18.88 64.42 
 

 1307.00 8 10  1.1 17.7   
50 

  
1.50 234.92 

 
 

  
350.68 530.27 (1,0)  1951.79 14 14  3.7 8.3         

 
     

       
15 250 1 0.005 0.02 497.04 40.91 (1,0)  0 0.01 418.24 223.89 (3,0)  966.79 7 7  1.2 2.7   

10 
  

282.66 192.15 (1,0)  
  

600.07 661.71 (5,2)  1934.02 15 15  2.7 4.7   
50 

  
76.78 1584.73 (0,6)  

  
600.15 2467.66 (5,11)  3352.08 22 22  1.8 2.1 

20 150 1 0.01 0.02 16.51 12.03 
 

 0.005 0.01 15.75 18.59 
 

 253.33 2 2  1.2 9.5   
10 

  
139.26 45.33 

 
 

  
248.13 108.24 (1,0)  1115.94 9 9  1.9 6.8   

50 
  

600.12 579.08 (5,1)  
  

373.69 1158.52 (3,1)  2330.25 11 15  1.3 2.5 
30 200 1 0.02 0.03 28.58 12.98 

 
 0.01 0.02 323.02 35.37 (1,0)  738.47 6 6  8.6 18.5   

10 
  

61.93 119.94 
 

 
  

600.17 361.95 (4,1)  1267.96 10 10  5.3 7.3   
50 

  
367.42 1752.84 (3,7)  

  
600.21 2414.07 (5,15)  3610.80 16 22  1.4 1.9 

40 300 1 0.03 0.03 30.68 44.61 
 

 0.02 0.02 393.39 100.06 (3,0)  1226.19 10 10  6.6 16.7   
10 

  
11.90 666.31 (0,2)  

  
105.05 1522.10 (0,7)  1373.51 8 8  2.4 2.0   

50 
  

441.84 2741.76 (3,10)  
  

485.42 3400.58 (4,16)  4588.49 15 30  1.2 1.6 
50 400 1 0.03 0.03 126.95 65.65 

 
 0.02 0.02 600.34 255.44 (5,1)  1135.00 9 9  4.4 6.6   

10 
  

25.32 938.25 
 

 
  

207.08 1759.89 (0,6)  2256.44 8 10  2.0 2.4   
50 

  
0.53 317.34 

 
 

  
0.80 977.65 

 
 3585.28 13 14  3.1 11.3 

Total Fail# 
     

(13,26)  
    

(40,60)  
  

218  
  

 

Table 7   
Detailed average solution times of the single-objective problems in some problem classes 𝑚 𝑛 𝛼 Extreme Problem      Intermediate Problems 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
5 100 1 1.09  1.06 0.63 0.92 0.73 0.74 0.60 0.69 0.64 0.43 0.48 0.41 0.34 0.42 0.40 0.26 0.28 0.32 0.25 
  10 0.57  0.98 1.05 0.89 0.70 0.75 0.81 0.57 0.79 0.58 0.46 0.51 0.45 0.41 0.37 0.40 0.29 0.28 0.32 
  50 0.39  3.08 1.81 1.98 1.32 1.10 1.45 0.93 0.91 0.64 0.55 0.68 0.50 0.79 0.31 0.42 0.22 0.23 0.37 
10 150 1 1.28  2.47 1.37 1.16 0.74 0.77 0.66 0.56 0.55 0.52 0.48 0.49 0.44 0.41 0.33 0.39 0.28 0.45 0.28 
  10 1.16  6.11 9.76 1.77 1.80 1.06 0.75 0.73 0.67 0.55 0.51 0.45 0.66 0.36 0.41 0.26 0.32 0.28 0.25 
  50 1.19  5.91 19.76 10.71 4.46 7.14 2.61 2.84 1.42 2.97 1.58 1.18 0.48 0.44 0.38 0.30 0.28 0.24 0.29 
15 250 1 1.12  2.77 0.94 0.62 0.42 0.41 0.35 0.30 0.34 0.35 0.36 0.28 0.29 0.37 0.33 0.34 0.22 0.26 0.34 
  10 0.74  11.67 1.51 1.79 1.91 1.00 0.88 0.39 0.38 0.36 0.33 0.41 0.37 0.38 0.34 0.47 0.29 0.22 0.31 
  50 0.53  65.00 37.00 8.30 12.52 12.01 8.71 6.31 5.99 3.24 0.55 0.41 0.40 0.29 0.29 0.29 0.25 0.30 0.28 
20 150 1 6.43  2.87 0.81 0.83 0.78 0.71 0.56 0.58 0.38 0.44 0.42 0.40 0.31 0.45 0.35 0.32 0.24 0.26 0.32 
  10 13.57  21.79 11.54 3.36 2.21 1.78 1.65 1.28 0.96 0.57 0.48 0.40 0.41 0.38 0.32 0.25 0.29 0.61 0.28 
  50 366.44  5.95 15.19 22.29 28.31 31.08 15.75 10.48 4.22 2.22 0.44 0.35 0.32 0.28 0.26 0.31 0.26 0.25 0.31 
30 200 1 13.79  5.41 2.41 0.94 0.51 0.52 0.43 0.50 0.50 0.38 0.38 0.34 0.32 0.30 0.30 0.27 0.29 0.48 0.22 
  10 12.97  21.45 4.47 2.34 7.22 1.18 1.13 0.67 0.51 0.39 0.42 0.39 0.89 0.30 0.28 0.28 0.30 0.29 0.24 
  50 15.78  297.25 237.68 224.11 123.96 81.99 27.66 9.19 1.22 1.18 0.39 0.30 0.27 0.27 0.29 0.27 0.28 0.32 0.26 
40 300 1 30.14  22.52 1.65 0.69 0.61 0.55 0.45 0.39 0.42 0.36 0.35 0.31 0.35 0.30 0.27 0.31 0.27 0.25 0.30 
  10 21.46  279.08 101.56 59.23 14.50 2.23 1.44 1.02 0.62 0.45 0.41 0.39 0.42 0.28 0.27 0.46 0.24 0.33 0.25 
  50 600.83  357.99 542.02 573.21 432.23 203.17 67.54 6.08 1.11 0.55 0.50 0.32 0.28 0.47 0.25 0.30 0.27 0.29 0.31 
50 400 1 55.74  68.40 3.69 1.08 0.79 0.79 0.46 0.52 0.56 0.58 0.49 0.47 0.35 0.28 0.34 0.27 0.30 0.34 0.26 
  10 24.29  192.86 160.83 47.16 36.83 3.26 1.44 1.04 0.65 0.65 0.59 0.62 0.40 0.27 0.52 0.26 0.32 0.30 0.33 
  50 0.54  68.26 67.16 20.82 3.88 2.74 1.76 1.36 1.44 1.33 1.12 0.38 0.36 0.30 0.30 0.31 0.32 0.30 0.29 
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Another finding observed in the experiments is the dissimilarity of solution times of the intermediate problems. In fact, the 
first intermediate problems are much more challenging to solve than the others. The average solution times of the intermediate 
problems for some problem classes are reported in Table 7 to illustrate this fact. Again, five randomly generated instances are 
solved from each selected problem class, and each row is devoted to a problem class. In addition, the average solution times 
of the intermediate problems in some problem classes in Table 7 are plotted in two charts in Fig. 3. 
 

Fig. 3. The average solution times of the intermediate problems in Table 7 for some problem classes 
 
Observing Table 7 and Fig. 3, it is evident that the solution times of the first intermediate problems are much longer than 
those of the others. However, in some problem classes, the solution times are not monotonically decreasing for the first several 
intermediate problems. Probably, it is due to the injection of the extreme solution to the first intermediate problem. Indeed, 
this job provided a handy solution for the problem, causing the actual solution time to be reduced. It seems that this effect has 
been transmitted to several consequent intermediate problems in some cases, mainly because these problems are close to each 
other in terms of the values of  𝑇 generated using Eq. (10). 
 
6. Conclusion and recommendations for future research 
 
In this paper, an unrelated parallel machine scheduling problem with machine processing costs was investigated. Simultaneous 
minimization of the makespan and the total cost was aimed at this problem. In this respect, a solution procedure based on the 
mathematical programming approach was developed to obtain a diverse, uniformly distributed set of Pareto optimal or near-
optimal solutions. Such a set of solutions provides valuable choices for the decision-maker to select the final solution of the 
problem based on the actual conditions and preferences. In the developed solution procedure, the 𝜖-constraint method was 
first used to transfer the makespan objective into the constraints set. Then, the induced single-objective problems were solved 
in a structured way using a MILP solver to generate the desired set of Pareto solutions, called the MILP solution procedure. 
While obtaining the optimal solution was not necessarily aimed, an accurate approximation of the optimal solution was found 
employing this approach. Moreover, the single-objective problems were solved sequentially, for which the solution of the 
previous problem was used as a starting solution to the next problem. These two strategies were used in the MILP solution 
procedure to reduce the total solution time. 
 
The efficacy of the MILP solution procedure was assessed through extensive computational experiments. To this end, test 
problems were generated with a broad range of dimensions, up to 50 machines and 500 jobs. Furthermore, two propositions 
were proven rigorously to analyze the candidate uniform probability distributions in generating the processing time and cost 
parameters. Using the propositions, it was concluded that the only parameter required to be determined to generate processing 
time and cost parameters was 𝛼 in Uni[𝛼  100] (the corresponding uniform distribution for processing times). Consequently, 
three distinct values were selected for this parameter to have different types of problem instances.   
 
The generated problem instances were solved using the CPLEX software through the proposed MILP solution procedure. A 
time limit of 600s and an acceptable optimal gap between 0.005 and 0.03 were set to solve each single-objective problem. 
The solution to a problem was terminated when either of the above two conditions was met. The results showed that the 
mathematical programming approach was significantly efficient for the studied problem since most of the single-objective 
problems were solved by the assigned optimal gap within the time limit. Moreover, in rare cases where the solution time 
exceeded the time limit, the average optimal gaps were still close to the intended optimal gaps. Furthermore, it was observed 
that the adopted multiobjective solution procedure results in a diverse and uniformly distributed set of Pareto solutions to the 
problem instances. Another finding was that obtaining a Pareto solution close to the makespan minimization part of the Pareto 
front was much harder to find than the others. In summary, it was concluded that mathematical programming is an efficient 
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approach to estimating the Pareto front of the bi-objective optimization problem through the proposed solution procedure, 
even for large-scale problem instances. 
 
For future studies, developing other multiobjective solution approaches such as using evolutionary algorithms and comparing 
their performance to the one of the current paper is suggested. Moreover, some different extra assumptions such as batch 
processing and the existence of sequence-dependent setup times and costs involved in scheduling problems can be taken into 
account for this problem. Fixed processing costs can also be investigated for the scheduling problems in more sophisticated 
flexible environments such as hybrid flow shops or flexible job shops. 
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