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In practical scheduling problems, some factors such as depreciation cost, green costs like the
amount of energy consumption or carbon emission, other resources consumption, raw material cost,
etc., are not explicitly related to the machine processing times. Most of these factors can be
generally considered as machine costs. Considering the machine cost as another objective alongside
the other classical time-driven decision objectives can be an attractive work in scheduling
problems. However, this subject has not been discussed thoroughly in the literature for the case the
machines have fixed processing costs. This paper investigates a general unrelated parallel machine
scheduling problem with the machine processing cost. In this problem, it is assumed that processing
a job on a machine incurs a particular cost in addition to processing time. The considered objectives
are the makespan and the total cost, which are minimized simultaneously to obtain Pareto optimal
solutions. The efficacy of the mathematical programming approach to solve the considered problem
is evaluated rigorously in this paper. In this respect, a multiobjective solution procedure is proposed
to generate a set of appropriate Pareto solutions for the decision-maker based on the mathematical
programming approach. In this procedure, the e-constraint method is first used to convert the bi-
objective optimization problem into single-objective problems by transferring the makespan to the
set of constraints. Then, the single-objective problems are solved using the CPLEX software.
Moreover, some strategies are also used to reduce the solution time of the problem. At the end of
the paper, comprehensive numerical experiments are conducted to evaluate the performance of the
proposed multiobjective solution procedure. A vast range of problem sizes is selected for the test
problems, up to 50 machines and 500 jobs. Furthermore, some rigorous analyses are performed to
significantly restrict the patterns of generating processing time and cost parameters for the problem
instances. The experimental results demonstrate the mathematical programming solution
approach's efficacy in solving the problem. It is observed that even for large-scale problems, a
diverse set of uniformly distributed Pareto solutions can be generated in a reasonable time with the
gaps from the optimality less than 0.03 most of the time.

© 2023 by the authors; licensee Growing Science, Canada

1. Introduction

Scheduling, in simple words, is the assignment of resources to activities over time. Scheduling problems are defined in
machine environments such as single machines, parallel machines, flow shops, and job shops with different time-driven
objectives, mostly related to job completion times (Pinedo, 2016). These objectives include minimizing the makespan,
minimizing the total completion time, total tardiness minimization, minimizing the number of tardy jobs, etc. In real-world
environments, however, there exist some other decision criteria for the scheduling problems such as depreciation cost, the
amount of energy consumed, water or other natural resources consumption, the extent of required material, defection/quality
cost, etc., that are not explicitly related to the processing times and can be considered as the machine costs. Although
sometimes the word “cost” is used to name time-driven objectives such as the earliness/tardiness cost, they are different from
the intended machine cost, which is not a function of the processing times. Leung et al. (2012) and Lee et al. (2014) pointed
out that the time-driven criteria are mostly the customer’s objectives because they are interested in their orders' early or on-
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time completion times. Meanwhile, Leung et al. (2012) and Lee et al. (2014) mentioned that the machine cost is a type of the
service provider’s objectives since it expresses production costs. Furthermore, the machine cost is also a useful concept to
model sustainability-oriented costs of the production processes, such as energy consumption and carbon emission. From this
point of view, the machine cost can be considered a green cost used in establishing green scheduling problems (Safarzadeh &
Niaki, 2019).

In the scheduling literature, the machine cost mentioned above can be generally categorized into four classes: 1) machine
activation cost, 2) controllable processing cost, 3) fixed processing cost, and 4) time-dependent processing cost. The first class
is related to the fixed cost of using a machine. This type of machine cost, in turn, can be classified into two sub-classes. In the
first one, the cost is considered for the presence of the machine in the schedule, so the machine selection is also considered as
a part of the scheduling problem. However, in the second sub-class, an activation cost is incurred when a machine in the
scheduling horizon goes from an idle or turn-off state to an active state to process a job. Both types of the first class of machine
cost are addressed several times in the scheduling literature. For the first sub-class, for example, see Dosa and Tan (2010),
Xie et al. (2015), Li et al. (2018), Wang and Alidaee (2018), and Kong et al. (2020). Moreover, for the second sub-class, the
research works such as Liang et al. (2015), Che et al. (2017), Nasiri et al. (2018), and Meng et al. (2019) can be mentioned.

In the second class of the machine cost, the time of processing a job on a machine can be controlled through its processing
cost, where shorter processing times are normally associated with selecting higher processing costs. Many authors such as
Ding et al. (2016), Karhi and Shabtay (2018), Wu and Che (2019), Zhang et al. (2020), and Wei et al. (2022) discussed this
type of job processing.

In the third class of machine cost, processing a job on a machine is followed by a fixed specific cost .However, the system's
overall cost may vary according to the selected schedule, as the jobs can be performed in multiple routes, generally due to the
presence of parallel resources with different costs. Indeed, this type of job processing flexibility permits the presence of the
processing cost in the problem as a decision factor. Several researchers considered this type of processing cost in the literature
(e.g., Leung et al., 2012; Yeh et al., 2015; Mokhtari & Hasani, 2017; Kononov et al., 2019; Hasani & Hosseini, 2020).
Nonetheless, the literature on the fixed processing cost, which is also the context of the current study, is significantly scarcer
than the machine activation cost and controllable processing cost. However, this type of machine cost may occur in many real
cases in which there exist multiple parallel resources with different rates of cost for operation.

The fourth class of machine cost is a newer type discussed in the scheduling literature. In this type of machine cost, the
machine’s processing cost depends on the time the machine is used; hence, it is usually called the time-of-use (TOU) cost.
This type of machine cost is typically utilized in establishing green scheduling problems, including TOU electricity tariffs
(e.g., Zeng et al., 2018; Wang et al., 2020; Karimi et al., 2021; Heydar et al., 2021; Pan et al., 2022).

It is evident that when the machine cost criterion is considered in a scheduling problem, a multi-criteria decision-making
problem is normally established since at least a time criterion is taken into account in almost each scheduling problem. In
some studies, a single decision criterion is held in the objective function, and the others are passed to the constraints set being
limited by an upper/lower bound. Nevertheless, in most studies, both the machine cost criterion and a time-driven criterion
are present in the problem as the problem aims to set a multiobjective optimization problem.

The parallel machine scheduling problem is the simplest type that embeds the required flexibility for the third type of the
machine cost aforementioned, i.e., the fixed processing cost. That is why most of the works that have considered this type of
cost are established for this environment. In the parallel machine scheduling problem, there are some single-operation jobs to
be processed by several parallel machines. This problem is generally classified into three types: identical, uniform, and
unrelated parallel machine scheduling, where identical and uniform are special cases of unrelated environments (Pinedo,
2016). In an unrelated parallel machine scheduling problem, the processing time of a job on a machine is independent of the
other processing times. Similarly, it can be assumed in this type of problem that assigning a job to a machine incurs a fixed
processing cost that is independent of the other processing costs or times. This enables one to consider the fixed processing
cost for the problem as well. The studies addressing the fixed processing cost in a parallel machine scheduling problem are
reviewed in detail in the next section.

Mathematical programming is a well-known approach to model and solve scheduling problems. Although most of the
scheduling problems are NP-hard, many are solvable using this approach, at least for a considerable segment of practical sizes.
Moreover, the efficiency of using mathematical programming to solve scheduling problems is increasing due to improving
solution techniques and the development of computer technologies (Ku & Beck, 2016). A significant advantage of
mathematical programming is its ability to prove solution optimality. Furthermore, if the problem is not optimally solved, at
least an upper bound for the optimal gap of the output solution can be reported by the solver. This value may be small enough
such that the resulting solution can be used to approximate the optimal solution. Many researchers have utilized mathematical
programming as the major solution approach to analyze scheduling problems in the past two decades. For example, Pan and
Chen (2005) examined mixed-integer linear programming (MILP) formulations for a reentrant job shop scheduling problem.
Ziaee and Sadjadi (2007) studied a flow shop scheduling problem with different objectives and constraints. They used
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mathematical programming to model and solve the problems. Keha et al. (2009) evaluated different types of mathematical
models to solve single-machine scheduling problems. Unlu and Mason (2010) compared MILP formulations to solve parallel
machine scheduling problems. Naderi et al. (2014) proposed four MILP models for the problem of hybrid flow shop
scheduling and compared their performance. Ku and Beck (2016) examined the performance of traditional MILP models for
classical job shop scheduling problems. Similar research works have also been conducted for flexible job shop scheduling
(Ozgiiven et al., 2010; Demir & Kiirsat Isleyen, 2013) and flexible job shop scheduling with parallel batch processing
machines (Ham, 2017). Moreover, Meng et al. (2019) proposed six MILP models for an energy-aware flexible job shop
scheduling problem and analyzed their performances through numerical experiments.

This paper addresses an unrelated parallel machine scheduling problem with fixed processing costs. The parallel machines
are unrelated, so the time and cost parameters are arbitrary to define a general problem. The considered objectives of the
problem are the makespan and the total cost, which are minimized simultaneously. This study aims to rigorously analyze the
efficacy of the mathematical programming approach to solve the addressed practical problem. In this regard, a multiobjective
solution procedure is proposed to extract or estimate a uniformly distributed set of Pareto optimal solutions to the problem in
a reasonable time. In this procedure, the constraint method is first utilized to transfer the makespan objective into the
constraints set. Then, the mathematical programming approach is utilized to solve the induced single-objective problems. To
reduce the solution time, two strategies that allow a small gap from the optimality are applied to solve the single-objective as
well as to transfer the solutions between successive single-objective problems. The efficiency of the proposed mathematical
programming solution procedure in solving the bi-objective problem is demonstrated through a comprehensive set of
numerical experiments. The experiments are performed on a broad range of problem sizes up to 50 machines and 500 jobs.
Meanwhile, a concrete analysis is carried out in the experiments to significantly simplify and restrict the candidate uniform
distributions for generating time and cost parameters.

According to the literature review presented in the next section and to the best of the authors’ knowledge, the only works that
investigated the described problem in the literature are the ones in Leung et al. (2012), Lee et al. (2014), and Kononov et al.
(2019). However, in these works, the structure of the problem objectives and the approach taken to solve the problem are
different from the one proposed in the current paper. In other words, none of the above three articles have considered the
makespan and the total processing cost to be optimized concurrently. Moreover, the performance of the mathematical
programming approach has not been evaluated in solving their problems.

The remainder of the paper is outlined as follows. Section 2 presents a related literature review for the considered problem.
In Section 3, the problem is defined formally, and its mathematical formulation is given. Section 4 explains the multiobjective
solution procedure to obtain the Pareto solutions. Section 5 is devoted to examining the efficacy of the proposed solution
approach through comprehensive numerical experiments. Finally, Section 6 concludes the paper, where some directions are
suggested for conducting future research.

2. Literature review

The previous section discussed four types of machine costs in the scheduling problems, i.e., machine activation, controllable
processing, fixed processing, and time-dependent processing costs. This section reviews the research related to the parallel
machine scheduling problem with fixed processing costs, which is the context of this study. Note that the studies in the
literature are checked carefully to ignore the ones considering other types of machine costs. That is why some studies on
parallel machine scheduling in the literature evaluating machine costs are not mentioned. Moreover, the relation of our
research to the reviewed papers is discussed at the end of the section. Several researchers have addressed the fixed processing
cost in the parallel machine scheduling problem in the literature. Kolahan & Kayvanfar (2009) analyzed a multiobjective
unrelated parallel machine scheduling problem in which a total weighted sum of the machining costs, the earliness-tardiness
penalties, and the makespan was minimized. They utilized a simulated annealing (SA) algorithm to solve the problem. Leung
et al. (2012) addressed a bi-objective scheduling problem in an unrelated parallel machine environment. They assumed that
performing a job on a machine is followed by a cost called the machine assignment cost. Their research objectives were to
minimize the total cost and either the makespan or the total completion time. The authors considered two minimization
strategies for the objectives: hierarchically and weighted sum. They analyzed the complexity of the problem for each. Ji et al.
(2013) studied a green uniform parallel machine scheduling problem in which each machine has a processing speed and a
resource consumption rate. In this problem, the makespan is restricted by an upper bound, and the total resource consumption,
i.e., the total cost, is minimized as the objective function. The authors proved the NP-hardness of the problem and developed
a heuristic method and a particle swarm optimization (PSO) algorithm to solve it. Lee et al. (2014) addressed an unrelated
parallel machine scheduling problem with job processing costs. They considered two customer-driven objectives, i.e., the
makespan and the total completion time, alongside two service-provider-related objectives, i.e., the total cost and the
maximum machine cost. They proposed some heuristic algorithms for the two hierarchically-based problems: minimizing the
maximum machine cost after minimizing the total completion time and minimizing the total cost after minimizing the
makespan. Furthermore, Kononov et al. (2019) discussed extensions of the problems considered by Lee et al. (2014) and
analyzed some approximation algorithms for the problems addressed. Yeh et al. (2015) investigated a problem similar to the
problem in Ji et al. (2013) and compared the performances of three meta-heuristic algorithms, i.e., genetic algorithm (GA),
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PSO, and simplified swarm optimization (SSO), by conducting some numerical experiments. Li et al. (2016) considered a
type of green parallel machine scheduling problem in which the machines are similar concerning their processing times but
have different cost rates, where the total processing cost should not exceed a threshold. They analyzed two problems through
heuristic algorithms in which either the makespan or the total completion time is minimized. They evaluated the heuristics’
performances compared to the one of an exact method in some numerical experiments. Liu et al. (2016) investigated a uniform
parallel machine scheduling problem with the possibility of outsourcing. Their work aimed to minimize the total cost, i.e., the
sum of the total resource consumption and the total outsourcing cost. They considered an upper bound for the maximum
tardiness of the entire job. The authors showed that the preemption case is polynomially solvable. Furthermore, they proposed
a branch and bound algorithm to solve the non-preemption case exactly, along with a hybrid meta-heuristic to solve it
approximately. Li et al. (2018) considered a uniform parallel machine scheduling problem in non-preemptive and preemptive
cases. The problem objective was to minimize the makespan while a given budget limited the total machine cost. They
proposed approximation algorithms to analyze the problems. Safarzadeh & Niaki (2019) investigated a uniform parallel
machine scheduling problem in green scheduling. They proposed that the machines have specific green cost rates in addition
to processing time rates or speeds. Moreover, the problem objective was simultaneously minimizing the makespan and total
green cost. The authors applied the e-constraint approach to estimate Pareto optimal solutions through a heuristic approach.

According to the above relevant literature review, one can observe that most of the papers mentioned above address identical
or uniform parallel machine environments. However, we consider the unrelated parallel machine environment to analyze a
more general problem. In fact, among the papers reviewed in this section, Kolahan and Kayvanfar (2009), Leung et al. (2012),
Lee et al. (2014), and Kononov et al. (2019) considered an unrelated parallel machine scheduling problem. Nevertheless, the
objective function in the former article differs from our study's. Meanwhile, although the three latter papers address the
decision objectives of the makespan and total machine cost, which are considered in our problem as well, they utilized the
lexicographic or hierarchical approach to optimize them. Moreover, none of the four mentioned papers has examined the
performance of the mathematical programming approach to solve the addressed problems.

3. Problem statement and modeling

In this section, the problem is first defined formally. Then, the mathematical formulation of the problem in the form of a
mixed-integer linear programming (MILP) model is presented.

3.1. Problem statement

The problem under investigation is an extension of the unrelated parallel machine scheduling problem. In the considered
problem, there exist n jobs to be processed on m machines. Each job must be operated by one of these machines without
preemption. Besides, each machine affords to process at most one job at a time. All the jobs and the machines are ready at the
beginning of the scheduling horizon with no sequence-dependent setup times or costs. Processing a job j on a machine i takes
p;;j units of time and incurs a cost of ¢;; units. In addition, there are no predefined relations between the values of time or cost
parameters, implying that the machines are unrelated. The question is how to assign the jobs to the machines to minimize the
total cost (TC) and the completion time of all jobs, i.e., makespan (Cp,q4y), sSimultaneously.

3.2. Mathematical formulation

Having defined the decision variables as

X;j : Abinary variable equals 1 if job j is assigned to machine i; 0 otherwise.
Cmax : A real variable denoting the makespan,

the bi-objective mathematical formulation of the problem is easily derived as

min Cpgx 1
m n (2)
min Cijxl]
i=1j=1
subject to
= (3)
Zpijxij < Cpax 5 Vi
j=1
= “)
i=1
Crax =0, x;; € {0,1} wvi,j %)
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The objectives to minimize the makespan and the total cost are stated in Expressions 1 and 2, respectively. Constraint 3 ensures
that the makespan is greater than or equal to the total processing time of the jobs on any machine. Constraint 4 guarantees that
each job is assigned exactly to one machine. Finally, the domains of the decision variables are defined in Constraints 5.

4. Solving the problem

Generally, several approaches have been proposed in the literature to solve multiobjective optimization problems. The most
common are lexicographic ordering, weighted sum, and Pareto efficient methods (Branke et al., 2008). In the lexicographic
ordering or the hierarchical optimization approach, the objectives are first ranked regarding their priorities, and then the
problem is solved hierarchically concerning these ranks. The weighted sum is another approach in which all the objectives are
aggregated with predefined weights to obtain a single objective function. These weights are set based on the objectives' scales
and their importance degree. Finding Pareto efficient solutions is the last and the most comprehensive approach. A Pareto
solution is a solution for which the value of an objective function cannot be improved unless the value of at least one of the
other objectives is weakened. The Pareto solutions form a set of non-dominated answers allow a trade-off of one objective
against the other (Ho et al., 2018). Fig. 1 illustrates the Pareto solutions to a minimization problem in red and green circles.
Note that each solution of the two previous approaches is also a Pareto solution. In fact, it is sufficient to check only the Pareto
solutions for rational decision-makers who adopt any decision-making approach. Pareto solutions provide diverse choices for
the decision-maker with different trade-offs between the problem objectives. The final decision can be made by observing
these solutions and regarding the other preferences and conditions (Branke et al., 2008).

There exist two approaches to obtaining the Pareto solutions to an optimization problem: (1) weighting the objectives and (2)
the e-constraint method (Branke et al., 2008). In the former, the objectives are first aggregated with variable weights. Then,
the problem is solved for any specific values of the weights to obtain a Pareto solution for the original problem. Hence, some
Pareto solutions can be attained by varying the weights’ values and solving the problems. The weakness of this method is that
when the Pareto front is non-convex (in a minimization problem), some of the Pareto solutions cannot be identified. For
example, in Fig. 1, the red points are not attainable by choosing any values of the weights because they are on a concave part
of the Pareto front. In the e-constraint method, however, this shortcoming is eliminated, where each Pareto solution can
theoretically be obtained. In this approach, all the objectives but one is transferred to a set of constraints by setting an upper
(lower) bound parameter for each if it is minimized (maximized). When specific values are assigned to these bounds, a single-
objective optimization problem is specified. On the feasibility condition, its optimal solution is a Pareto solution for the
original multiobjective optimization problem. The literature has proven that all of the existent Pareto solutions can be
identified by varying the values of the bounds in this approach (Coello et al., 2007).

@ Solutions on Concave Pareto Optimal Front

Other Pareto optimal model

S

Concave Pareto
Optimal Front

Fig. 1. An example of Pareto solutions on a non-convex Pareto front

For a bi-objective minimization problem with the objective functions f; and f, at hand, two types of single-objective
optimization problems can be generated using the e-constraint method. They are depicted as follows:

Minf; , Minf, Min f; Min f,
= fZ < U or fl < U
{ Constraints Set } { Constraints Set } { Constraints Set }

For each type of the above single-objective problem, when the parameter U is varied in a proper domain, all of the Pareto
solutions are attainable. It is worth mentioning that in this paper, the term Pareto and its related expressions are also used
interchangeably for the approximated cases.
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4.1. The MILP solution procedure

The e-constraint method is utilized in this paper to obtain or estimate a diverse set of Pareto solutions to the bi-objective
minimization problem shown as a MILP model in (1)-(5). The makespan objective is transferred to the set of constraints to
this aim. After limiting C,,,, by an upper bound T, a single-objective optimization problem is obtained as shown in
Expressions (6)-(9). A mathematical programming solver can solve this problem. The only decision variable in this
formulation is x;; with the previous definition.

m n (6)
mlnz Z Cl‘jxi]'

i=1 j=1
subject to
< (7
Z pijxl-]- <T 5 Vi
j=1
9 ®)
in]‘ =1 5 V]
i=1
Xij € {011} ; Vl!] (9)

In this model, no explicit representation of C,,, is needed, since T in Constraint 7 is equivalent to the considered upper bound
for C,,q,- Note that for each specific value of T, a single-objective optimization problem is defined, and on the feasibility
condition, its optimal solution will be a Pareto solution for the bi-objective optimization problem at hand. In this case, the
total cost objective of the bi-objective model has the same value as the objective value of the single-objective problem.
Furthermore, the makespan objective that is less than or equal to T can be calculated using the x;; values. As the number of
single-objective optimization problems depends on the chosen values of T and hence can be infinite, only a finite number of
such problems are solved to obtain a diverse set of Pareto solutions. Accordingly, it is required to generate a vector T, which
contains proper values of T, to specify the single-objective problems to be solved. To this end, first, the two extreme problems
attained from the original problem are solved, each of which retains one of the objective functions while ignoring the other
one, to acquire the two extreme Pareto solutions. The extreme problems are named E; and E, whose objective functions are
respectively the total cost (TC) and the makespan (Cyqy). The values of the makespan in the optimal solutions of these
problems yield respectively an upper and a lower bound for the T elements, which are called Tg, and Tg, here. Moreover, the
single-objective problem corresponding to the ith element of T is called the intermediate problem P;. Problem E; is easily
solved by assigning each job to the machine with the least corresponding processing cost. To find the optimal solution of E,
the bi-objective MILP model is solved by ignoring the total cost objective function. As the diagram of the Pareto front is
normally like a decreasing convex function (see Figure 2, for instance), the elements in T are selected so that the differences
between the successive elements are small at first and then become larger gradually. This helps Pareto solutions to distribute
more uniformly along the Pareto front. To this end, the recurrence relation (10), which is suggested based on extensive
numerical simulation experiments, is used to generate T with k elements. In this relation, Ty, is initialized by the value of Tf,,
based on which the other elements are found recursively. The experimental results obtained in the next section show that this
approach of setting the values for T results in affording the uniformity of the Pareto frontier.

i? . (10)
Ti= cimms e —Te) + Tiew 5 i=1,.,k+1
Zj:l]

4.2. Reducing the solution time

Two strategies are taken in this section to reduce the required time for obtaining Pareto fronts. In the first strategy, the single-
objective optimization problems are solved successively so that the output solution of the previous problem can be set as a
feasible solution for the next one. Since the elements in T are arranged in an ascending order based on their indices, the
feasible region of the P; problem is a subset of the P;,,’s feasible region, and hence, each solution of the former is feasible
for the latter. In addition, the solution of E,, whose makespan is used as a lower bound to generate the elements of T, is also
feasible for P;. Accordingly, to apply the first strategy, which is called the warm-start solution thereafter, first E;, and then
the P; problems are solved in the ascending order of their indices to pass the solution of each problem to the next one as a
feasible initial solution. The experimental results in the next section demonstrate the significant efficacy of such a solution
approach in reducing the total required solution time. As the second strategy to reduce the solution time, a small error is

allowed in obtaining the optimal solutions to the single-objective problems. Indeed, the solver of a MILP model, provided
Best Objective Value — Lower Bound

that a feasible solution is found, always relates an optimal gap defined as for the current best

Best Objective Value
solution during a run. This quantity presents an upper bound for the relative gap between the best-obtained solution from the
optimality. The solver declares an acceptable optimal gap in solving the problems. If the value of the optimal gap is less than
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the declared value, the solution procedure is terminated. In the current research, the considered allowable values for the
optimal gaps vary between 0.005 to 0.03 depending on the size and complexity of the problem. Note that this declared gap is
an upper bound for the real gap as it may have a lower (or even zero) value. Once again, in the numerical experiments that
follow in the next section, it is observed that this negligence technique significantly reduces the required solution time.

5. Computational results

In this section, the performance of the proposed MILP solution procedure is evaluated through extensive numerical
experiments. To this end, a broad set of test problems to be solved is generated by a rigorous analysis that restricts and selects
the generation patterns. Then, the generated problem instances are solved by defining small allowed optimal gaps, based on
which the solution times are examined. We use the ILOG CPLEX 12.6 to solve the MILP problems. In this regard, the models
are coded in Visual Studio 2017 via Concert Technology and C#.NET programming. The characteristics of the computer
system used to run the experiments are CPU 3.6 GHz Core i3, 8 GB RAM, and operating system of Windows 10. However,
as the employed Visual Studio is a 32-bit-based application, at most, 4 GB RAM was most usable for the experiments.
Moreover, the required memory became larger than the available RAM several times in some instances. Hence, we used the
capabilities of the CPLEX in compressing and transferring a part of the branching tree’s data to the node files in the hard disk.
We refer the readers to the CPLEX 12.6.0 Manual on how to manage the out-of-memory problem.

5.1. Data generation

A numerical instance to be specified requires determining the number of jobs (1), the number of unrelated parallel machines
(m), the processing times (p;;), and the processing costs (c;;). Here, the dimension of a problem is defined in terms of n and
m, which vary up to 500 jobs and 50 machines in Table 1.

Table 1
Selected dimensions for the test problems
n

" size 1 size 2 size 3 size 4 size 5
5 30 100 150 200 300
10 50 100 150 250 300
15 80 130 180 250 300
20 80 100 150 200 300
30 100 150 200 250 350
40 150 200 250 300 400
50 200 250 300 400 500

Continuous uniform probability distributions, common in the literature, are used to generate the processing times and costs.
Such a distribution is shown here by Uni[a b], where a and b are respectively the lower and the upper bounds of the time or
the cost. The following two propositions are used to normalize and subsequently restrict the candidate distributions.

Proposition 1. In the solution procedure stated in Section 4, suppose that all the optimal allowable gaps are set to zero, i.e.,
the single-objective optimization problems are solved to optimality. In this case, multiplying the entire processing times by a
fixed positive value a does not change the obtained Pareto solutions. This is also true for the processing costs when multiplied
by a positive value 8. Moreover, when a real value c is added to all the processing costs, provided that all of them stay non-
negative, the Pareto solutions remain unchanged. Note that by a solution, we mean the way of assigning the jobs to the
machines, not the values of times or costs that are dependent on the scale of the parameters.

Proof. Multiplying the entire processing times by a clearly holds the extreme solutions unchanged while T, and Tg, are
scaled by the multiplier @. Subsequently, the T vector is also scaled in the same way according to Relation (10). As in each
intermediate problem, the parameter T and all of the processing times are multiplied by a, the optimal solution and the optimal
total cost remain unchanged, where the makespan is multiplied by a. Hence, the statement of the Proposition for processing
times is proven.

If the processing costs are all multiplied by £ and then added by c, the extreme solutions and the vector T remain unchanged.
Moreover, the makespan and all the time characteristics do not alter in each given problem schedule. However, the total cost
is multiplied by B and added by the constant value nc. This implies that in solving each intermediate problem with the total
cost objective, the ranking of the feasible solutions is not changed, and consequently, the optimal solution is kept unchanged.
Accordingly, all the generated Pareto solutions remain unchanged; hence, the Proposition's statement for the processing costs
is also proven. O

Proposition 2. Suppose that some non-negative values are allowed for the optimal gaps in the solution procedure explained
est Objective Value — Optimal Objective value .
, Le., the

. . . . . . B
in Section 4. Let the relation for the optimal gap is redefined temporarily as ——
Best Objective Value
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lower bound is substituted by the optimal objective value. Then, multiplying all the processing times or the processing costs
by a positive constant value does not change the Pareto solutions obtained. However, shifting the processing costs by adding
a negative (positive) value ¢ may change the solutions without degrading (upgrading) their quality (a solution has higher
quality if it is closer to the Pareto optimal front.)

Proof. Define the relative objective of a solution in a single-objective optimization problem as
Solution Objective Value — Optimal Objective Value

Solution Objective Value
positive value. Obviously, the extreme problem E; is not changed, as it is always solved optimally through the utilized simple
assignment. In the extreme problem E,, the solutions’ relative objectives remain unchanged since both the solution objective
value and the optimal objective value are scaled similarly. Thus, having a fixed optimal allowable gap, the set of solutions
that have relative objectives less than this gap remains unchanged, and hence the output solution of E, does not change. Like
Proposition 1, the time or cost parameters are scaled in the intermediate problems. Moreover, likewise the extreme problem E,,
the relative objective values of the solutions in the intermediate problems are not modified, subsequently, the solutions do not
alter. Accordingly, the statement related to multiplying the time or cost parameters by positive values is proven.

. Consider the case of multiplying the time or cost parameters by a specified

If the cost parameters are added by c, provided that the parameters remain non-negative, then the extreme solution E, does
not change because this problem does not consider the processing costs. Moreover, in the extreme problem E;, the ranking of
the processing costs is the same as before, so each job is assigned to the former machine and hence the extreme solution
remains unchanged. Accordingly, Ty, and Tg,, and subsequently, the T vector is unchanged. However, in the intermediate
problems, the objective values of the solutions are added by nc. Therefore, in the relative objective expressions, the numerator
is unchanged, while the denominator is added by nc. If ¢ is positive, the values of the relative objectives are reduced. Hence,
for a fixed optimal allowable gap, the solutions that have not been accepted previously may now be selected as the output of
the solution procedure. If ¢ is negative, the statement is reversed, and the former solutions may now be refused. In conclusion,
the solutions may be changed in both cases, but in the former case (when c is positive), the quality of the solutions may be
degraded. In contrast, in the latter (when c is negative), the selected solutions may be more qualified. Accordingly, the proof
of the Proposition is completed. O

Note that the lower bound was substituted by the optimal objective value in the definition of the optimal gap to prove
Proposition 2 rigorously. However, the utilized proof is also practically valid for the original definition of the optimal gap.
This is because while the problem is being solved, the lower bound is very close to the optimal objective value according to
the chosen small optimal gaps.

Now the propositions are used to select the uniform distributions to generate time and cost parameters. As the optimal
allowable gap is exploited to solve the MILP problems, the results obtained by Proposition 2 are utilized here. However,
Proposition 1 can be useful if all the MILP problems are solved to optimality. According to Proposition 2, it is possible to
multiply the domain of time or cost distributions by a positive value without affecting the essence of the generated problem
instances. This is similar to the case that all the related random generated parameters are multiplied by a positive value, which
does not change the resulting Pareto solutions regarding Propositions 2. Thus, a Uni[a 100] distribution in which « is a value
to be determined is used to generate processing times. Here, three candidate values of 1, 10, and 50 are chosen for a to produce
high, moderate, and low variance processing time problems, respectively.

The above argument is also valid for the processing cost distribution; moreover, there is an extra simplification. Suppose the
domain of this distribution, and subsequently its generated quantities, are shifted by a constant value such that the lower bound
of the domain becomes zero. In this case, the extreme solutions are not changed, and the intermediate Pareto solutions may
be improved according to Proposition 2. Therefore, selecting a uniform distribution with the lower bound of zero and an
arbitrary positive upper bound is sufficient to generate random processing costs. Here, the Uni[0 100] distribution is used to
generate processing costs involved in the problem instances.

5.2. Experiments and results

According to the adopted procedure in Section 4, to solve a problem instance, it is required to determine the desired number
of Pareto solutions (N), the optimal allowable gap for the extreme problem E, (gap 1), and the optimal allowable gaps for the
intermediate problems P; (gap 2). We set N = 20 for all problem instances, considering the extreme solutions. However, the
number of resulting solutions may be slightly lower since some single-objective problems may have identical solutions. The
optimal allowable gaps are selected in the interval 0.005 to 0.03 to have a reasonable solution time using preliminary
experiments. Combining the problems in Table 1 with the three selected values for a, the problem classes are defined, based
on which ten instances are generated randomly for each class to be solved with the specified optimal gaps.

The results obtained from the main experiment are reported in Tables 2-5, in which each row is devoted to the instances of a
problem class. In these tables, gap1 and gap2 correspond to the considered optimal allowable gaps for solving the extreme
problem E, and each of the intermediate problems P;, i = 1, ...,18, respectively. To control the solution time, a time limit of
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600 seconds is set to solve each of the single-objective problems, i.e., the extreme or the intermediate problems. If the run
time exceeds this time limit, then the solution of the single-objective problem is terminated, and the time limit is recorded as
the solution time. Moreover, AST1 and AST2 represent the average solution time of the extreme problem and the average
total solution time of the entire intermediate problems, respectively. Besides, ATST is the average total solution time of the
MILP solution procedure, which is the aggregate of the two previous indicators. Meanwhile, MST1 and MST2 are
respectively the maximum solution time of the extreme problem and the maximum total solution time of the entire
intermediate problems among the problem instances. Furthermore, MTST and SDST are respectively the maximum and the
standard deviation of total solution time of the MILP solution procedure among the problem instances, and N denotes the
average number of the resulted Pareto solutions. In these tables, the total number of solution terminations by the time limit in
solving the problem instances is reported by Fail#. This indicator is a doublet in which the first element corresponds to the
extreme problem, and the second one is for the intermediate problems. Accordingly, the values of these terms are out of 10
and 180, respectively. Similarly, the doublet FGap reports the average optimal gaps of the time-limit-exceeded instances. The
first and the second terms correspond respectively to the extreme and the intermediate problems. Additionally, FMax
represents the largest index in the vector T that the solution time of its corresponding intermediate problem has exceeded the

time limit at least for one instance. As explained later, this indicator shows that in which part of the Pareto front, the solution
time mostly exceeds the time limit.

Tables 2-5 show that, in general, the MILP solution procedure has efficiently earned the Pareto solutions with the defined
optimal gaps. According to the values of MTST, the total solution time is lower than 2 hours for every problem instance, and
in most cases, the assigned gaps are attained. However, as denoted by the Fail# indicator, in some rare single-objective
problems, the time limit of 600s is exceeded. However, the resulted gaps are still close to the assigned gaps regarding the
values of the FGap indicator. Moreover, concerning the problem types, it is observed that the problems with lower variances
of the processing time are harder to solve. Another finding is that increasing the number of jobs in a problem does not
necessarily increase the solution time. Accordingly, some critical jobs result in the most challenging problem cases for a
certain number of machines. Furthermore, regarding the FMax indicator, it is evident that the first intermediate problems are

mostly subject to exceeding the time limits. It will be discussed later that these problems are much harder to solve than the
other intermediate problems.

' '
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Fig. 2 - Pareto solutions generated for some problem instances

In addition to the above numerical results, the estimated Pareto solutions for some problem instances are displayed in Fig. 2
to give an insight into the solutions attained by the proposed solution procedure. In this figure, the uniformity of the solutions
along with the Pareto fronts is evident, implying the effectiveness of using Eq. (10). Some additional experiments are also
conducted to evaluate the impact of the solution time reduction strategies. As explained in Section 4.2, the warm start solution
and the optimal gap declaration are the utilized strategies to solve the problems in shorter times. Accordingly, the MILP
solution procedure was applied in some instances of two extra cases, i.e., with smaller optimal gaps and without the warm
start approach. The results are presented in Table 6. In this table, five randomly generated instances are solved for each
problem class. Some previously introduced indicators are used to compare the three solution strategies, i.e., ordinary, shorter
optimal gap, and no warm start solutions. Besides, another indicator (NoFe#) is presented for the latter to show the number
of intermediate problems for which a feasible solution cannot be found within the time limit. Note that the indicator Fail#
for the no warm start approach is a single number representing the number of intermediate problems for which the solution
time passed the time limit or a feasible solution was not found. In addition, the total solution times of the solution approaches,
denoted by ATST in Tables 2-5, are compared. In this regard, the relative total solution times of the two latter approaches with
respect to the former are reported by the indicators RelSG and RelNW , respectively. Based on these indicators, as well as the
total time limit fails (Total Fail#), it is evident that both strategies have had remarkable effects in decreasing the solution
time. It is concluded that when the gaps are reduced a little in the optimal allowable gap strategy, the solution time of the
procedure may be increased much. Moreover, if the warm start solution is not used, even a feasible solution may not be found
at all for some intermediate problems. Meanwhile, the solution times of some others may exceed the time limit because of the
initial search for a feasible solution or not having an initial qualified solution.
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Table 2

Experimental results of applying the MILP solution procedure for the problem instances with 5 and 10 machines

m n a gapl gap2 AST1 AST2 ATST MST1 MST2 MTST SDST N  Fail# FGap Fmax m n a gapl gap2 AST1 AST2 ATST MST1 MST2 MTST SDST N Fail# FGap Fmax
530 1 0005 0005 15 127 142 83 138 197 22 177 10 50 1 0005 0005 1.0 149 159 13 174 185 16 196
10 07 131 138 1.0 153 163 12 175 10 12 147 159 20 165 177 13 192
50 07 124 131 09 142 149 12 177 50 L1 144 155 17 163 175 13 188
100 1 0.005 0.005 1.0 153 164 164 171 06 195 100 1 0005 001 1.6 176 193 39 208 230 22 196
10 09 173 181 204 212 1.6 194 10 43 250 293 158 481 639 129 19.1
50 07 325 332 629 642 134 188 50 14 672 687 20 1184 1198 26.1 18.1
150 1 0.005 0.005 09 155 164 179 184 13 199 150 1 0.005 001 24 270 294 40 610 633 131 195
10 07 17.1 17.8 209 217 25 197 10 73 472 545 149 826 907 181 193
50 0.5 823 828 167.5 168.0 42.0 19.1 50 61.5 462.6 524.1 600.1 1149.9 1312.7 4719 17.9
200 1 0005 001 06 98 104 16 114 125 12 197 250 1 0005 001 49 468 517 150 758 793 184 19.6
10 05 107 112 08 129 137 14 196 10 34 2316 2350 84 6752 6782 219.0 194
50 04 258 262 06 713 717 169 180 50 29 10050 1007.8 9.6 2478.0 24812 646.1 17.9 (02) (-0.012) 2
300 1 0005 001 05 84 89 08 94 100 1.0 198 300 1 0.005 001 20 569 589 61 1098 1113 336 195
10 04 85 89 05 100 104 09 195 10 1.6 3151 3168 33 6922 6948 199.0 194 (0,1) (-0.012) 1
50 04 105 109 04 125 130 14 183 50 1.9 11344 11363 3.6 21205 21240 7268 17.6 (0,6) (-0.013) 3
Table 3
Experimental results of applying the MILP solution procedure for the problem instances with 15 and 20 machines
m n a gapl gap2 ASTL AST2 ATST MSTL MST2 MTST SDST N Fail# FGap  FMax m n a gapl gap2z AST1 AST2 ATST MST1 MST2 MTST SDST N  Fail# FGap FMax
15 8 1 0005 001 19 136 154 31 151 175 13 198 20 80 1 0005 001 19 115 133 38 130 168 16 199
10 36 163 198 84 202 285 36 190 10 30 146 176 42 182 210 18 191
50 26.4 45.7 72.0 198.0 76.8 224.0 553 188 50 59 17.2 23.0 15.8 214 37.1 5.8 19.2
80 10 0.005 0.01 264 45.7 72.0 0.0 0.0 4.9 986.1 18.8 100 1 0.005 0.01 3.6 14.1 17.8 9.7 16.7 23.8 3.5 19.6
10 26.7 333 60.0 62.0 62.0 118.7 31.8 184 10 16.2  23.1 39.2 284 293 50.7 109 195
50 600.2 4838 10840 6009 14908 2091.0 407.7 17.0 (100) (0.011,) 50 92 323 416 154 456 603 104 188
180 1 0005 002 233 231 465 349 477 826 177 187 150 1 001 002 260 218 478 567 543 988 292 189
10 2078 1682 4659 600.0 4026 8855 2733 186 10 1543 1209 2752 600.1 389.1 9892 3200 186 (1,0)  (0.012-)
50 41 2305 2347 161 7403 7429 1914 17.7 50 4812 911 13923 6002 1879.0 2479.1 6029 174 (82) (0.024,0.025) 4
250 1 0005 002 2708 707 3415 6001 3054 9054 3082 189 (1,0) (0.006,) 200 1 001 002 645 329 974 2681 776 2936 755 185
10 2379  609.1 846.9 600.1 1007.7 15349 3932 185 10 90.7 214.1 3048 3285 390.6 719.1 1775 185
50 1855 21205 23060 6002 34713 40715 9439 171 (0,11) (-0.033) 5 50 29 3687 3715 46 7560 760.1 1785 1638
300 1 0005 002 3104 1134 4239 6001 3497 9498 3341 189 300 1 001 002 477 1125 1602 1369 2152 2834 920 190
10 1227 4675 5902 600.1 7637 13066 360.1 186 (04) (-0.023) | 10 145 7777 7922 306 1267.1 12968 379.0 185 (07)  (-0.024) 2
50 1237 3766 5004 6002 8234 10642 3404 173 (1,0) (0.006.) 50 24 5350 5374 52 9925 991 2162 168
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Table 4
Experimental results of applying the MILP solution procedure for the problem instances with 30 and 40 machines
m n a gapl gap2 AST1 AST2 ATST MST1 MST2 MTST VTST N  Fail# FGap FMax m n a gapl gap2 AST1 AST2 ATST MST1 MST2 MTST VTST N  Fail# FGap FMax
30 100 100l 002 24 94 118 59 103 159 22 192 20 150 1 002 003 167 101 268 80 109 959 278 189
10 51 122 173 126 140 246 27 188 315 229 544 752 310 998 296 185
50 52 284 335 88 630 667 128 175 50 1883 313.6 5019 6002 5656 11658 3098 177 (20)  (0.029,)
150 1 0.02 0.02 16.2 153 31.6 51.0 18.0 68.3 16.6 18.8 200 1 0.02 0.03 93.2 224 115.6 260.3 36.5 287.7 72.1 18.7
10 60.5 645 1250 139.1 1867 2810 79.6 18.9 10 157.1 857 2428 6002 1416 7418 2457 180 (2.0) (0.028.-)
50 1.4 59.7 61.1 5.0 99.6 101.2 22.0 18.2 50 3.1 129.9 133.0 12.9 300.5 305.9 83.7 17.5
200 1 0.02 0.03 51.0 209 71.9 110.7 48.2 132.1 320 18.6 250 1 0.02 0.03  230.1 55.6 285.7 600.2 172.6 772.8 2999 18.7 (3,0) (0.025,-)
10 56.1 161.2 2173 2143 320.8 535.2 132.8 18.1 10 268.7 686.4 955.1 600.2 12093 1679.2 4925 17.7 (1,3) (0.024,0.048) 1
50 3322 2280.6 26128 6002 32741 38743 7352 164 (4.18)  (0.024,0.043) 6 50 2057 14059 16117 601.0 19827 22292 4539 169 (3.1) (0.037.0033) 5
250 1 002 003 1016 522 1539 5067 1182 5579 1440 185 300 1 003 003 216 735 951 752 1425 2178 572 183
10 242 4089 4332 491 7618 7734 2435 184 10 205 8552 8757 382 12346 12662 2254 17.9
50 486 20433 24719 6003 2767.8 33681 6291 161 (7.12)  (0.037.0.041) 6 50 5408 44602 5001.0 6010 50273 56283 3662 163 (8.60) (0.0360.05 8
350 1 002 003 487 808 1295 3073 2061 3584 1097 183 400 1 003 003 69 1517 1585 94 2548 2621 661 183
10 126 6888 7014 245 12250 1233.6 3478 180 (0.3) (-0.036) 1 10 87 13590 1367.6 139 18600 1864.6 2944 17.7 (02)  (-0.033) 2
50 429 41132 4156.1 152.5 5100.8 51249 5142 162 (0,53) (-,0.058) 6 50 0.5 1389.2  1389.7 0.6 1877.6 1878.0 245.6 159
Table 5
Experimental results of applying the MILP solution procedure for the problem instances with 50 machines
m n alpha gapl gap2 AST1 AST2 ATST MST1 MST?2 MTST SDST N Fail# FGap FMax
50 200 1 0.02 0.03 153.7 15.0 168.7 600.2 209 619.1 236.7 185 (2,0 (0.026,-)
10 22.0 532 752 109.3 123.0 174.7 478 18.5
50 63.0 86.1 149.0 600.2 151.9 691.5 193.0 16.9 (1,0) (0.028,-)
250 1 0.03 0.03 2347 30.5 2653 600.4 76.7 677.0 264.7 18.1 (2,0) (0.033,7)
10 30.1 2229 2529 872 3585 409.7 93.9 18.2
50 0.5 3334 3339 12 608.2 608.6 156.0 16.6
300 1 0.03 0.03 313.8 102.7 416.5 6002 202.6 7323 2472 18.2 (1,0) (0.031,-)
10 100.7 858.0 958.7 315.9 1725.3 17432 3923 17.9 ©,1) (-,0.036) 3
50 0.5 915.0 915.5 0.7 1126.9 1127.3 175.9 16.0
400 1 0.03 0.03 495 1232 172.7 159.6 2494 3336 84.1 18.1
10 392 1799.6 1838.8 69.6 2595.1 2638.1 365.5 17.9 0,7) (-,0.037) 3
50 0.7 1889.5 1890.2 2.0 25483 25489 3224 16.2 (0,1) (-,0.031) 9
500 1 0.03 0.03 13.7 198.9 2126 356 3135 3278 62.5 184
10 19.4 2008.0 2027.5 23.1 2330.9 2351.6 3285 17.6 (0,15) (-,0.039) 3
50 0.9 2862.5 2863.3 2.7 3479.7 3480.4 4187 16.0 (0,5) (-,0.036) 9
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Table 6
Results for the evaluation of the solution reduction time strategies in the MILP solution approach

m

n

Ordinary Solution

Shorter Gap Solution

No Warm Start

Rel. Solution Time

gap 1 gap 2 AST1 AST?2 Fail# gap 1 gap 2 AST1 AST?2 Fail# AST?2 NoFe# Fail# RelSG RelNW
5 100 1 0.005 0.005 1.03 13.12 0 0 2.29 17.45 422 1.4 0.4
10 0.81 14.57 1.07 21.58 7.50 1.5 0.5
50 0.82 28.46 6.83 48.57 269.64 2 2 1.9 9.2
10 150 1 0.005 0.01 6.71 17.93 0 0.005 6.51 28.23 382.41 1 3 1.4 15.8
10 13.68 61.03 18.88 64.42 1307.00 8 10 1.1 17.7
50 1.50 234.92 350.68 530.27 (1,0) 1951.79 14 14 3.7 8.3
15 250 1 0.005 0.02 497.04 40.91 (1,0) 0 0.01 418.24 223.89 (3,0) 966.79 7 7 1.2 2.7
10 282.66 192.15 (1,0) 600.07 661.71 (5.2) 1934.02 15 15 2.7 4.7
50 76.78 1584.73 (0,6) 600.15 2467.66 (5.11) 3352.08 22 22 1.8 2.1
20 150 1 0.01 0.02 16.51 12.03 0.005 0.01 15.75 18.59 253.33 2 2 1.2 9.5
10 139.26 45.33 248.13 108.24 (1,0) 1115.94 9 9 1.9 6.8
50 600.12 579.08 (5,1) 373.69 1158.52 3.1 2330.25 11 15 1.3 2.5
30 200 1 0.02 0.03 28.58 12.98 0.01 0.02 323.02 35.37 (1.0) 738.47 6 6 8.6 18.5
10 61.93 119.94 600.17 361.95 (4,1) 1267.96 10 10 53 7.3
50 367.42 1752.84 (3.7 600.21 2414.07 (5.15) 3610.80 16 22 1.4 1.9
40 300 1 0.03 0.03 30.68 44.61 0.02 0.02 393.39 100.06 (3.0) 1226.19 10 10 6.6 16.7
10 11.90 666.31 (0,2) 105.05 1522.10 (0,7) 1373.51 8 8 2.4 2.0
50 441.84 2741.76 (3.10) 485.42 3400.58 (4.16) 4588.49 15 30 1.2 1.6
50 400 1 0.03 0.03 126.95 65.65 0.02 0.02 600.34 255.44 (5.1) 1135.00 9 9 4.4 6.6
10 25.32 938.25 207.08 1759.89 (0,6) 2256.44 8 10 2.0 2.4
50 0.53 317.34 0.80 9717.65 3585.28 13 14 3.1 113
Total Fail# (13.26) (40.60) 218
Table 7
Detailed average solution times of the single-objective problems in some problem classes
m n « Extreme Problem Intermediate Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 100 1 1.09 1.06 0.63 0.92 0.73 0.74 0.60 0.69 064 043 048 041 034 042 040 026 028 032 025
10 057 0.98 1.05 0.89 0.70 0.75 0.81 0.57 079 058 046 051 045 041 037 040 029 028 032
50 039 3.08 1.81 1.98 132 1.10 1.45 0.93 091 064 055 068 050 079 031 042 022 023 037
10 150 1 128 247 137 116 0.74 0.77 0.66 0.56 055 052 048 049 044 041 033 039 028 045 028
10 116 6.11 9.76 177 1.80 1.06 0.75 0.73 067 055 051 045 066 036 041 026 032 028 025
50 119 5.91 19.76 10.71 4.46 7.14 2.61 2.84 142 297 158 118 048 044 038 030 028 024 029
15 250 1 112 2.77 0.94 0.62 0.42 0.41 035 0.30 034 035 036 028 029 037 033 034 022 026 034
10 074 11.67 1.51 179 1.91 1.00 0.88 0.39 038 036 033 041 037 038 034 047 029 022 031
50 053 65.00 37.00 8.30 12.52 12.01 8.71 6.31 599 324 055 041 040 029 029 029 025 030 028
20 150 1 6.43 2.87 0.1 0.83 0.78 071 0.56 0.58 038 044 042 040 031 045 035 032 024 026 032
10 13.57 21.79 11.54 3.36 221 1.78 1.65 1.28 096 057 048 040 041 038 032 025 029 061 028
50  366.44 5.95 15.19 2229 28.31 31.08 1575 1048 422 222 044 035 032 028 026 031 026 025 031
30 200 |1 13.79 5.41 241 0.94 0.51 0.52 0.43 0.50 050 038 038 034 032 030 030 027 029 048 022
10 1297 21.45 4.47 2.34 7.22 1.18 1.13 0.67 051 039 042 039 08 030 028 028 030 029 024
50 1578 297.25  237.68 22411 12396  81.99 27.66  9.19 122 118 039 030 027 027 029 027 028 032 026
40 300 1 30.14 22.52 1.65 0.69 0.61 055 0.45 0.39 042 036 035 031 035 030 027 031 027 025 030
10 2146 279.08  101.56  59.23 14.50 223 1.44 1.02 062 045 041 039 042 028 027 046 024 033 025
50  600.83 357.99  542.02 57321 43223 20317  67.54 _ 6.08 111 055 050 032 028 047 025 030 027 029 031
50 400 1 55.74 68.40 3.69 1.08 0.79 0.79 0.46 0.52 056 058 049 047 035 028 034 027 030 034 026
10 2429 192.86  160.83  47.16 36.83 3.26 1.44 1.04 065 065 059 062 040 027 052 026 032 030 033
50 054 68.26 67.16 20.82 3.88 274 1.76 136 144 133 112 038 036 030 030 031 032 030 029
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Another finding observed in the experiments is the dissimilarity of solution times of the intermediate problems. In fact, the
first intermediate problems are much more challenging to solve than the others. The average solution times of the intermediate
problems for some problem classes are reported in Table 7 to illustrate this fact. Again, five randomly generated instances are
solved from each selected problem class, and each row is devoted to a problem class. In addition, the average solution times
of the intermediate problems in some problem classes in Table 7 are plotted in two charts in Fig. 3.
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Fig. 3. The average solution times of the intermediate problems in Table 7 for some problem classes

Observing Table 7 and Fig. 3, it is evident that the solution times of the first intermediate problems are much longer than
those of the others. However, in some problem classes, the solution times are not monotonically decreasing for the first several
intermediate problems. Probably, it is due to the injection of the extreme solution to the first intermediate problem. Indeed,
this job provided a handy solution for the problem, causing the actual solution time to be reduced. It seems that this effect has
been transmitted to several consequent intermediate problems in some cases, mainly because these problems are close to each
other in terms of the values of T generated using Eq. (10).

6. Conclusion and recommendations for future research

In this paper, an unrelated parallel machine scheduling problem with machine processing costs was investigated. Simultaneous
minimization of the makespan and the total cost was aimed at this problem. In this respect, a solution procedure based on the
mathematical programming approach was developed to obtain a diverse, uniformly distributed set of Pareto optimal or near-
optimal solutions. Such a set of solutions provides valuable choices for the decision-maker to select the final solution of the
problem based on the actual conditions and preferences. In the developed solution procedure, the e-constraint method was
first used to transfer the makespan objective into the constraints set. Then, the induced single-objective problems were solved
in a structured way using a MILP solver to generate the desired set of Pareto solutions, called the MILP solution procedure.
While obtaining the optimal solution was not necessarily aimed, an accurate approximation of the optimal solution was found
employing this approach. Moreover, the single-objective problems were solved sequentially, for which the solution of the
previous problem was used as a starting solution to the next problem. These two strategies were used in the MILP solution
procedure to reduce the total solution time.

The efficacy of the MILP solution procedure was assessed through extensive computational experiments. To this end, test
problems were generated with a broad range of dimensions, up to 50 machines and 500 jobs. Furthermore, two propositions
were proven rigorously to analyze the candidate uniform probability distributions in generating the processing time and cost
parameters. Using the propositions, it was concluded that the only parameter required to be determined to generate processing
time and cost parameters was a in Uni[@ 100] (the corresponding uniform distribution for processing times). Consequently,
three distinct values were selected for this parameter to have different types of problem instances.

The generated problem instances were solved using the CPLEX software through the proposed MILP solution procedure. A
time limit of 600s and an acceptable optimal gap between 0.005 and 0.03 were set to solve each single-objective problem.
The solution to a problem was terminated when either of the above two conditions was met. The results showed that the
mathematical programming approach was significantly efficient for the studied problem since most of the single-objective
problems were solved by the assigned optimal gap within the time limit. Moreover, in rare cases where the solution time
exceeded the time limit, the average optimal gaps were still close to the intended optimal gaps. Furthermore, it was observed
that the adopted multiobjective solution procedure results in a diverse and uniformly distributed set of Pareto solutions to the
problem instances. Another finding was that obtaining a Pareto solution close to the makespan minimization part of the Pareto
front was much harder to find than the others. In summary, it was concluded that mathematical programming is an efficient
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approach to estimating the Pareto front of the bi-objective optimization problem through the proposed solution procedure,
even for large-scale problem instances.

For future studies, developing other multiobjective solution approaches such as using evolutionary algorithms and comparing
their performance to the one of the current paper is suggested. Moreover, some different extra assumptions such as batch
processing and the existence of sequence-dependent setup times and costs involved in scheduling problems can be taken into
account for this problem. Fixed processing costs can also be investigated for the scheduling problems in more sophisticated
flexible environments such as hybrid flow shops or flexible job shops.
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