

* Corresponding author
E-mail: kzgao@must.edu.mo (K. Gao)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2023 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.2.004

International Journal of Industrial Engineering Computations 14 (2023) 221–238

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Heuristics and metaheuristics to minimize makespan for flowshop with peak power consumption
constraints

Yuan-Zhen Lia, Kaizhou Gaob*, Lei-Lei Menga, Xue-Lei Jinga and Biao Zhanga

Liaocheng, 252000, P.R. ChinaSchool of Computer Science, Liaocheng University, Shandong a
 Institute of Systems Engineering, Macau University of Science and Technology, Taipa, 999078, Macaob

C H R O N I C L E A B S T R A C T

Article history:
Received May 10 2022
Accepted February 14 2023
Available online
February, 14 2023

 This paper addresses the permutation flowshop scheduling problem with peak power consumption
constraints (PFSPP). The real-time power consumption of the PFSPP cannot exceed a given peak
power at any time. First, a mathematical model is established to describe the concerned problem.
The sequence of operations is taken as a solution and the characteristics of solutions are analyzed.
Based on the problem characteristics, eight heuristics are proposed, including balanced machine-
job decoding method, balanced machine-job insert method, balanced job-machine insert method,
balanced machine-job group insert method, balanced job-machine group insert method, greedy
algorithm, beam search algorithm, and improved beam search algorithm. Similarly, the canonical
artificial bee colony algorithm and iterated local search algorithm are modified based on the
problem characteristics to solve the PFSPP. A large number of experiments are carried out to
evaluate the performance of new proposed heuristics and metaheuristics. The results and discussion
show that the proposed heuristics and metaheuristics perform well in solving the PFSPP.

© 2023 by the authors; licensee Growing Science, Canada

Keywords:
Permutation flowshop scheduling
Peak power consumption
Makespan
Heuristics
Artificial bee colony algorithm
Iterated local search algorithm

1. Introduction

Faced with serious global environmental problems, green manufacturing has become a mode increasingly concerned by
modern production (Li & Wang, 2022). With the rapid consumption of non-renewable energy and the continuous increase of
energy prices, the efficient use of energy has attracted extensive attention (Renna & Materi, 2021). Green scheduling (Li et
al., 2021) is the key to green manufacturing. Efficient green scheduling method can synergistically optimize the economic
indicators and green indicators of enterprises to achieve efficiency increase, energy conservation, emission reduction,
consumption reduction, and cost reduction (Ramezanian et al., 2019; Ribas & Companys, 2021). Early research on green
scheduling focused on the design of energy management strategies, that is, the processing speed of equipment can be adjusted.
It is generally believed that the faster the processing time, the greater the energy consumption (Wang and Wang, 2020). In
view of the time of use prevailing in the industry, some researchers have proposed scheduling methods to optimize electricity
charges (Luo et al., 2013; Zhao et al., 2021). The main energy source of most manufacturing enterprises is electric. The
maximum total power consumption of all machines in the production process is called peak power consumption. If the peak
power consumption exceeds an established threshold, the electricity price will be much higher than the rated price. Therefore,
controlling the peak power consumption within a reasonable range can effectively save costs. At present, there is little research
on scheduling with peak power consumption constraints. The permutation flowshop scheduling problem (PFSP) (González-
Neira et al., 2017; Mishra & Shrivastava, 2020) has a wide application background and plays an important role in
manufacturing systems (Fernandez-Viagas et al., 2022; Yu et al., 2022). With the serious attention of manufacturing
enterprises to energy, peak power consumption is considered to be one of the important issues. For PFSP with peak power
constraints (PFSPP), real-time power consumption cannot exceed a given peak power at any time. Fang et al. (2011) took the
lead in studying the flowshop scheduling problem considering peak power consumption. They proposed a mathematical
programming model and a simple case to demonstrate the novel mathematical model. In their following paper (Fang et al.,

222

2013), Feng et al. named the PFSP with peak power constraints as PFSPP. The properties of concurrently running jobs were
studied and a special case of two machines and zero intermediate storage was solved. The time window technique (Cui and
Lu, 2020), which reduced complexity of the problem and simplified calculation, was used to solve the PFSPP to minimize
makespan and power consumption. Chou et al. (2020) studied a scheduling problem with peak power consumption, where
the energy consumption of machines was random and depended on scheduling. The research on the PFSPP is few but very
meaningful. Unlike most classical scheduling problems, it is necessary to track which jobs are running at the same time at any
time to consider the peak power consumption in the PFSPP. If the power consumption of concurrent operations exceeds a
given threshold, some operations will be delayed. Wang et al. (2019) proposed a solution for the PFSPP which contains two
parts, i.e. the job processing sequence and processing speed of each job on each machine. In fact, this coding scheme does not
provide enough information to indicate the sequence of operations. Wang et al. (2019) proposed an earliest processing rule
(EPR) to determine the start time of each operation to meet the peak power consumption constraint. Then, five decoding
methods were presented to decode a solution to obtain the sequence of operations. In this paper, we take the sequence of
operations as the representation of solutions. Specifically, this paper studies a reasonable scheduling method to meet the
demand of peak power consumption in the PFSPP when the processing sequence of jobs is determined and the processing
speeds are fixed. In this way, the five decoding methods in the paper (Wang and Wang, 2019) are actually equivalent to five
heuristics. The mathematical model of the concerned problem is established and the problem characteristics are analyzed.
Based on the problem characteristics, eight constructive heuristics and two metaheuristics derived from artificial bee colonies
and iterated local search are proposed to solve this concerned problem. The experimental results show that both the presented
constructive heuristics and metaheuristics are very effective for solving the PFSPP.

The remainder of this paper is organized as follows. Section 2 presents the problem description, establishes a mathematical
model, introduces an illustrative example, and analyzes the characteristics of the considered problem. Section 3 proposes 8
heuristics, including balanced machine-job decoding method, balanced machine-job insert method, balanced job-machine
insert method, balanced machine-job group insert method, balanced job-machine group insert method, greedy algorithm, beam
search algorithm, and improved beam search algorithm. Section 4 presents ABC algorithm and ILS algorithm customized
according to problem characteristics. We report the computational results and comparisons in Section 5. Finally, Section 6
provides the concluding remarks and suggests some future work.

2. Problem Description

2.1 Problem Definition

There are 𝑛 jobs to be processed in a flowshop, where there are m machines in the fixed permutation. The set of jobs is 𝒥 ={1,2, … ,𝑛}, the set of machines is ℳ = {1,2, … ,𝑚}, and n and m are known constants. The operation of job 𝑗 on machine 𝑖
is denoted as O௜௝. At the beginning, all jobs and machines are ready. A machine can only process one job at a time, and a job
can only be processed on one machine at a time. No interruption is allowed during jobs processing. There are no setup times,
facility malfunctions or maintenance issues. Suppose the processing sequence and processing speed of all jobs have been
determined. The processing sequence of jobs are π = {1,2, … ,𝑛}. We need to determine the sequence of all operations. The
processing time and power consumption of O௜௝ are 𝑝௜௝ and 𝑞௜௝, respectively. In addition, the power consumption at any time
cannot exceed a threshold, denoted as 𝑄௠௔௫. Another assumption is that max௜∈ℳ,௝∈𝒥{𝑞௜௝} ≤ 𝑄௠௔௫ to ensure the existence of
feasible schedule. A feasible schedule is defined as a schedule in which the total power consumption at any time is no more
than the given threshold 𝑄௠௔௫. The goal is to minimize the completion time under the condition of meeting the peak power
consumption constraint. The indices, parameters and decision variables used are shown in Table 1.

Table 1
Indices, parameters and decision variables

Parameters: 𝑛 The number of jobs. 𝑚 The number of machines. 𝑂௜௝ The operation of job 𝑖 ∈ 𝑁 on machine 𝑗 ∈ 𝑀. 𝑝௜௝ The processing time of 𝑂௜௝. 𝑞௜௝ The power consumption of 𝑂௜௝. 𝐶௠௔௫ The completion time of a schedule. 𝐶௜௝ The completion time of job j on machine i. 𝑆௜௝ The start time of job j on machine i. 𝐷 A large positive number.
Variables 𝑢௛௞௜௝ is equal to 1 if the start time of job k on machine h is less than or equal to the start time of job j on

machine i (in other words, 𝑆௛௞ ≤ 𝑆௜௝), and 0 otherwise. 𝑣௛௞௜௝ is equal to 1 if the completion time of job k on machine h is greater than the start time of job j on
machine i (in other words, 𝐶௛௞ > 𝑆௜௝), and 0 otherwise. 𝑦௛௞௜௝ is equal to 1 if the start time of job j on machine i occurs during the processing of job k on machine h
(in other words, 𝑆௛௞ ≤ 𝑆௜௝ < 𝐶௛௞), and 0 otherwise.

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 223

2.2 Problem Formulation

The following mathematical model of PFSPP is expanded from the modes presented by Fang et al. (2013) and Wang et al.
(2019). 𝑚𝑖𝑛 𝐶௠௔௫;)1(

Subject to 𝐶௠௔௫ ≥ 𝐶௠௡௙;)2(𝐶ଵଵ ≥ 𝑝ଵଵ;)3(𝐶௜௞ ≥ 𝐶௜ିଵ,௞ + 𝑝௜௞; for 𝑖 ∈ ℳ\{1};𝑘 ∈ {1,2, … ,𝑛};)4(𝐶௜௞ ≥ 𝐶௜,௞ିଵ + 𝑝௜௞; for 𝑖 ∈ ℳ;𝑘 ∈ {2, … ,𝑛};)5(𝐶௜௞ = 𝑆௜௞ + 𝑝௜௞; for 𝑖 ∈ ℳ; 𝑘 ∈ {1, … ,𝑛};)6(𝑆௜௝ − 𝑆௛௞ ≤ 𝐷𝑢௛௞௜௝ − 1; for 𝑖 ∈ ℳ; 𝑘 ∈ {1, … ,𝑛};)7(𝑆௛௞ − 𝑆௜௝ ≤ 𝐷൫1 − 𝑢௛௞௜௝൯; for 𝑖,ℎ ∈ ℳ; 𝑗, 𝑘 ∈ {1, … ,𝑛};)8(𝐶௛௞ − 𝑆௜௝ ≤ 𝐷𝑣௛௞௜௝; for 𝑖, ℎ ∈ ℳ; 𝑗, 𝑘 ∈ {1,2, …𝑛};)9(𝑆௜௝ − 𝐶௛௞ ≤ 𝐷൫1 − 𝑣௛௞௜௝൯ − 1; for 𝑖, ℎ ∈ ℳ; 𝑗, 𝑘 ∈ {1,2, … ,𝑛};)10(𝑢௛௞௜௝ + 𝑣௛௞௜௝ = 1 + 𝑦௛௞௜௝; for 𝑖,ℎ ∈ ℳ; 𝑗,𝑘 ∈ {1,2, …𝑛};)11(𝑦௛௞௜௝ ≤ 𝑢௛௞௜௝; for 𝑖,ℎ ∈ ℳ, 𝑗, 𝑘 ∈ {1,2, …𝑛};)12(𝑦௛௞௜௝ ≤ 𝑣௛௞௜௝; for 𝑖,ℎ ∈ ℳ, 𝑗, 𝑘 ∈ {1,2, … ,𝑛};)13(𝑞௜௝ + ෍ ෍𝑞௛௟𝑦௛௞௜௝௟∈𝒥௛∈ℳ,௛ஷ௜; ≤ 𝑄௠௔௫; for 𝑖 ∈ ℳ, 𝑗, 𝑘 ∈ {1,2, … ,𝑛};)14(

𝑢௛௞௜௝, 𝑣௛௞௜௝ ,𝑦௛௞௜௝ ∈ {0,1}; for 𝑖, ℎ ∈ ℳ, 𝑗, 𝑙,𝑘 ∈ {1,2, … ,𝑛};)15(

The objective (1) and the constraint (2) ensures that the makespan of the schedule is equal to the completion time of the last
job on the last machine. Constraints (3)(4)(5) ensure that the completion times are consistent with a flowshop. Constraints (6)
ensure that jobs are processed nonpreemptively. Constraints (7)(8)(9)(10)(11)(12)(13) ensure that the concurrent job variables
u, v, and y take their intended values. Finally, constraints (14) ensure that at any time, the total power consumption of all
machines is at most 𝑄௠௔௫. Constraints (15) define the value range of the variables.

2.3 Illustrative Example

There is an example with m=3 and n=6. The processing times and power consumption are given in Table 2.

Table 2
The processing times 𝑝௜௝ and power consumption 𝑞௜௝ of jobs on machines.

 𝒑𝒊𝒋 𝒒𝒊𝒋
i=1 i =2 i =3 i=1 i =2 i =3

j=1 11 30 16 16 9 16
j=2 6 37 12 16 4 16
j=3 24 24 8 16 16 9

Jobs 1, 2, and 3 are processed on machines in sequence. The scheduling Gantt without peak power consumption constraint is
shown in Fig. 1. As can be seen from the scheduling Gantt, the power consumption at time 𝑡 (𝑡 ∈ (78,90]) is 𝑄(tሻ = 32. It
exceeds 𝑄௠௔௫ , which is equal to 30. Operation 𝑂ଷ,ଶ or 𝑂ଶ,ଷ should be postponed meeting the peak power consumption
constraint.

M2

M1

Time
The number in the rectangle indicates the power consumption

J1-16

J1-9 J2-4

J1-16 J2-16M3

J3-16

J3-16

0 50 150100

J2-16

J3-9

Fig. 1. Gantt Chart for a solution to an example without peak power consumption constraint.

224

We postpone operation 𝑂ଶ,ଷ. The consequence of the postponing is that other subsequent operations will also be postponed.
The scheduling Gantt after postponing 𝑂ଶ,ଷ is shown in Fig. 2. All postponed jobs are shaded. The completion time is 122.
Finally, the completion time of this schedule considering peak power consumption constraint is 122.

M2

M1

Time
The number in the rectangle indicates the power consumption

J1-16

J1-9 J2-4

J1-16 J2-16M3

J3-16

J3-16

0 50 150100

J3-9

J2-16

Fig. 2. Gantt Chart for a solution to an example with peak power consumption constraint

2.4 Representation, Characteristic Analysis and Decoding of Solutions

Wang et al. (2019) proposed a solution representation method, which consists of two parts. One part represents the order of
all jobs, and the other part represents the processing speeds of jobs. When the speeds of all jobs are determined, the order of
jobs represents a solution. This scheme can only indicate the sequence of jobs, not the sequence of operations. To further
determine the sequence of operations, five decoding schemes are proposed, including job-precedence (JP) decoding method,
machine-precedence (MP) decoding method, largest total remaining load (LTRL) decoding method, earliest completion time
(ECT) decoding method and balanced job-machine (BJM) decoding method. These five decoding methods generate five
operation sequences according to the sequence of jobs. The actual processing scheme is obtained by using the early processing
rule. The five decoding methods can be regarded as heuristics. The decoded results are not the optimal solution and can be
further optimized. We improved the representation of solutions. A solution is a sequence of operations rather than a sequence
of jobs, representing the implementation order of operations. A solution can be expressed as: Π = (Oଵ, Oଶ, … , O௞ … , O௡∗௠),
where O௞ indicates an operation O௜௝ which means the kth element in the solution is the operation of job 𝑗 on machine 𝑖 .
Obviously, the number of elements of a solution is 𝑛 × 𝑚.

The characteristics of flowshop and fixed processing sequence of jobs determine that a solution has the following
characteristics. (1) The first operation of a feasible solution is Oଵ,ଵ, and the last one is O௡,௠. (2) In a feasible solution, all
operations O௣௤(𝑝 ≤ 𝑖, 𝑞 ≤ 𝑗) must precede the operation O௜௝. (3) In a feasible solution, the reasonable interval for operating O௜௝ is [𝑖 × 𝑗, (𝑚− 𝑖 + 1) × (𝑛 − 𝑗 + 1)].

O1,1 O1,2 O1,3 O1,4 O1,5

O2,1 O2,2 O2,3 O2,4

O3,1 O3,2 O3,3

O4,1 O4,2

O5,1

M1

M2

M3

M4

M5

Job 1 Job 2 Job 3 Job 4 Job 5

……

……

……

……

Fig. 3. Properties of a feasible solution.

A solution represents the sequence of all operations. Indeed, peak power consumption should also be considered when
scheduling. It is necessary to process operations as early as possible while meeting peak power constraint at any time.

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 225

3. Proposed Heuristics

This section presents eight heuristics newly designed, including balanced machine-job decoding method, balanced machine-
job insert method, balanced job-machine insert method, balanced machine-job group insert method, balanced job-machine
group insert method, greedy algorithm, beam search algorithm, and improved beam search algorithm.

3.1 Balanced Machine-Job Method

Wang et al. (2019) proposed balanced job-machine decoding method (BJM) which considers the sequence of jobs and machine
comprehensively when determining all operations sequence. The operation sequence obtained by BJM is 𝑂ଵ,ଵ,𝑂ଶ,ଵ,𝑂ଵ,ଶ,𝑂ଷ,ଵ,𝑂ଶ,ଶ,𝑂ଵ,ଷ, … ,𝑂௡,௠. A simple modification has been made to BJM and a balanced machine-job decoding
method (BMJ) is proposed. The BMJ generates a sequence of all operations according to the gray arrows in Fig. 4. The
operation sequence generated by BMJ is 𝑂ଵ,ଵ,𝑂ଵ,ଶ,𝑂ଶ,ଵ,𝑂ଵ,ଷ,𝑂ଶ,ଶ,𝑂ଷ,ଵ, … ,𝑂௡,௠. The pseudo-code of BMJ algorithm is shown
in Algorithm 1.

Algorithm 1. BMJ(𝜋)
1: 𝑗 = 1, 𝑖 = 1, 𝑘 = 𝑖 + 𝑗,𝛱 = ∅;
2: 𝐖𝐡𝐢𝐥𝐞 𝑘 ≤ 𝑛 + 𝑚 𝐝𝐨
3: 𝐖𝐡𝐢𝐥𝐞 𝑖 > 0 𝐝𝐨
4: Append the 𝑂௜,௝ to 𝛱;
5: 𝑗 + +;
6: 𝑖 − −;
7: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
8: 𝑘 + +;
9: 𝑗 = 1;
10: 𝑖 = 𝑘 − 𝑗;
11: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
12: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

1 3 6 10 15

2 5 9 14

4 8 13

7 12

11

M1

M2

M3

M4

M5

Job 1 Job 2 Job 3 Job 4 Job 5

……

……

……

……

Fig. 4. Illustration of BMJ decoding

3.2 Balanced Machine-Job Insert Method

The pseudo-code of the balanced machine-job insert (BMJI) algorithm is shown in Algorithm 2. First, a temporary
intermediate sequence is obtained using BMJ. Then, each job in the temporary intermediate sequence is taken out in turn and
inserted into the optimal position of the final solution.

Algorithm 2. BMJI(𝜋)
1: 𝛱 = ∅;
2: 𝜆 = BMJ(𝜋);
3: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 𝟎 𝐝𝐨
4: Extract the first operation 𝑂 from 𝜆;
5: Test operation 𝑂 at all possible positions of 𝛱;
6: Insert operation 𝑂 at the position which result minimum increase of makespan;
7: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
8: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

226

3.3 Balanced Job-Machine Insert Method

The pseudo-code of the balanced job-machine insert (BMJI) algorithm is shown in Algorithm 3. The difference between the
BJMI and the BMJI is that the temporary intermediate sequence of the BJMI is generated by the BJM.

Algorithm 3. BJMI(𝜋)
1: 𝛱 = ∅;
2: 𝜆 = BJM(𝜋);
3: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) 𝐝𝐨
4: Extract the first operation 𝑂 from 𝜆;
5: Test operation 𝑂 at all possible positions of 𝛱;
6: Insert operation 𝑂 at the position which result minimum increase of makespan;
7: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
8: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

3.4 Balanced Machine-Job Group Insert Method

The balanced machine-job group insert algorithm is based on BMJ algorithm, which divides all operations into m+n groups.
As shown in Fig. 4, the operations connected by an arrow form a group. Compared with BMJ, the positions of operations in
a group can be adjusted. The operations in each group can be inserted into the optimal position. The pseudo-code of BMJGI
algorithm is shown in Algorithm 4.

Algorithm 4. BMJGI(𝜋)
1: 𝑗 = 1, 𝑖 = 1, 𝑘 = 𝑖 + 𝑗,𝛱 = ∅;
2: 𝐖𝐡𝐢𝐥𝐞 𝑘 ≤ 𝑛 + 𝑚 𝐝𝐨
3: 𝑙 = sizeof(Π);
4: 𝜆 = ∅;
5: 𝐖𝐡𝐢𝐥𝐞 𝑖 > 0 𝐝𝐨
6: Append the 𝑂௜,௝ to 𝜆;
7: 𝑗 + +;
8: 𝑖 − −;
9: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
10: 𝑘 + +;
11: 𝑗 = 1;
12: 𝑖 = 𝑘 − 𝑗;
13: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 0 𝐝𝐨
14: Extract the first operation 𝑂 from 𝜆;
15: Test operation 𝑂 from the 𝑙௧௛ position to the last position of 𝛱;
16: Insert operation 𝑂 at the position which result minimum increase of makespan;
17: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
18: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
19: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

3.5 Balanced Job-Machine Group Insert Method

This balanced job-machine group insert algorithm is based on BJM algorithm, which divides all operations into m+n groups,
and the operations in each group can be inserted into the optimal position. The pseudo-code of BJMGI algorithm is shown in
Algorithm 5.

Algorithm 5. BJMGI(𝜋)
1: 𝑗 = 1, 𝑖 = 1, 𝑘 = 𝑖 + 𝑗,𝛱 = ∅;
2: 𝐖𝐡𝐢𝐥𝐞 𝑘 < 𝑛 + 𝑚 𝐝𝐨
3: 𝑙 = sizeof(Π);
4: 𝜆 = ∅;
5: 𝐖𝐡𝐢𝐥𝐞 𝑗 > 0 𝐝𝐨
6: Append the 𝑂௜,௝ to 𝜆;
7: 𝑗 − −;
8: 𝑖 + +;

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 227

9: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
10: 𝑘 + +;
11: 𝑖 = 1;
12: 𝑗 = 𝑘 − 𝑖;
13: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 0 𝐝𝐨
14: Extract the first operation 𝑂 from 𝜆;
15: Test operation 𝑂 from the 𝑙௧௛ position to the last position of 𝛱;
16: Insert operation 𝑂 at the position which result minimum increase of makesan ;
17: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
18: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
19: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

3.6 Greedy Algorithm

The pseudo-code of the greedy algorithm is shown in Algorithm 6. The greedy algorithm divides all operations into three
categories. The first category is operations that have been added to the final solution 𝛱. The second category is candidate
operations (in Set 𝑆), which means these operations can be performed. The third category is the remaining operations (in Set 𝑉) that cannot be performed at present. The following steps are performed in each cycle. All operations in the candidate
operation set 𝑆 are attempted to be attached to the final solution 𝛱, and the operation with the lowest completion time is
selected as the current operation. The current operation is marked as completed, removed form 𝑆 and appended to 𝛱. Then,
the operations in 𝑉 that can be performed are moved to 𝑆.

Algorithm 6. Greedy(𝜋)
1: 𝑉=൛𝑂௜,௝ൟ, 𝑖 ∈ ℳ, 𝑗 ∈ 𝒥;// the set of all operations
2: 𝛱={𝑂ଵ,ଵ}; // the first operation;
3: 𝑆={𝑂ଶ,ଵ,𝑂ଵ,ଶ};// the set of candidate operations which can be performed;
4: 𝑉=𝑉 − 𝑆 − 𝛱; // the set of operations which cannot be performed;
5: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝛱) ≤ 𝑚 ∗ 𝑛 𝐝𝐨
6: Try to append each operation in 𝑆 to 𝛱;
7: 𝑂' is the operation with the minimum completion time after being append to 𝛱;
8: 𝑂′ is removed from 𝑆 and append to 𝛱;
9: 𝐟𝐨𝐫 each operation 𝑂௜,௝ in 𝑉 𝐝𝐨;
10: 𝐢𝐟 𝑂௜ିଵ,௝∈𝛱 and 𝑂௜,௝ିଵ∈𝛱 𝐝𝐨;
11: 𝑂௜,௝ is removed from 𝑉 and append to 𝑆;
12: 𝐞𝐧𝐝𝐢𝐟
13: 𝐞𝐧𝐝𝐟𝐨𝐫
14: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
15: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

3.7 Beam Search Algorithm

The greedy algorithm can get results quickly, but its result may not be optimal. The enumeration algorithm can achieve the
best result, but its computation is often too large. There is a compromise algorithm, named beam search (BS) algorithm, which
can be used for the considered problem. The BS algorithm is an improved version of greedy algorithm, which differs from
greedy algorithm in that greedy algorithm selects the best one each time, while the BS selects the best 𝑏 candidates each time.
The parameter 𝑏 is an algorithm parameter, generally called beam size. The pseudo-code of beam search is shown in
Algorithm 7.

Algorithm 7. BS(𝑏)
1: 𝛱ଵ={𝑂ଵ,ଵ}; // the first operation;
2: 𝑋={𝛱ଵ};// the set of solutions
3: 𝐟𝐨𝐫 𝑘 = 1 to 𝑚 ∗ 𝑛 𝐝𝐨
4: 𝑋ଵ=∅ ;
5: 𝐟𝐨𝐫 each solution 𝛱௞ in 𝑋 𝐝𝐨
6: Try to append each operation that can be performed to 𝛱௞ , and put all new
 temporary solutions obtained into 𝑋ଵ;
7: 𝐞𝐧𝐝𝐟𝐨𝐫

228

8: 𝑋=∅ and select the best 𝑏 solutions in 𝑋ଵ and put them to 𝑋;
9: 𝐞𝐧𝐝𝐟𝐨𝐫
10: 𝛱=best solution in 𝑋;
11: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

3.8 Improved Beam Search Algorithm (iBS)

The improved beam search algorithm (iBS) divides all operations into m+n groups, and the operation in each group resulting
in minimum increase of makespan is append the final solution. The pseudo-code of the iBS algorithm is shown in Algorithm
8.

Algorithm 8. iBS()
1: 𝑗 = 1, 𝑖 = 1, 𝑘 = 𝑖 + 𝑗,𝛱 = ∅;
2: 𝐖𝐡𝐢𝐥𝐞 𝑘 ≤ 𝑛 + 𝑚 𝐝𝐨
3: 𝑙 = sizeof(Π);
4: 𝜆 = ∅;
5: 𝐖𝐡𝐢𝐥𝐞 𝑖 > 0 𝐝𝐨
6: Append operation 𝑂௜,௝ to 𝜆;
7: 𝑗 + +;
8: 𝑖 − −;
9: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
10: 𝑘 + +;
11: 𝑗 = 1;
12: 𝑖 = 𝑘 − 𝑗;
13: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝜆) > 0 𝐝𝐨
14: 𝐟𝐨𝐫 each operation in 𝜆 𝐝𝐨
15: Try to append each operation to Π;
16: 𝐞𝐧𝐝𝐟𝐨𝐫
17: 𝑂 is the operation resulting in minimum increase of makespan;
18: Remove operation 𝑂 from 𝜆 and append it to 𝛱;
19: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
20: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
21: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

4. Proposed Metaheuristics

First, three operators based on the problem characteristics are designed. Subsequently, based on three operators, ILS and ABC
algorithms are redesigned for the considered problem.

4.1 Operators

Three operators are shift, swap, and hybrid.

The pseudo-code of shift is shown in Algorithm 9. An operation is randomly selected except the first and last one, because
the positions of these two operations, namely, Oଵ,ଵ and O௠,௡, are fixed (Line 3 in Algorithm 9). Suppose the selected operation
is 𝑂௜,௝. Then a random position (Line 5 in Algorithm 9) in its feasible position interval is selected. Then, it is checked whether
the new solution generated after 𝑂௜,௝ moves to the new location is feasible (Lines 6-8 in Algorithm 9). If there is no conflict,
operation 𝑂௜,௝ shifts to the new position (Line 9 in Algorithm 9). If there is conflict, try again.

Algorithm 9. Shift(Π)
1: Bool Conflict = true;
2: 𝐖𝐡𝐢𝐥𝐞 Conflict == true 𝐝𝐨
3: 𝑘 = rand()%(𝑚 × 𝑛 − 2) + 2;// Randomly select an operation expect 𝑂ଵ,ଵ and 𝑂௠௡;
4: 𝑂௜,௝=𝛱௞;// Assume that the operation at position k is 𝑂௜,௝;
5: 𝑘ᇱ=rand()%((𝑚− 𝑖 + 1) × (𝑛 − 𝑗 + 1) − 𝑖 × 𝑗)+𝑖 × 𝑗;
 // Randomly select a position within its reasonable range.
6: 𝐟𝐨𝐫 each operation 𝑂௜ᇱ,௝ᇱ between 𝑘 and 𝑘′ 𝐝𝐨
7: 𝐢𝐟 𝑂௜ᇱ,௝ᇱ and 𝑂௜,௝ are conflicting 𝐝𝐨 Conflict = true, break, 𝐞𝐧𝐝𝐢𝐟;
8: endfor

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 229

9: 𝐢𝐟 Conflict == false 𝐝𝐨 Operation 𝑂௜,௝ moves from position 𝑘 to position 𝑘′, 𝐞𝐧𝐝𝐢𝐟
10: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
11: 𝐫𝐞𝐭𝐮𝐫𝐧 Π;

The pseudo-code of swap is shown in Algorithm 10. The swap operator is very similar to the shift operator. The swap operator
exchanges the operations of two positions randomly selected. Of course, conflict checking is also required.

Algorithm 10. Swap(Π)
1: Bool Conflict = true;
2: 𝐖𝐡𝐢𝐥𝐞 Conflict == true 𝐝𝐨
3: 𝑘ଵ = rand()%(𝑚 × 𝑛 − 2) + 2;// Randomly select an operation expect 𝑂ଵ,ଵ and 𝑂௠௡;
4: 𝑂௜ଵ,௝ଵ=𝛱௞ଵ;// Assume that the operation at position 𝑘ଵ is 𝑂௜ଵ,௝ଵ;
5: 𝑘ଶ=rand()%((𝑚− 𝑖1 + 1) × (𝑛 − 𝑗1 + 1) − 𝑖1 × 𝑗1)+𝑖1 × 𝑗1;
 // Randomly select a position within its reasonable range.
6: 𝑂௜ଶ,௝ଶ=𝛱௞ଶ;// Assume that the operation at position 𝑘ଶ is 𝑂௜ଶ,௝ଶ;
7: 𝐟𝐨𝐫 each operation 𝑂௜ᇱ,௝ᇱ between 𝑘ଵ and 𝑘ଶ 𝐝𝐨
8: 𝐢𝐟 𝑂௜ᇱ,௝ᇱ and 𝑂௜ଵ,௝ଵ are conflicting 𝐝𝐨 Conflict = true, break, 𝐞𝐧𝐝𝐢𝐟;
9: 𝐢𝐟 𝑂௜ᇱ,௝ᇱ and 𝑂௜ଶ,௝ଶ are conflicting 𝐝𝐨 Conflict = true, break, 𝐞𝐧𝐝𝐢𝐟;
10: endfor
11: 𝐢𝐟 Conflict == false 𝐝𝐨 Swap 𝑂௜ଵ,௝ଵ and 𝑂௜ଶ,௝ଶ, 𝐞𝐧𝐝𝐢𝐟
12: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
13: 𝐫𝐞𝐭𝐮𝐫𝐧 Π;

The pseudo-code of hybrid operator is shown in Algorithm 11. The hybrid operator is a combined operator that performs shift
with 50% probability and swap with 50% probability.

Algorithm 11. Hybrid(Π)
1: 𝑜𝑝 = 𝑟𝑎𝑛𝑑()%2;
2: 𝐢𝐟 𝑜𝑝 == 0 𝐝𝐨
3: Shift(Π);
4: else
5: Swap(Π);
6: 𝐞𝐧𝐝𝐢𝐟
7: 𝐫𝐞𝐭𝐮𝐫𝐧 Π;

4.2 Random Initialization

The random initialization algorithm generates a random initial solution, whose pseudo-code is shown in Algorithm 12. The
random initialization method is very similar to Greedy Algorithm, except that the operations in 𝑆 are randomly selected (Line
6 in Algorithm 12).

Algorithm 12. InitIndividualRandom()
1: 𝑉=൛𝑂௜,௝ൟ, 𝑖 ∈ ℳ, 𝑗 ∈ 𝒥; // the set of all operations
2: 𝛱={𝑂ଵ,ଵ}; // the first operation;
3: 𝑆={𝑂ଶ,ଵ,𝑂ଵ,ଶ};// the set of candidate operations which can be performed;
4: 𝑉=𝑉 − 𝑆 − 𝛱; // the set of operations which cannot be performed;
5: 𝐖𝐡𝐢𝐥𝐞 sizeof(𝛱) ≤ 𝑚 ∗ 𝑛 𝐝𝐨
6: Randomly selected an operation 𝑂' in 𝑆;
8: 𝑂′ is removed from 𝑆 and append to 𝛱;
9: 𝐟𝐨𝐫 each operation 𝑂௜,௝ in 𝑉 𝐝𝐨;
10: 𝐢𝐟 𝑂௜ିଵ,௝∈𝛱 and 𝑂௜,௝ିଵ∈𝛱 𝐝𝐨;
11: 𝑂௜,௝ is removed from 𝑉 and append to 𝑆;
12: 𝐞𝐧𝐝𝐢𝐟
13: 𝐞𝐧𝐝𝐟𝐨𝐫
14: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
15: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱;

230

4.3 Iterated Local Search Algorithm

The iterated local search (ILS) algorithm is an improvement of local search method. It adds perturbation to the local optimal
solution obtained by local search, and then carries out local search again (Qin et al., 2022). It is widely used in the field of
combinatorial optimization because of its good performance. The ILS algorithm we designed is shown in Algorithm 13. An
initial solution is generated by using the random initialization method in section 4.2. The initial solution is marked as the
optimal solution. After initialization, ILS iteratively performs the perturbation procedure and acceptance criterion, until a stop
condition is reached. A perturbation solution is obtained by performing a number 𝑃𝐿𝑒𝑛 of neighbourhood operators to the
current local optimum. A total of 𝑛𝑃𝑒𝑟𝑠 perturbation solutions are obtained and then the best one is retained. For the
acceptance criterion, the simulated annealing type criterion with temperature t calculated as in Eq.(16) is used.

𝑡 = 𝑇𝐹 × ∑ ∑ 𝑝௞௝௠௞ୀଵ௡௝ୀଵ10𝑛𝑚 ;)16(

Algorithm 13. ILS(𝑛𝑃𝑒𝑟𝑠,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒,𝑃𝐿𝑒𝑛,𝑇𝐹)
1: 𝛱 = InitIndividualRandom();
2: 𝛱∗ = 𝛱;// best solution so far
3: t=temperature obtained from Eq.(16) with parameter 𝑇𝐹;
4: 𝐖𝐡𝐢𝐥𝐞 (stop condition not met) 𝐝𝐨
5: 𝐟𝐨𝐫 𝑖 = 1 to 𝑛𝑃𝑒𝑟𝑠 𝐝𝐨
6: 𝛱′(𝑖) = 𝛱;
7: 𝐟𝐨𝐫 𝑗 = 1 to 𝑃𝐿𝑒𝑛 𝐝𝐨
8: 𝐬𝐰𝐢𝐭𝐜𝐡 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒 𝐝𝐨
9: 𝐜𝐚𝐬𝐞 𝟎: 𝛱′(𝑖) = Shift(𝛱′(𝑖))
10: 𝐜𝐚𝐬𝐞 𝟏: 𝛱′(𝑖) = Swap(𝛱′(𝑖))
11: 𝐜𝐚𝐬𝐞 𝟐: 𝛱′(𝑖) = Hybrid(𝛱′(𝑖))
12: 𝐞𝐧𝐝𝐬𝐰𝐢𝐭𝐜𝐡
13: 𝐞𝐧𝐝𝐟𝐨𝐫
14: 𝐞𝐧𝐝𝐟𝐨𝐫
15: 𝛱′′ = best solution among {𝛱′(1),𝛱′(2),…,𝛱′(𝑛𝑃𝑒𝑟𝑠)};
16: 𝐟𝐨𝐫 C(𝛱′′)<C(𝛱) 𝐭𝐡𝐞𝐧
17: 𝛱 = 𝛱′′;
18: 𝐞𝐥𝐬𝐞𝐢𝐟 rand()<exp((C(𝛱)-C(𝛱′′))/t) 𝐭𝐡𝐞𝐧
19: 𝛱 = 𝛱′′;
20: 𝐞𝐧𝐝𝐢𝐟
21: 𝐢𝐟 C(𝛱′′)<C(𝛱∗) 𝐭𝐡𝐞𝐧
22: 𝛱∗ = 𝛱′′;
23: 𝐞𝐧𝐝𝐢𝐟
24: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
25: 𝐫𝐞𝐭𝐮𝐫𝐧 𝜋∗;

4.4 Artificial Bee Colony Algorithm

The artificial bee colony algorithm is a new intelligent optimization algorithm to simulate the honey gathering process of bees
(Yu et al., 2022). It is composed of three parts: food source, employed bees and non-employed bees (Tao et al., 2022). Its
advantages are less control parameters, strong robustness and fast convergence.

4.4.1 Population Initialization

The pseudo-code of population initialization is shown in Algorithm 14. The population contains PSize individuals, each of
which is generated by InitIndividualRandom.

Algorithm 14. InitPopRandom(𝑃𝑆𝑖𝑧𝑒)
1: 𝐟𝐨𝐫 i = 1 to PSize 𝐝𝐨
2: 𝛱(𝑖) = InitIndividualRandom();
3: Put 𝛱(𝑖) into 𝑋
4: 𝐞𝐧𝐝𝐟𝐨𝐫
5: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑋;

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 231

4.4.2 Employed Bee Stage

The pseudo-code of the employed bee stage is shown in Algorithm 15. According to the parameter 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒, operator shift,
swap, or hybrid is performed for each solution in the current population. All new solutions are stored in a temporary set 𝑋ᇱ.
Algorithm 15. Employed_Bee_Stage(𝑋,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒)
1: 𝑋ᇱ = ∅;
2: 𝐟𝐨𝐫 each solution 𝛱(𝑖) in 𝑋 𝐝𝐨
3: 𝛱′(𝑖) = 𝛱(𝑖);
4: 𝐬𝐰𝐢𝐭𝐜𝐡 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒 𝐝𝐨
5: 𝐜𝐚𝐬𝐞 𝟎: 𝛱′(𝑖) = Shift(𝛱′(𝑖))
6: 𝐜𝐚𝐬𝐞 𝟏: 𝛱′(𝑖) = Swap(𝛱′(𝑖))
7: 𝐜𝐚𝐬𝐞 𝟐: 𝛱′(𝑖) = Hybrid(𝛱′(𝑖))
8: 𝐞𝐧𝐝𝐬𝐰𝐢𝐭𝐜𝐡
9: Put 𝛱′(𝑖) into 𝑋′
10: 𝐞𝐧𝐝𝐟𝐨𝐫
11: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑋ᇱ;

4.4.3 Onlooker Bee Stage

The pseudo-code of the onlooker bee stage is shown in Algorithm 16. For each onlooker bee, randomly select two individuals,
and then select the better one from the two individuals for subsequent operation. According to the parameter 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒,
operator shift, swap, or hybrid is performed for the better individual. All new solutions are stored in a temporary set 𝑋ᇱ′.
Algorithm 16. Onlooker_Bee_Stage(𝑋,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒)
1: 𝑋′′ = ∅;
2: 𝐟𝐨𝐫 i = 1 to 𝑃𝑆𝑖𝑧𝑒 𝐝𝐨
3: 𝛱′(𝑖)= solution selected from 𝑋 using binary tourmonent selection;
4: 𝐬𝐰𝐢𝐭𝐜𝐡 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒 𝐝𝐨
5: 𝐜𝐚𝐬𝐞 𝟎: 𝛱′(𝑖) = Shift(𝛱′(𝑖))
6: 𝐜𝐚𝐬𝐞 𝟏: 𝛱′(𝑖) = Swap(𝛱′(𝑖))
7: 𝐜𝐚𝐬𝐞 𝟐: 𝛱′(𝑖) = HybridOperator(𝛱′(𝑖))
8: 𝐞𝐧𝐝𝐬𝐰𝐢𝐭𝐜𝐡
5: Put 𝛱′(𝑖) into 𝑋ᇱ′;
6: 𝐞𝐧𝐝𝐟𝐨𝐫
7: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑋′′;

4.4.4 Computational Procedure of the ABC algorithm

Finally, the overall flow of the ABC algorithm is shown in Algorithm 17. The initialization method is used to generate 𝑃𝑆𝑖𝑧𝑒
initial solutions, and the one with the highest fitness is marked as the optimal one. Then, it enters a loop. Then the operation
in the employed bee stage and onlooker bee stage are executed. The solutions obtained in the employed bee stage are saved
in X′ , while the solutions obtained in the onlooker bee stage is stored in X′′ . The best 𝑃𝑆𝑖𝑧𝑒 solutions in X ∪ X′ ∪ X′′ are
selected as the population for next generation. The best solution is updated. Finally, when the termination condition is satisfied,
ABC algorithm ends.

Algorithm 17. ABC(𝑃𝑆𝑖𝑧𝑒,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒)
1: 𝑋 = InitPopRandom(𝑃𝑆𝑖𝑧𝑒);//Randomly generate 𝑃𝑆𝑖𝑧𝑒 solutions;
2: 𝛱∗ = best solution found so far;
3: 𝐰𝐡𝐢𝐥𝐞 (terminiation criterion not satisfied) 𝐝𝐨
4: 𝑋ᇱ = Employed_Bee_Stge(𝑋,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒);
5: 𝑋ᇱᇱ = Onlooker_Bee_Stge(𝑋ᇱ,𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒);
6: 𝑋 = best PSize solutions from X∪X'∪X''; //population updating
7: Update 𝛱∗;
8: 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞
9: 𝐫𝐞𝐭𝐮𝐫𝐧 𝛱∗;

4.5 Calibration

The parameters of the proposed ABC and ILS algorithm are adjusted to obtain their best performance. We determine the

232

general range of parameters based on preliminary experiments. The parameters of the ABC algorithm are set as follows: 𝑃𝑆𝑖𝑧𝑒 ∈ {100,200,300, } , 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒∈{0,1,2} . The parameters of the ILS algorithm are set as follows: 𝑛𝑃𝑒𝑟𝑆 ∈{5,10,15, } , 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒∈{0,1,2}, 𝑃𝐿𝑒𝑛∈{1,3,5}, 𝑇𝐹∈{0.3,0.5,0.7}. There are 9 and 27 parameter combinations for the ABC
and ILS algorithm, respectively.

The instances for calibration experiments are derived from the literature (Wang and Wang, 2019) on peak power consumption.
The number of machines m and jobs n in instances are set as follows: n∈{20,40,60,80,100}, m∈{4,8,16}. The standard
processing time of jobs on machines is evenly selected from [5,50]. The set of speeds of machines is 𝒮 = {1,1.3,1.55,1.75,2.1}.
The actual processing time of jobs on machines is equal to the standard processing time divided by its speed. The instantaneous
power consumption 𝑃𝑃௦ when a machine works at speed 𝑠 equals 4𝑠ଶ (kw). We define the minimum power value 𝒬 =4 × 1ଶ = 4, and the maximum power value 𝒬 = 4 × 2.1ଶ × 𝑚. If 𝑄௠௔௫ < 𝒬, there is no feasible solution; if 𝑄௠௔௫ ≥ 𝒬, all

solutions are feasible. Ten power peaks are defined as 𝒬௞ = 𝒬 + 𝒬ି𝒬ଽ × 𝑘, (k = 0,1, … ,9) , and are regarded as candidate
values of 𝑄௠௔௫. For m, n, and 𝑄௠௔௫, there are 5×3×10=150 combination. An instance is generated for each combination where
the processing sequence and processing speed of jobs are randomly generated with the constraint that the instantaneous power
consumption of each job shall not be greater than 𝑄௠௔௫. Finally, a total of 5×3×10×1=150 instances are generated.

For each instance, the ABC algorithm of each parameter combination independently repeated 10 times, and finally
150×10×9=13500 results were obtained. Similarly, the ILS algorithm of each parameter combination solved each instance
once, and finally 150×1×81=12150 results were obtained. All algorithms in this paper were coded C++ in Visual Studio 2017.
All experiments in this paper were conducted on an Inter(R) Xeon(R) CPU E5-2630 2.4 GHz with 16 GB of RAM running
Windows 7 Standard 64 bits. The termination time of ABC and ILS was 6nm ms, where n and m are the numbers of jobs and
machines in instances, respectively. The relative percentage increase (RPI) was used to evaluate the experimental results,
shown in Eq. (17).

𝑅𝑃𝐼 = 100 ∗ (𝐶 − 𝐶∗)𝐶∗)17(

where, 𝐶∗ is the best solution obtained by all competing algorithms. Analysis of variance (ANOVA) (Li et al., 2022) are used
to analyze the results. Fig. 5 and Fig. 6 show the results from ANOVA. Obviously, for ABC algorithm, 𝑃𝑆𝑖𝑧𝑒 and 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒
should be fixed at 200 and 0, respectively. For ILS algorithm, the optimal parameter configuration should be: 𝑛𝑃𝑒𝑟𝑆 =5, 𝑂𝑝𝑒𝑟𝑇𝑦𝑝𝑒 = 2, 𝑃𝐿𝑒𝑛 = 3, 𝑇𝐹 = 0.5.

100 200 300
(a)PSize

8.2

8.4

8.6

8.8

9

9.2

R
PI

0 1 2
(b)OperType

7.9

8.2

8.5

8.8

9.1

9.4

9.7

RP
I

Fig. 5. Means plots for all factories for the ABC calibration.

5 10 15
(a)nPerS

6.7

7

7.3

7.6

7.9

8.2

8.5

RP
I

0 1 2
(b)OperType

6.9

7.2

7.5

7.8

8.1

8.4

8.7

RP
I

1 3 5
(c)PLen

6.7

7.1

7.5

7.9

8.3

RP
I

0.3 0.5 0.7
(d)TF

7.3

7.4

7.5

7.6

7.7

7.8

RP
I

Fig. 6. Means plots for all factories for the ILS calibration.

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 233

5. Computational evaluation

Two groups of experiments were designed. The first group compared the heuristics. The second group compared ABC, ILS,
and the best heuristic.

5.1 Comparison of Constructive Heuristics

Eight heuristics proposed in this paper are compared with 5 heuristics in the literature (Wang and Wang, 2019), including JP,
MP, TLRL, ECT, and BJM. Thirteen heuristics are tested on small- and large-scale instances. For small-scale instances, n∈
{8,12,16,20}, m∈{2,4}. Similarly, 𝑄௠௔௫ has ten values, as described in Section 4.5. For m, n, and 𝑄௠௔௫, there are 4×2×10=80
combinations. One hundred instances are generated for each combination. A total of 4×2×10×100=8000 small-scale instances
are generated. Other details of the small-scale instances are the same as those in Section 4.5. For large-scale instances, n∈
{20,40,60,80,100}, m∈{4,8,16}. A total of 5×3×10×100=15000 large-scale instances are generated. The indicators compared
include average RPI (ARPI) and NSR. NSR means the number of successes runs (Wang and Wang, 2019). Obviously, an
algorithm with large NSR or small ARPI is better. Table 3 lists the ARPI for small-scale instances. BS(1m) means b equal to
1*m. The new heuristics have shown good performance. BJMI achieved the best results, and BJMGI was the second best. The
fourth was iBS. BS(1m) was the fifth. Greedy algorithm was the sixth.

Table 3
ARPI for heuristics(small instance)

(n, m) BJM BJMGI BJMI BMJ BMJGI BMJI BS(1m) iBS ECT Greedy JP LTRL MP
(8,2) 1.217 1.217 1.124 4.564 3.748 3.748 1.906 1.962 5.425 2.364 4.564 3.328 8.644
(12,2) 1.481 1.481 1.308 5.472 4.57 4.57 2.675 2.681 6.228 2.972 5.472 3.626 9.932
(16,2) 1.757 1.757 1.394 5.783 4.833 4.833 2.491 2.927 7.833 2.75 5.783 4.78 11.919
(20,2) 1.852 1.852 1.569 6.252 5.28 5.28 2.3 3.273 8.021 2.439 6.252 5.269 13.185
(8,4) 1.861 1.383 1.193 3.356 2.141 2.258 3.339 2.308 6.752 3.732 7.202 2.703 8.619
(12,4) 1.646 1.236 0.974 3.571 2.076 2.153 3.403 2.347 7.233 3.755 7.935 3.203 10.782
(16,4) 1.608 1.155 0.811 3.709 2.298 2.424 3.423 2.394 7.941 3.614 8.07 3.977 13
(20,4) 1.655 1.276 0.844 3.999 2.456 2.633 2.653 2.284 8.164 2.964 8.382 4.075 13.378
Mean 1.635 1.42 1.152 4.588 3.425 3.487 2.774 2.522 7.199 3.074 6.708 3.87 11.182
Rank 3 2 1 10 7 8 5 4 12 6 11 9 13 𝑄௠௔௫ 𝒬ଵ 2.978 2.255 1.818 6.112 4.831 4.801 3.694 3.474 11.549 4.339 11.405 5.751 19.88 𝒬ଶ 3.136 2.46 1.986 7.356 5.617 5.758 4.102 4.002 13.491 4.899 14.04 6.846 23.663 𝒬ଷ 2.956 2.374 2.074 7.739 5.934 6.108 5.087 4.351 14.055 5.658 13.075 6.782 22.006 𝒬ସ 2.234 2.112 1.706 7.75 5.373 5.633 5.527 4.669 11.601 5.879 10.638 5.935 15.323 𝒬ହ 2.105 1.999 1.609 7.365 5.563 5.615 4.025 3.828 10.177 4.301 8.164 6.402 16.705 𝒬଺ 1.626 1.663 1.343 5.129 3.873 3.899 2.81 2.707 5.963 2.978 5.292 3.728 8.306 𝒬଻ 0.975 0.989 0.739 3.242 2.27 2.27 1.888 1.603 3.872 2.05 3.27 2.438 4.585 𝒬଼ 0.19 0.194 0.135 0.675 0.456 0.456 0.347 0.326 0.735 0.356 0.675 0.427 0.754 𝒬ଽ 0.146 0.149 0.113 0.516 0.334 0.334 0.259 0.261 0.551 0.277 0.516 0.39 0.601 𝒬ଵ଴ 0 0 0 0 0 0 0 0 0 0 0 0 0
AVE 1.635 1.42 1.152 4.588 3.425 3.487 2.774 2.522 7.199 3.074 6.708 3.87 11.182

Fig. 7 (a) shows mean plots with 95.0% Tukey honest significant difference (HSD) confidence intervals of ARPI for small
instances of all heuristics. For clarity, Fig. 7 (b) only shows mean plots and 95.0% Tukey HSD Intervals of ARPI for small
instances of the best six heuristics. Fig. 7 (c) and (d) show the interactions of the algorithms and number of jobs, interactions
of the algorithms and number of machines, respectively. As can be seen, the new proposed BJMI algorithm has achieved good
results in each case.

(b) Mean plot of the best 6 algorithms

(c) Interactions of algorithms and jobs (d) Interactions of algorithms and machines

Algorithms
(a) Mean plot of all algorithms

Jobs

1

2

3

4

RP
I

8 12 16 20

Alg
BJM
BJMGI
BJMI
BS(1m)
BSi
Gr

Machines

1

2

3

4

RP
I

2 4

Alg
BJM
BJMGI
BJMI
BS(1m)
BSi
Gr

BJM BJMGI BJMI BS(1m) BSi Gr

.5

1

1.5

2

2.5

3

RP
I

2

4

6

8

10

12

RP
I

Algorithms

Fig. 7. Means plots, interactions and 95.0% Tukey HSD intervals of ARPI (small instances).

234

Table 4 lists the NSR of small-scale instances, which shows the advantages of the new heuristics. The best six heuristics are
BJMI, BJMGI, BJM, BS(1m), LTRL, and iBS, four (BJMI, BJMGI, BS(1m), and iBS) of which are newly proposed.

Table 4
NSR for heuristics(small instance)

(n, m) BJM BJMGI BJMI BMJ BMJGI BMJI BS(1m) iBS ECT Greedy JP LTRL MP
(8,2) 809 809 819 491 567 567 679 688 478 624 491 594 427

(12,2) 688 688 715 356 406 406 508 499 352 484 356 499 374
(16,2) 610 610 663 314 364 364 487 441 303 465 314 405 304
(20,2) 560 560 611 251 280 280 483 345 272 453 251 368 280
(8,4) 565 617 661 497 558 560 488 511 463 470 472 578 514

(12,4) 537 567 640 439 480 486 445 457 412 417 426 540 467
(16,4) 507 538 630 396 438 438 402 431 364 384 387 459 397
(20,4) 464 504 619 358 388 384 425 404 352 402 355 466 411
Mean 592.5 611.63 669.75 387.75 435.13 435.63 489.6 472 374.5 462.38 381.5 488.6 396.8
Rank 3 2 1 11 9 8 4 6 13 7 12 5 10 𝑄௠௔௫ 𝒬ଵ 244 272 358 55 100 113 224 160 41 180 45 130 17 𝒬ଶ 248 296 378 56 88 88 220 139 26 163 42 110 14 𝒬ଷ 244 299 352 46 86 79 191 135 31 159 36 109 11 𝒬ସ 317 308 389 63 107 110 161 149 68 143 57 179 75 𝒬ହ 343 362 421 90 132 128 206 166 77 186 85 204 103 𝒬଺ 448 457 509 235 296 295 292 301 223 270 231 389 281 𝒬଻ 591 594 632 395 456 456 415 490 359 399 394 521 448 𝒬଼ 749 749 757 664 695 695 684 707 668 680 664 727 700 𝒬ଽ 756 756 762 698 721 721 724 729 703 719 698 740 725 𝒬ଵ଴ 800 800 800 800 800 800 800 800 800 800 800 800 800
AVE 474 489.3 535.8 310.2 348.1 348.5 391.7 377.6 299.6 369.9 305.2 390.9 317.4

Tables 5 and 6 list the ARPI and NSR of large-scale instances, respectively. Fig. 8 shows means plots, interactions and 95.0%
Tukey HSD intervals for large instances. The new heuristics also shows better performance for large-scale instances. BJMI is
still the best. The best six heuristics for large-scale instances are BJMI, BJMGI, BJM, iBS, BMJGI, and BMJI, five (BJMI,
BJMGI, iBS, BMJGI, and BMJI) of which are our new heuristics.

Table 5
ARPI for heuristics(large instance)

(n, m) BJM BJMGI BJMI BMJ BMJGI BMJI BS(1m) iBS ECT Greedy JP LTRL MP
(20,4) 1.497 1.165 0.787 3.631 2.257 2.337 3.456 2.151 8.556 3.599 8.002 4.513 14.09
(40,4) 1.375 1.061 0.609 4.01 2.474 2.637 2.32 1.969 9.919 2.451 8.628 5.862 17.32
(60,4) 1.548 1.277 0.713 4.512 2.885 3.012 1.734 2.295 9.79 1.806 9.315 5.861 18.31
(80,4) 1.59 1.316 0.758 4.644 2.972 3.104 1.515 2.38 10.55 1.643 9.391 6.018 18.62
(100,4) 1.482 1.198 0.68 4.397 2.839 2.987 1.145 2.198 10.11 1.295 9.147 6.353 19.25
(20,8) 0.898 0.405 0.363 1.501 0.766 0.877 3.125 1.166 6.905 3.319 7.004 3.07 9.848
(40,8) 0.869 0.33 0.234 1.844 0.997 1.16 2.939 1.131 8.049 3.148 7.949 5.871 13.85
(60,8) 0.889 0.335 0.216 2.075 1.212 1.344 2.815 1.22 8.283 3.089 8.417 6.669 15.5
(80,8) 0.897 0.341 0.217 2.123 1.227 1.403 2.499 1.22 8.911 2.777 8.647 7.732 17.07
(100,8) 0.922 0.382 0.241 2.166 1.248 1.421 2.338 1.243 8.795 2.6 8.648 7.723 17.15
(20,16) 0.524 0.177 0.197 0.572 0.222 0.254 2.293 0.648 4.476 2.508 4.449 2.002 5.182
(40,16) 0.517 0.136 0.116 0.682 0.272 0.294 2.772 0.647 5.75 3.05 5.243 3.89 7.277
(60,16) 0.497 0.094 0.08 0.767 0.329 0.379 2.902 0.643 6.07 3.206 5.496 6.038 9.178
(80,16) 0.511 0.113 0.091 0.892 0.421 0.462 2.961 0.683 6.187 3.157 5.945 6.532 9.679

(100,16) 0.5 0.102 0.08 0.928 0.468 0.501 2.872 0.676 6.333 3.138 5.901 7.373 10.44
Mean 0.968 0.562 0.359 2.316 1.373 1.478 2.512 1.351 7.912 2.719 7.479 5.701 13.52
Rank 3 2 1 7 5 6 8 4 12 9 11 10 13 𝑄௠௔௫ 𝒬ଵ 3.151 0.919 0.381 4.168 1.536 1.51 4.555 2.129 20.56 5.606 23 5.988 39.22 𝒬ଶ 1.958 0.818 0.662 3.402 1.643 2.054 5.737 2.54 19.13 6.285 18.57 10.47 32.03 𝒬ଷ 1.53 0.737 0.47 4.317 2.29 2.641 6.451 3.193 17.51 6.81 16.1 15.45 26.96 𝒬ସ 0.959 0.88 0.422 4.929 3.237 3.483 4.422 2.616 12 4.462 9.575 14.55 21.21 𝒬ହ 0.927 1.029 0.633 3.621 2.739 2.806 2.273 1.603 6.405 2.343 4.658 7.492 11.51 𝒬଺ 0.684 0.747 0.583 1.772 1.448 1.452 1.067 0.904 2.5 1.06 1.913 2.22 3.139 𝒬଻ 0.367 0.385 0.342 0.773 0.668 0.669 0.519 0.421 0.856 0.526 0.792 0.719 0.963 𝒬଼ 0.084 0.09 0.079 0.155 0.143 0.143 0.084 0.089 0.139 0.084 0.155 0.102 0.127 𝒬ଽ 0.016 0.017 0.015 0.026 0.023 0.023 0.015 0.018 0.031 0.014 0.026 0.013 0.015 𝒬ଵ଴ 0 0 0 0 0 0 0 0 0 0 0 0 0
AVE 0.968 0.562 0.359 2.316 1.373 1.478 2.512 1.351 7.912 2.719 7.479 5.701 13.52

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 235

Table 6
NSR for heuristics (large instances)

(n, m) BJM BJMGI BJMI BMJ BMJGI BMJI BS(1m) iBS ECT Greedy JP LTRL MP
(20,4) 484 527 622 394 424 424 389 425 346 371 386 427 385
(40,4) 427 430 620 323 344 345 377 377 283 355 323 354 310
(60,4) 362 361 593 261 276 276 398 304 287 370 261 341 316
(80,4) 336 330 554 245 250 250 387 279 275 352 246 327 302
(100,4) 331 329 543 259 260 260 405 290 247 364 258 309 283
(20,8) 614 701 726 577 625 618 481 580 486 481 559 583 545
(40,8) 557 652 752 497 541 524 423 540 424 421 491 479 461
(60,8) 519 630 748 435 454 448 385 493 395 380 433 464 452
(80,8) 488 586 722 414 448 427 373 463 384 372 412 423 417
(100,8) 459 581 707 401 429 414 379 449 359 367 399 426 411
(20,16) 721 791 791 717 780 767 610 708 628 609 697 717 678
(40,16) 663 743 786 621 687 673 523 643 539 521 601 620 599
(60,16) 636 753 786 577 641 600 474 620 512 472 572 565 550
(80,16) 612 708 765 558 626 584 467 598 492 469 547 549 537
(100,16) 603 706 766 525 577 541 443 577 484 443 523 528 511

Mean 520.8 588.5 698.7 453.6 490.8 476.7 434.27 489.7 409.4 423.1 447.2 474.1 450.5
Rank 3 2 1 8 4 6 11 5 13 12 10 7 9 𝑄௠௔௫ 𝒬ଵ 2 250 782 2 181 159 84 33 0 40 0 1 0 𝒬ଶ 27 466 491 4 276 94 113 22 0 60 0 6 0 𝒬ଷ 99 433 805 25 74 70 78 31 0 46 5 24 2 𝒬ସ 444 491 923 145 153 151 104 229 39 98 113 144 93 𝒬ହ 746 721 904 460 465 465 324 640 216 289 431 458 364 𝒬଺ 985 960 1040 810 827 827 629 922 626 636 803 916 818 𝒬଻ 1168 1171 1194 1080 1100 1099 949 1141 990 946 1078 1189 1124 𝒬଼ 1384 1379 1383 1333 1339 1339 1287 1377 1321 1285 1333 1399 1384 𝒬ଽ 1457 1457 1459 1445 1447 1447 1446 1451 1449 1447 1445 1475 1472 𝒬ଵ଴ 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
AVE 781.2 882.8 1048 680.4 736.2 715.1 651.4 734.6 614.1 634.7 670.8 711.2 675.7

(b) Mean plot of the best 6 algorithms

(d) Interactions of algorithms and machines

BJM BJMGI BJMI BMJGI BMJI BSi

.3

.6

.9

1.2

1.5

RP
I

Machines

.4

.8

1.2

1.6

2

2.4

RP
I

4 8 16

Algorithm
BJM
BJMGI
BJMI
BMJGI
BMJI
BSi

Algorithms

(c) Interactions of algorithms and jobs
Jobs

.3

.6

.9

1.2

1.5

RP
I

20 40 60 80 100

Algorithm
BJM
BJMGI
BJMI
BMJGI
BMJI
BSi

Algorithms

3

6

9

12

15

RP
I

(a) Mean plot of the best 6 algorithms

Fig. 8. Means plots, interactions and 95.0% Tukey HSD Intervals (large instances)

5.2 Comparison of Metaheuristics

Large-scale instances are used to verify the performance of metaheuristics. The algorithms compared include two
metaheuristic algorithms, ABC and ILS, and BJMI, which is the best among all heuristics. ABC and ILS have three termination
times, namely 10, 20 and 30 nm ms, where n and m are the numbers of jobs and machines in instances.

Table 7 and 8 show the ARPI and NSR of three compared algorithms respectively. It can be seen that ILS achieves the best

236

performance when it terminates at 30nm ms. In general, metaheuristic algorithms have better performance than heuristic.

Table 7
ARPI for metaheuristics (large instances, minimum ARPI values are in bold).

Termination time BJMI 10nm 20nm 30nm
Algorithm ABC ILS ABC ILS ABC ILS

(20,4) 4.309 0.546 0.494 0.462 0.163 0.109 0.072
(40,4) 5.052 1.004 0.903 0.84 0.317 0.132 0.054
(60,4) 5.515 1.135 1 0.938 0.369 0.153 0.05
(80,4) 5.671 1.359 1.168 1.078 0.509 0.178 0.032
(100,4) 5.641 1.549 1.294 1.201 0.594 0.214 0.032
(20,8) 2.677 0.84 0.767 0.733 0.205 0.068 0.003
(40,8) 2.834 1.245 1.111 1.051 0.347 0.113 0
(60,8) 2.795 1.356 1.17 1.091 0.566 0.182 0
(80,8) 2.747 1.419 1.156 1.051 0.715 0.248 0.002
(100,8) 2.349 1.162 0.865 0.727 1.026 0.508 0.167
(20,16) 1.137 0.657 0.599 0.572 0.222 0.068 0
(40,16) 0.689 0.638 0.527 0.483 0.501 0.182 0.021
(60,16) 0.494 0.708 0.586 0.52 0.707 0.402 0.224
(80,16) 0.442 0.725 0.597 0.527 1.027 0.71 0.514
(100,16) 0.418 0.792 0.661 0.586 0.861 0.598 0.433

Mean 2.851 1.009 0.86 0.791 0.542 0.258 0.107
 7 6 5 4 3 2 1 𝑄௠௔௫ 𝒬ଵ 6.291 3.028 0.696 2.4 0.239 2.118 0.012 𝒬ଶ 6.045 2.605 0.959 2.181 0.367 1.989 0.068 𝒬ଷ 5.397 2.336 1.819 2.073 1.031 1.954 0.576 𝒬ସ 4.975 1.32 1.287 1.186 0.663 1.119 0.33 𝒬ହ 3.777 0.702 0.502 0.664 0.198 0.636 0.04 𝒬଺ 1.418 0.088 0.141 0.082 0.071 0.08 0.04 𝒬଻ 0.509 0.011 0.007 0.01 0.003 0.01 0.002 𝒬଼ 0.086 0 0.007 0 0.004 0 0.003 𝒬ଽ 0.016 0 0 0 0 0 0 𝒬ଵ଴ 0 0 0 0 0 0 0

AVE 2.851 1.009 0.542 0.86 0.258 0.791 0.107

Table 8
NSR for metaheuristics (large instances, minimum ARPI values are in bold).

Termination time BJMI 10nm 20nm 30nm
Algorithm ABC ILS ABC ILS ABC ILS

(20,4) 421 612 791 630 868 642 924
(40,4) 348 498 585 527 751 544 937
(60,4) 291 458 486 476 650 493 939
(80,4) 264 443 435 453 551 474 947

(100,4) 273 434 412 444 490 454 948
(20,8) 589 658 710 662 813 668 995
(40,8) 513 564 598 565 667 565 1000
(60,8) 452 551 575 552 598 552 997
(80,8) 432 512 509 512 545 515 993

(100,8) 425 532 475 561 505 632 863
(20,16) 716 732 758 734 816 735 1000
(40,16) 663 673 668 679 703 685 964
(60,16) 702 645 585 650 606 660 836
(80,16) 711 667 550 684 571 696 745

(100,16) 743 642 549 664 559 681 685
Mean 502.9 574.7 579.1 586.2 646.2 599.7 918.2
Rank 7 6 5 4 2 3 1 𝑄௠௔௫ 𝒬ଵ 0 17 27 41 77 280 1466 𝒬ଶ 150 11 25 46 90 270 1316 𝒬ଷ 329 70 109 180 137 284 1054 𝒬ସ 192 433 512 583 349 526 1150 𝒬ହ 524 823 841 856 838 1019 1396 𝒬଺ 882 1307 1318 1329 1245 1340 1409 𝒬଻ 1135 1460 1461 1461 1468 1485 1490 𝒬଼ 1373 1500 1500 1500 1483 1489 1492 𝒬ଽ 1458 1500 1500 1500 1499 1500 1500 𝒬ଵ଴ 1500 1500 1500 1500 1500 1500 1500

Y.-Z. Li et al. / International Journal of Industrial Engineering Computations 14 (2023) 237

AVE 754.3 862.1 879.3 899.6 868.6 969.3 1377.3

6. Conclusions

Energy conservation is a hot research topic at present, and this paper investigates the flowshop scheduling problems with peak
energy consumption (PFSPP). To meet the limit of peak power consumption, the concurrency of jobs on different machines
should be considered. The sequence of operations is taken as a solution and the problem characteristics are analyzed. Based
on the problem characteristics, eight heuristics and two metaheuristics are proposed to solve the PFSPP. Many numerical
experiments and comparisons show the superiority of the eight heuristics and two metaheuristics for solving the concerned
problems.

The scheduling with peak power constrained is a very interesting topic, and there are many problems to be studied in the
future. Future research work includes considering peak power consumption in hybrid flowshop scheduling problems (Çolak
and Keskin, 2022; Meng et al., 2022) and multi-objective optimization of flow shop (F. et al., 2022; Zhang et al., 2022).

Acknowledgment
This research is partially supported by the National Natural Science Foundation of China 62173356 and 52205529, the Science
and Technology Development Fund (FDCT), Macao SAR, under Grant 0019/2021/A, the Natural Science Foundation of
Shandong Province (ZR2021QE195), and the Zhuhai Industry-University-Research Project with Hongkong and Macao under
Grant ZH22017002210014PWC.

References

Chou, Y., Yang, J. & Wu, C. (2020). An energy-aware scheduling algorithm under maximum power consumption constraints.

Journal of Manufacturing Systems, 57,182-197.
Çolak, M. & Keskin, G.A. (2022). An extensive and systematic literature review for hybrid flowshop scheduling problems.

International Journal of Industrial Engineering Computations, 13(2),185-222.
Cui, W. & Lu, B. (2020). A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with

Peak Demand Constraint. Sustainability, 12(10),4110.
Zhao, F., Ma, R., & Wang, L. (2021). A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed

no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Transactions on Cybernetics, 52(12),
12675-12686.

Fang, K., Uhan, N., Zhao, F. & Sutherland, J.W. (2011). A new approach to scheduling in manufacturing for power
consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4),234-240.

Fang, K., Uhan, N.A., Zhao, F. & Sutherland, J.W. (2013). Flow shop scheduling with peak power consumption constraints.
Annals of Operations Research, 206(1),115-145.

Fernandez-Viagas, V., Sanchez-Mediano, L., Angulo-Cortes, A., Gomez-Medina, D. & Molina-Pariente, J.M. (2022). The
Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based
Heuristics, and an Iterated Greedy Algorithm. Mathematics, 10(19),3446.

González-Neira, E., Montoya-Torres, J., & Barrera, D. (2017). Flow-shop scheduling problem under uncertainties: Review
and trends. International Journal of Industrial Engineering Computations, 8(4), 399-426.

Li, M., & Wang, G. G. (2022). A review of green shop scheduling problem. Information Sciences, 589, 478-496.
Li, Y., Pan, Q., Gao, K., Tasgetiren, M.F., Zhang, B. & Li, J. (2021). A green scheduling algorithm for the distributed flowshop

problem. Applied Soft Computing, 109(9),107526.
Li, Y., Pan, Q., Ruiz, R. & Sang, H. (2022). A referenced iterated greedy algorithm for the distributed assembly mixed no-

idle permutation flowshop scheduling problem with the total tardiness criterion. Knowledge-Based Systems,
239(3),108036.

Luo, H., Du, B., Huang, G.Q., Chen, H. & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity
consumption cost. International Journal of Production Economics, 146(2),423-439.

Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H. & Chaoyong, Z. (2022). Novel MILP and CP models for distributed hybrid
flowshop scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 71, 101058.

Mishra, A., & Shrivastava, D. (2020). A discrete Jaya algorithm for permutation flow-shop scheduling problem. International
Journal of Industrial Engineering Computations, 11(3), 415-428.

Qin, S., Pi, D., & Shao, Z. (2022). AILS: A budget-constrained adaptive iterated local search for workflow scheduling in
cloud environment. Expert Systems with Applications, 198, 116824.

Ramezanian, R., Vali-Siar, M.M. & Jalalian, M. (2019). Green permutation flowshop scheduling problem with sequence-
dependent setup times: a case study. International Journal of Production Research, 57(10),3311-3333.

Renna, P. & Materi, S. (2021). A Literature Review of Energy Efficiency and Sustainability in Manufacturing Systems.
Applied Sciences, 11(16),7366.

Ribas, I. & Companys, R. (2021). A computational evaluation of constructive heuristics for the parallel blocking flow shop

238

problem with sequence-dependent setup times. International Journal of Industrial Engineering Computations, 12(3),321-
328.

Tao, X., Pan, Q. & Gao, L. (2022). An efficient self-adaptive artificial bee colony algorithm for the distributed resource-
constrained hybrid flowshop problem. Computers & Industrial Engineering, 169,108200.

Wang, J. & Wang, L. (2019). Decoding methods for the flow shop scheduling with peak power consumption constraints.
International Journal of Production Research, 57(10),3200-3218.

Wang, J. & Wang, L. (2020). A Knowledge-Based Cooperative Algorithm for Energy-Efficient Scheduling of Distributed
Flow-Shop. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(5),1-15.

Yu, Y., Zhang, F., Yang, G., Wang, Y., Huang, J. & Han, Y. (2022). A discrete artificial bee colony method based on variable
neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times. Swarm
and Evolutionary Computation, 75,101179.

Zhang, B., Pan, Q., Meng, L., Lu, C., Mou, J. & Li, J. (2022). An automatic multi-objective evolutionary algorithm for the
hybrid flowshop scheduling problem with consistent sublots. Knowledge-Based Systems, 238,107819.

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

